- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
Funder
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2023 NetherlandsPublisher:Elsevier BV Funded by:EC | EUROfusionEC| EUROfusionScholte, J.G.A.; Balden, M.; Brida, D.; Cecrdle, J.; Dux, R.; Elgeti, S.; Faitsch, M.; Herrmann, A.; Horáček, J.; Morgan, T.W.; Hunger, K.; Krieger, K.; Manhard, A.; de Marne, P.; Rohde, V.; Team, ASDEXUpgrade;One of the ways to extend the lifetime of the divertor for DEMO could be to replace the solid tungsten plasma-facing components with liquid tin (Sn) confined in a tungsten capillary porous structure (CPS). Testing a CPS in a divertor plasma configuration is crucial for the development of a liquid metal divertor (LMD) to understand how the main plasma is affected. Only a limited Sn concentration is allowed in the plasma core, due to the high radiative losses associated with the high atomic number of Sn (50). Therefore, it is necessary to test a small-scale LMD filled with Sn in a tokamak environment, which has not previously been done. In ASDEX Upgrade, a liquid tin module (LTM) has been exposed by means of the divertor manipulator. During plasma flat-top, the outer strike point (OSP) was placed onto the pre-heated LTM and held there for a time interval between 2 and 3.4s over multiple discharges. Photographs of the LTM taken after each discharge, revealed macroscopic Sn leakage onto the adjacent tile. Simulations with the HeatLMD code predicted an acceptable tin erosion near the LTM with thermal sputtering dominating over evaporation. However, spectroscopic measurements revealed an order of magnitude higher erosion. Since this remained constant when the OSP was held on the LTM so that the surface temperature increased, evaporation could be excluded as the main source of Sn erosion. Comparison between discharges with different durations of OSP location on the LTM revealed an increase in core radiation up to 1.5MW due to Sn. The 1.5D-impurity transport code STRAHL was used to interpret this increase in total plasma radiation and revealed a Sn concentration in the main plasma of up to 1.4×10-4. Given that the LTM only covered about 1/650 of the outer divertor circumference, extrapolating to a full toroidal divertor implies erosion is above acceptable limits. The unexpectedly high Sn fraction in the main plasma is attributed to the ejection of Sn droplets reaching the main plasma, which may have originated from either the CPS or leaked tin. This conclusion is also supported by splashes of tin droplets, which were observed on the adjacent divertor tile and one ∼0.5m downstream. Therefore, to make a Sn-filled LMD a viable alternative to solid tungsten, the formation of droplets must be reduced by two orders of magnitude.
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2023License: CC BYData sources: Eindhoven University of Technology Research PortalNuclear Materials and EnergyArticle . 2024 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2023.101522&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2023License: CC BYData sources: Eindhoven University of Technology Research PortalNuclear Materials and EnergyArticle . 2024 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2023.101522&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 NetherlandsPublisher:Elsevier BV Funded by:EC | EUROfusionEC| EUROfusionJ.G.A. Scholte; M. Balden; B. Böswirth; S. Elgeti; H. Greuner; A. Herrmann; K. Hunger; K. Krieger; P. Leitenstern; A. Manhard; R. Neu; R.C. van Schaik; V. Rohde; I. Zammuto; T.W. Morgan;Using liquid metals confined in capillary porous structures (CPSs) as a plasma-facing component (PFC) could prolong the lifetime of the divertor in the high heat flux area. However, the high atomic number of tin (Sn) limits its acceptable fraction in the main plasma. Therefore, a crucial step in developing this concept is to test it in a tokamak environment, particularly in the diverted plasma region, e.g. ASDEX Upgrade (AUG). In this paper, the design of liquid tin module (LTM) is explained, and the testing in the high heat flux device GLADIS before its use in AUG is presented. The LTM was additively manufactured using selective laser melting, consisting of a 1.5mm porous layer tungsten (W) directly attached to a solid W bulk. The LTM has a plasma-facing area of 16×40mm2 and was filled with 1.54g of Sn. In GLADIS, the module was exposed to power loads between 2 and 8MWm−2 for 1 up to 10s, first unfilled and later filled with Sn. The surface temperature was monitored with infrared imaging and pyrometry. The thermal response was used to compare with simulations in Ansys Mechanical, enabling a determination of the module’s effective thermal properties. Sn droplets could be observed on the infrared camera, until a surface temperature of about a 1000°C was reached. The enhanced wetting of tin on the plasma-facing surface, which was observed by a visible camera, suggests that there is a conditioning of the surface, possibly due to the removal of impurities and oxides. Subsequent examinations of the adjacent tile revealed minor Sn leakages emanating from the module’s edge. Furthermore, the module showed no indication of mechanical failure. Therefore, these results indicated that the LTM qualifies for the heat fluxes expected in ASDEX Upgrade.
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2023License: CC BYData sources: Eindhoven University of Technology Research PortalNuclear Materials and EnergyArticle . 2024 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2023.101528&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2023License: CC BYData sources: Eindhoven University of Technology Research PortalNuclear Materials and EnergyArticle . 2024 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2023.101528&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 NetherlandsPublisher:Elsevier BV Funded by:EC | EUROfusionEC| EUROfusionScholte, J.G.A.; Iafrati, M.; Lam, S.S.H.; Tyburska-Pueschel, B.; Riepen, M.; Brochard, F.; Vissers, M.M.P.; Morgan, T.W.;Liquid metal based divertors could be a more robust alternative to a solid tungsten design for DEMO. The liquid is confined in a sponge-like tungsten layer, called a capillary porous structure (CPS). It has been found previously that under certain conditions, many tin droplets eject from a CPS when it is brought into contact with a hydrogen plasma. These would present a contamination issue for the plasma core. Stability analysis suggests that droplet ejection can be suppressed by reduction of the pore size. To test this, stainless-steel CPS targets with pore size ranging from 0.5-100 μm filled with tin were exposed to identical loading conditions. This was done in the linear plasma device Magnum-PSI, capable of reaching divertor relevant plasma conditions. Furthermore, the influence of the CPS manufacturing techniques is considered by comparing the performance of a 3D printed, a mesh felts and a sintered CPS, all made from tungsten. Each target was surrounded by four witness plates, which were analysed post-mortem for Sn content by Rutherford backscattering. During plasma exposure, tin droplets were observed using a fast visible camera and plasma light emission via survey optical emission spectroscopy. The results imply that Sn erosion can be reduced by a factor of 50 when reducing the pore size. Moreover, it highlights the importance of avoiding overfilling of CPS targets with Sn.
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2023License: CC BYData sources: Eindhoven University of Technology Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2022.101315&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2023License: CC BYData sources: Eindhoven University of Technology Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2022.101315&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023 NetherlandsPublisher:Elsevier BV Funded by:EC | EUROfusionEC| EUROfusionScholte, J.G.A.; Balden, M.; Brida, D.; Cecrdle, J.; Dux, R.; Elgeti, S.; Faitsch, M.; Herrmann, A.; Horáček, J.; Morgan, T.W.; Hunger, K.; Krieger, K.; Manhard, A.; de Marne, P.; Rohde, V.; Team, ASDEXUpgrade;One of the ways to extend the lifetime of the divertor for DEMO could be to replace the solid tungsten plasma-facing components with liquid tin (Sn) confined in a tungsten capillary porous structure (CPS). Testing a CPS in a divertor plasma configuration is crucial for the development of a liquid metal divertor (LMD) to understand how the main plasma is affected. Only a limited Sn concentration is allowed in the plasma core, due to the high radiative losses associated with the high atomic number of Sn (50). Therefore, it is necessary to test a small-scale LMD filled with Sn in a tokamak environment, which has not previously been done. In ASDEX Upgrade, a liquid tin module (LTM) has been exposed by means of the divertor manipulator. During plasma flat-top, the outer strike point (OSP) was placed onto the pre-heated LTM and held there for a time interval between 2 and 3.4s over multiple discharges. Photographs of the LTM taken after each discharge, revealed macroscopic Sn leakage onto the adjacent tile. Simulations with the HeatLMD code predicted an acceptable tin erosion near the LTM with thermal sputtering dominating over evaporation. However, spectroscopic measurements revealed an order of magnitude higher erosion. Since this remained constant when the OSP was held on the LTM so that the surface temperature increased, evaporation could be excluded as the main source of Sn erosion. Comparison between discharges with different durations of OSP location on the LTM revealed an increase in core radiation up to 1.5MW due to Sn. The 1.5D-impurity transport code STRAHL was used to interpret this increase in total plasma radiation and revealed a Sn concentration in the main plasma of up to 1.4×10-4. Given that the LTM only covered about 1/650 of the outer divertor circumference, extrapolating to a full toroidal divertor implies erosion is above acceptable limits. The unexpectedly high Sn fraction in the main plasma is attributed to the ejection of Sn droplets reaching the main plasma, which may have originated from either the CPS or leaked tin. This conclusion is also supported by splashes of tin droplets, which were observed on the adjacent divertor tile and one ∼0.5m downstream. Therefore, to make a Sn-filled LMD a viable alternative to solid tungsten, the formation of droplets must be reduced by two orders of magnitude.
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2023License: CC BYData sources: Eindhoven University of Technology Research PortalNuclear Materials and EnergyArticle . 2024 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2023.101522&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2023License: CC BYData sources: Eindhoven University of Technology Research PortalNuclear Materials and EnergyArticle . 2024 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2023.101522&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 NetherlandsPublisher:Elsevier BV Funded by:EC | EUROfusionEC| EUROfusionJ.G.A. Scholte; M. Balden; B. Böswirth; S. Elgeti; H. Greuner; A. Herrmann; K. Hunger; K. Krieger; P. Leitenstern; A. Manhard; R. Neu; R.C. van Schaik; V. Rohde; I. Zammuto; T.W. Morgan;Using liquid metals confined in capillary porous structures (CPSs) as a plasma-facing component (PFC) could prolong the lifetime of the divertor in the high heat flux area. However, the high atomic number of tin (Sn) limits its acceptable fraction in the main plasma. Therefore, a crucial step in developing this concept is to test it in a tokamak environment, particularly in the diverted plasma region, e.g. ASDEX Upgrade (AUG). In this paper, the design of liquid tin module (LTM) is explained, and the testing in the high heat flux device GLADIS before its use in AUG is presented. The LTM was additively manufactured using selective laser melting, consisting of a 1.5mm porous layer tungsten (W) directly attached to a solid W bulk. The LTM has a plasma-facing area of 16×40mm2 and was filled with 1.54g of Sn. In GLADIS, the module was exposed to power loads between 2 and 8MWm−2 for 1 up to 10s, first unfilled and later filled with Sn. The surface temperature was monitored with infrared imaging and pyrometry. The thermal response was used to compare with simulations in Ansys Mechanical, enabling a determination of the module’s effective thermal properties. Sn droplets could be observed on the infrared camera, until a surface temperature of about a 1000°C was reached. The enhanced wetting of tin on the plasma-facing surface, which was observed by a visible camera, suggests that there is a conditioning of the surface, possibly due to the removal of impurities and oxides. Subsequent examinations of the adjacent tile revealed minor Sn leakages emanating from the module’s edge. Furthermore, the module showed no indication of mechanical failure. Therefore, these results indicated that the LTM qualifies for the heat fluxes expected in ASDEX Upgrade.
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2023License: CC BYData sources: Eindhoven University of Technology Research PortalNuclear Materials and EnergyArticle . 2024 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2023.101528&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2023License: CC BYData sources: Eindhoven University of Technology Research PortalNuclear Materials and EnergyArticle . 2024 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2023.101528&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 NetherlandsPublisher:Elsevier BV Funded by:EC | EUROfusionEC| EUROfusionScholte, J.G.A.; Iafrati, M.; Lam, S.S.H.; Tyburska-Pueschel, B.; Riepen, M.; Brochard, F.; Vissers, M.M.P.; Morgan, T.W.;Liquid metal based divertors could be a more robust alternative to a solid tungsten design for DEMO. The liquid is confined in a sponge-like tungsten layer, called a capillary porous structure (CPS). It has been found previously that under certain conditions, many tin droplets eject from a CPS when it is brought into contact with a hydrogen plasma. These would present a contamination issue for the plasma core. Stability analysis suggests that droplet ejection can be suppressed by reduction of the pore size. To test this, stainless-steel CPS targets with pore size ranging from 0.5-100 μm filled with tin were exposed to identical loading conditions. This was done in the linear plasma device Magnum-PSI, capable of reaching divertor relevant plasma conditions. Furthermore, the influence of the CPS manufacturing techniques is considered by comparing the performance of a 3D printed, a mesh felts and a sintered CPS, all made from tungsten. Each target was surrounded by four witness plates, which were analysed post-mortem for Sn content by Rutherford backscattering. During plasma exposure, tin droplets were observed using a fast visible camera and plasma light emission via survey optical emission spectroscopy. The results imply that Sn erosion can be reduced by a factor of 50 when reducing the pore size. Moreover, it highlights the importance of avoiding overfilling of CPS targets with Sn.
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2023License: CC BYData sources: Eindhoven University of Technology Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2022.101315&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2023License: CC BYData sources: Eindhoven University of Technology Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2022.101315&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu