- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Abhinav S. Sharma; Andreas Pusch; Michael P. Nielsen; Udo Römer; Murad J.Y. Tayebjee; Fiacre E. Rougieux; Nicholas J. Ekins-Daukes;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2022.03.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2022.03.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Other literature type , Journal 2021Embargo end date: 01 Jan 2020Publisher:Wiley Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP170102677Andreas Pusch; Milos Dubajic; Michael P. Nielsen; Gavin J. Conibeer; Stephen P. Bremner; Nicholas J. Ekins‐Daukes;AbstractHot carrier solar cells promise theoretical power conversion efficiencies far beyond the single junction limit. However, practical implementations of hot carrier solar cells have lagged far behind those theoretical predictions. Reciprocity relations for electroluminescence from conventional single junction solar cells have been extremely helpful in driving their efficiency ever closer to the theoretical limits. In this work, we discuss how the signatures of a functioning hot carrier device should manifest experimentally when driven in reverse, that is, in electroluminescent mode. Hot carrier properties lead to deviations of the dark I–V from the Shockley diode equation that is typical for conventional single junction solar cells. These deviations are directly linked to an increase in temperature of the carriers and therefore the temperature measured from electroluminescence spectra. We also elucidate how the behaviour of hot carrier solar cells in the dark depends on whether Auger processes play a significant role, revealing a stark contrast between the regime of negligible Auger recombination (carrier conservation model) and dominant Auger recombination (impact ionisation model) for hot carrier solar cells.
Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3386&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3386&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 United KingdomPublisher:Elsevier BV Funded by:ARC | ARC Centres of Excellence...ARC| ARC Centres of Excellences - Grant ID: CE170100026Jamie A. Harrison; Phoebe M. Pearce; Fei Yang; Michael P. Nielsen; Helen E. Brindley; Nicholas J. Ekins-Daukes;A thermoradiative diode is a device that can generate power through thermal emission from the warm Earth to the cold night sky. Accurate assessment of the potential power output requires knowledge of the downwelling radiation from the atmosphere. Here, accurate modeling of this radiation is used alongside a detailed balance model of a diode at the Earth's surface temperature to evaluate its performance under nine different atmospheric conditions. In the radiative limit, these conditions yield power densities between 0.34 and 6.5 W.m-2, with optimal bandgaps near 0.094 eV. Restricting the angles of emission and absorption to less than a full hemisphere can marginally increase the power output. Accounting for non-radiative processes, we suggest that if a 0.094 eV device would have radiative efficiencies more than two orders of magnitude lower than a diode with a bandgap near 0.25 eV, the higher bandgap material is preferred.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2024License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/115907Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.isci.2024.111346&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2024License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/115907Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.isci.2024.111346&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2021Embargo end date: 01 Jan 2020 AustraliaPublisher:Wiley Funded by:ARC | ARC Centres of Excellence...ARC| ARC Centres of Excellences - Grant ID: CE170100026Jiang, Y; Nielsen, MP; Baldacchino, AJ; Green, MA; McCamey, DR; Tayebjee, MJY; Schmidt, TW; Ekins-Daukes, NJ; Jiang, Jessica Yajie;handle: 1959.4/unsworks_83200
AbstractThe economic value of a photovoltaic installation depends upon both its lifespan and power conversion efficiency. Progress toward the latter includes mechanisms to circumvent the Shockley‐Queisser limit, such as tandem designs and multiple exciton generation (MEG). Here we explain how both silicon tandem and MEG‐enhanced silicon cell architectures result in lower cell operating temperatures, increasing the device lifetime compared to standard c‐Si cells. Also demonstrated are further advantages from MEG enhanced silicon cells: (i) the device architecture can completely circumvent the need for current‐matching; and (ii) upon degradation, tetracene, a candidate singlet fission (a form of MEG) material, is transparent to the solar spectrum. The combination of (i) and (ii) mean that the primary silicon device will continue to operate with reasonable efficiency even if the singlet fission layer degrades. The lifespan advantages of singlet fission enhanced silicon cells, from a module perspective, are compared favorably alongside the highly regarded perovskite/silicon tandem and conventional c‐Si modules.
UNSWorks arrow_drop_down UNSWorksArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_83200Data sources: Bielefeld Academic Search Engine (BASE)Progress in Photovoltaics Research and ApplicationsArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefProgress in Photovoltaics Research and ApplicationsArticleLicense: CC BY NC NDData sources: UnpayWallhttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3405&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert UNSWorks arrow_drop_down UNSWorksArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_83200Data sources: Bielefeld Academic Search Engine (BASE)Progress in Photovoltaics Research and ApplicationsArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefProgress in Photovoltaics Research and ApplicationsArticleLicense: CC BY NC NDData sources: UnpayWallhttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3405&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:ARC | Discovery Early Career Re...ARC| Discovery Early Career Researcher Award - Grant ID: DE210100453Stefan W. Tabernig; Anastasia H. Soeriyadi; Udo Romer; Andreas Pusch; Dimitry Lamers; Matthias Klaus Juhl; David N. R. Payne; Michael P. Nielsen; Albert Polman; Nicholas J. Ekins-Daukes;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2022.3182277&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2022.3182277&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 AustraliaPublisher:Institute of Electrical and Electronics Engineers (IEEE) Chin, Robert Lee; Pollard, Michael; Nielsen, Michael P; Hameiri, Ziv; Lee Chin, Robert;handle: 1959.4/unsworks_79656
Bulk lifetime (\tau {\text{bulk}}) and bulk doping (N{\text{dop}}) are critical material parameters influencing solar cell performance. The ability to probe spatial variations in \tau {\text{bulk}} and N{\text{dop}} in ingots, prior to wafer cutting and further processing, would be beneficial to improving the yield and reducing the cost of silicon solar cells. This study demonstrates the capability of the two-photon time-resolved photoluminescence decay method to determine both \tau {\text{bulk}} and N{\text{dop}} in thick crystalline silicon samples. The use of two photon excitation enables a more uniform carrier generation profile compared to conventional single-photon excitation, making measurements less sensitive to surface effects. The method is verified using an unpassivated n-type Czochralski silicon disk and found to be in good agreement with the results obtained from the photoluminescence ratio imaging method.
UNSWorks arrow_drop_down UNSWorksArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/1959.4/unsworks_79656Data sources: Bielefeld Academic Search Engine (BASE)IEEE Journal of PhotovoltaicsArticle . 2022 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2021.3133545&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert UNSWorks arrow_drop_down UNSWorksArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/1959.4/unsworks_79656Data sources: Bielefeld Academic Search Engine (BASE)IEEE Journal of PhotovoltaicsArticle . 2022 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2021.3133545&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Abhinav S. Sharma; Andreas Pusch; Michael P. Nielsen; Udo Römer; Murad J.Y. Tayebjee; Fiacre E. Rougieux; Nicholas J. Ekins-Daukes;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2022.03.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2022.03.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Other literature type , Journal 2021Embargo end date: 01 Jan 2020Publisher:Wiley Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP170102677Andreas Pusch; Milos Dubajic; Michael P. Nielsen; Gavin J. Conibeer; Stephen P. Bremner; Nicholas J. Ekins‐Daukes;AbstractHot carrier solar cells promise theoretical power conversion efficiencies far beyond the single junction limit. However, practical implementations of hot carrier solar cells have lagged far behind those theoretical predictions. Reciprocity relations for electroluminescence from conventional single junction solar cells have been extremely helpful in driving their efficiency ever closer to the theoretical limits. In this work, we discuss how the signatures of a functioning hot carrier device should manifest experimentally when driven in reverse, that is, in electroluminescent mode. Hot carrier properties lead to deviations of the dark I–V from the Shockley diode equation that is typical for conventional single junction solar cells. These deviations are directly linked to an increase in temperature of the carriers and therefore the temperature measured from electroluminescence spectra. We also elucidate how the behaviour of hot carrier solar cells in the dark depends on whether Auger processes play a significant role, revealing a stark contrast between the regime of negligible Auger recombination (carrier conservation model) and dominant Auger recombination (impact ionisation model) for hot carrier solar cells.
Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3386&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3386&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 United KingdomPublisher:Elsevier BV Funded by:ARC | ARC Centres of Excellence...ARC| ARC Centres of Excellences - Grant ID: CE170100026Jamie A. Harrison; Phoebe M. Pearce; Fei Yang; Michael P. Nielsen; Helen E. Brindley; Nicholas J. Ekins-Daukes;A thermoradiative diode is a device that can generate power through thermal emission from the warm Earth to the cold night sky. Accurate assessment of the potential power output requires knowledge of the downwelling radiation from the atmosphere. Here, accurate modeling of this radiation is used alongside a detailed balance model of a diode at the Earth's surface temperature to evaluate its performance under nine different atmospheric conditions. In the radiative limit, these conditions yield power densities between 0.34 and 6.5 W.m-2, with optimal bandgaps near 0.094 eV. Restricting the angles of emission and absorption to less than a full hemisphere can marginally increase the power output. Accounting for non-radiative processes, we suggest that if a 0.094 eV device would have radiative efficiencies more than two orders of magnitude lower than a diode with a bandgap near 0.25 eV, the higher bandgap material is preferred.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2024License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/115907Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.isci.2024.111346&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2024License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/115907Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.isci.2024.111346&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2021Embargo end date: 01 Jan 2020 AustraliaPublisher:Wiley Funded by:ARC | ARC Centres of Excellence...ARC| ARC Centres of Excellences - Grant ID: CE170100026Jiang, Y; Nielsen, MP; Baldacchino, AJ; Green, MA; McCamey, DR; Tayebjee, MJY; Schmidt, TW; Ekins-Daukes, NJ; Jiang, Jessica Yajie;handle: 1959.4/unsworks_83200
AbstractThe economic value of a photovoltaic installation depends upon both its lifespan and power conversion efficiency. Progress toward the latter includes mechanisms to circumvent the Shockley‐Queisser limit, such as tandem designs and multiple exciton generation (MEG). Here we explain how both silicon tandem and MEG‐enhanced silicon cell architectures result in lower cell operating temperatures, increasing the device lifetime compared to standard c‐Si cells. Also demonstrated are further advantages from MEG enhanced silicon cells: (i) the device architecture can completely circumvent the need for current‐matching; and (ii) upon degradation, tetracene, a candidate singlet fission (a form of MEG) material, is transparent to the solar spectrum. The combination of (i) and (ii) mean that the primary silicon device will continue to operate with reasonable efficiency even if the singlet fission layer degrades. The lifespan advantages of singlet fission enhanced silicon cells, from a module perspective, are compared favorably alongside the highly regarded perovskite/silicon tandem and conventional c‐Si modules.
UNSWorks arrow_drop_down UNSWorksArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_83200Data sources: Bielefeld Academic Search Engine (BASE)Progress in Photovoltaics Research and ApplicationsArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefProgress in Photovoltaics Research and ApplicationsArticleLicense: CC BY NC NDData sources: UnpayWallhttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3405&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert UNSWorks arrow_drop_down UNSWorksArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_83200Data sources: Bielefeld Academic Search Engine (BASE)Progress in Photovoltaics Research and ApplicationsArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefProgress in Photovoltaics Research and ApplicationsArticleLicense: CC BY NC NDData sources: UnpayWallhttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3405&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:ARC | Discovery Early Career Re...ARC| Discovery Early Career Researcher Award - Grant ID: DE210100453Stefan W. Tabernig; Anastasia H. Soeriyadi; Udo Romer; Andreas Pusch; Dimitry Lamers; Matthias Klaus Juhl; David N. R. Payne; Michael P. Nielsen; Albert Polman; Nicholas J. Ekins-Daukes;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2022.3182277&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2022.3182277&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 AustraliaPublisher:Institute of Electrical and Electronics Engineers (IEEE) Chin, Robert Lee; Pollard, Michael; Nielsen, Michael P; Hameiri, Ziv; Lee Chin, Robert;handle: 1959.4/unsworks_79656
Bulk lifetime (\tau {\text{bulk}}) and bulk doping (N{\text{dop}}) are critical material parameters influencing solar cell performance. The ability to probe spatial variations in \tau {\text{bulk}} and N{\text{dop}} in ingots, prior to wafer cutting and further processing, would be beneficial to improving the yield and reducing the cost of silicon solar cells. This study demonstrates the capability of the two-photon time-resolved photoluminescence decay method to determine both \tau {\text{bulk}} and N{\text{dop}} in thick crystalline silicon samples. The use of two photon excitation enables a more uniform carrier generation profile compared to conventional single-photon excitation, making measurements less sensitive to surface effects. The method is verified using an unpassivated n-type Czochralski silicon disk and found to be in good agreement with the results obtained from the photoluminescence ratio imaging method.
UNSWorks arrow_drop_down UNSWorksArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/1959.4/unsworks_79656Data sources: Bielefeld Academic Search Engine (BASE)IEEE Journal of PhotovoltaicsArticle . 2022 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2021.3133545&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert UNSWorks arrow_drop_down UNSWorksArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/1959.4/unsworks_79656Data sources: Bielefeld Academic Search Engine (BASE)IEEE Journal of PhotovoltaicsArticle . 2022 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2021.3133545&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu