- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2022Publisher:The Electrochemical Society Kangwoon Kim; Mingqian Li; Taehee Kim; Yijie Yin; Guorui Cai; John Holoubek; Zheng Chen;Lithium metal batteries (LMBs) are an emerging technology that promises to provide high energy density that could compensate for the energy loss of lithium-ion batteries (LIBs) at low temperatures. However, tip-driven growth during lithium deposition remains a problem for LMBs at low temperatures, which should be mitigated for improved cyclability and safety. Tailoring lithium metal nucleation with lithiophilic substrates has shown effectiveness in improving cycling performance at room temperature, but the investigation at low temperatures is limited. For this work, promoting homogeneous lithium nucleation by implementing a lithiophilic substrate, lithiated graphite (LiC6), the adverse effects of low temperature on Li cycling were alleviated in a model electrolyte. This lithiated graphite substrate provided 4.2% and 4.5% higher measured coulombic efficiency for Li cycling compared to copper at −20 °C and −40 °C, respectively, which demonstrated higher specific capacity and improved cyclability for 2× excess Li||Ni0.6M0.2C0.2O2 full cells.
Journal of The Elect... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/aca831&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of The Elect... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/aca831&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Royal Society of Chemistry (RSC) John Holoubek; Kangwoon Kim; Yijie Yin; Zhaohui Wu; Haodong Liu; Mingqian Li; Amanda Chen; Hongpeng Gao; Guorui Cai; Tod A. Pascal; Ping Liu; Zheng Chen;doi: 10.1039/d1ee03422g
The reversibility of Li metal batteries suffers beneath 0 °C due to a heightened charge-transfer barrier. Herein, the introduction of ion-pairs within the electrolyte is shown to improve this behavior, enabling hundreds of cycles down to −40 °C.
Energy & Environment... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d1ee03422g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu113 citations 113 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d1ee03422g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:American Chemical Society (ACS) Panpan Xu; Zhenzhen Yang; Xiaolu Yu; John Holoubek; Hongpeng Gao; Mingqian Li; Guorui Cai; Ira Bloom; Haodong Liu; Yan Chen; Ke An; Krzysztof Z. Pupek; Ping Liu; Zheng Chen;Direct regeneration of spent Li-ion batteries based on the hydrothermal relithiation of cathode materials is a promising next-generation recycling technology. In order to demonstrate the feasibilit...
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)ACS Sustainable Chemistry & EngineeringArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.0c09017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 132 citations 132 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)ACS Sustainable Chemistry & EngineeringArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.0c09017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 United StatesPublisher:Springer Science and Business Media LLC Funded by:NSF | NNCI: San Diego Nanotechn...NSF| NNCI: San Diego Nanotechnology Infrastructure (SDNI)John Holoubek; Haodong Liu; Zhaohui Wu; Yijie Yin; Xing Xing; Guorui Cai; Sicen Yu; Hongyao Zhou; Tod A. Pascal; Zheng Chen; Ping Liu;Lithium metal batteries (LMBs) hold the promise to pushing cell level energy densities beyond 300 Wh kg-1 while operating at ultra-low temperatures (< -30°C). Batteries capable of both charging and discharging at these temperature extremes are highly desirable due to their inherent reduction of external warming requirements. Here we demonstrate that the local solvation structure of the electrolyte defines the charge-transfer behavior at ultra-low temperature, which is crucial for achieving high Li metal coulombic efficiency (CE) and avoiding dendritic growth. These insights were applied to Li metal full cells, where a high-loading 3.5 mAh cm-2 sulfurized polyacrylonitrile (SPAN) cathode was paired with a one-fold excess Li metal anode. The cell retained 84 % and 76 % of its room temperature capacity when cycled at -40 and -60 °C, respectively, which presented stable performance over 50 cycles. This work provides design criteria for ultra-low temperature LMB electrolytes, and represents a defining step for the performance of low-temperature batteries.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/934042mqData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-021-00783-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 565 citations 565 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/934042mqData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-021-00783-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022Publisher:The Electrochemical Society Kangwoon Kim; Mingqian Li; Taehee Kim; Yijie Yin; Guorui Cai; John Holoubek; Zheng Chen;Lithium metal batteries (LMBs) are an emerging technology that promises to provide high energy density that could compensate for the energy loss of lithium-ion batteries (LIBs) at low temperatures. However, tip-driven growth during lithium deposition remains a problem for LMBs at low temperatures, which should be mitigated for improved cyclability and safety. Tailoring lithium metal nucleation with lithiophilic substrates has shown effectiveness in improving cycling performance at room temperature, but the investigation at low temperatures is limited. For this work, promoting homogeneous lithium nucleation by implementing a lithiophilic substrate, lithiated graphite (LiC6), the adverse effects of low temperature on Li cycling were alleviated in a model electrolyte. This lithiated graphite substrate provided 4.2% and 4.5% higher measured coulombic efficiency for Li cycling compared to copper at −20 °C and −40 °C, respectively, which demonstrated higher specific capacity and improved cyclability for 2× excess Li||Ni0.6M0.2C0.2O2 full cells.
Journal of The Elect... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/aca831&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of The Elect... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/aca831&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Royal Society of Chemistry (RSC) John Holoubek; Kangwoon Kim; Yijie Yin; Zhaohui Wu; Haodong Liu; Mingqian Li; Amanda Chen; Hongpeng Gao; Guorui Cai; Tod A. Pascal; Ping Liu; Zheng Chen;doi: 10.1039/d1ee03422g
The reversibility of Li metal batteries suffers beneath 0 °C due to a heightened charge-transfer barrier. Herein, the introduction of ion-pairs within the electrolyte is shown to improve this behavior, enabling hundreds of cycles down to −40 °C.
Energy & Environment... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d1ee03422g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu113 citations 113 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d1ee03422g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:American Chemical Society (ACS) Panpan Xu; Zhenzhen Yang; Xiaolu Yu; John Holoubek; Hongpeng Gao; Mingqian Li; Guorui Cai; Ira Bloom; Haodong Liu; Yan Chen; Ke An; Krzysztof Z. Pupek; Ping Liu; Zheng Chen;Direct regeneration of spent Li-ion batteries based on the hydrothermal relithiation of cathode materials is a promising next-generation recycling technology. In order to demonstrate the feasibilit...
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)ACS Sustainable Chemistry & EngineeringArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.0c09017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 132 citations 132 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)ACS Sustainable Chemistry & EngineeringArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.0c09017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 United StatesPublisher:Springer Science and Business Media LLC Funded by:NSF | NNCI: San Diego Nanotechn...NSF| NNCI: San Diego Nanotechnology Infrastructure (SDNI)John Holoubek; Haodong Liu; Zhaohui Wu; Yijie Yin; Xing Xing; Guorui Cai; Sicen Yu; Hongyao Zhou; Tod A. Pascal; Zheng Chen; Ping Liu;Lithium metal batteries (LMBs) hold the promise to pushing cell level energy densities beyond 300 Wh kg-1 while operating at ultra-low temperatures (< -30°C). Batteries capable of both charging and discharging at these temperature extremes are highly desirable due to their inherent reduction of external warming requirements. Here we demonstrate that the local solvation structure of the electrolyte defines the charge-transfer behavior at ultra-low temperature, which is crucial for achieving high Li metal coulombic efficiency (CE) and avoiding dendritic growth. These insights were applied to Li metal full cells, where a high-loading 3.5 mAh cm-2 sulfurized polyacrylonitrile (SPAN) cathode was paired with a one-fold excess Li metal anode. The cell retained 84 % and 76 % of its room temperature capacity when cycled at -40 and -60 °C, respectively, which presented stable performance over 50 cycles. This work provides design criteria for ultra-low temperature LMB electrolytes, and represents a defining step for the performance of low-temperature batteries.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/934042mqData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-021-00783-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 565 citations 565 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/934042mqData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-021-00783-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu