- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Dacheng Li; Songshan Guo; Wei He; Marcus King; Jihong Wang;Combined Heat and Power (CHP) systems are considered as a transitional solution towards zero carbon emissions in the next couple of decades. The current CHP systems are mainly controlled by thermal led strategy, that is, the electrical power generation depends on the thermal energy demand. The mismatch between the power generation and load demand leads to the deficient energy utilisation and economic loss. An innovative combined planning method is proposed in the paper to improve the economic gains of the CHP systems by integrating the lithium-ion battery storage system (LBSS). The paper focuses on the simultaneous optimisation of storage capacity design and operation strategy formulation of the LBSS subject to the variations of the load and power generation from CHP with consideration of LBSS degradation and cost, and Time-of-Use pricing structures. The new strategy is implemented and tested using the University of Warwick campus CHP system combined with the LBSS facilities. The results show that the method could improve the economic performance of CHP systems. The developed method is applicable to any CHP systems optimisation with integrated LBSS.
CORE arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.110731&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.110731&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Dacheng Li; Jihong Wang; Yulong Ding; Hua Yao; Yun Huang;Abstract To effectively utilize waste heat resulted in industrial production processes, this study investigates the dynamic thermal management using phase change material (PCM) thermal storage technique for the heat recovery system. The heat transfer process of a tube-type PCM storage module is analyzed and the dynamic model is developed for the optimization of system operation. The flag to indicate different working modes of the storage module is introduced as a system decision variable, which is used in developing an intelligent algorithm adopting biogeography-based optimization method for dynamic control of the system. The effectiveness of the dynamic model is verified via real demonstration experimental tests and the maximum relative error is 5.47%. The validation of the algorithm and evaluation of the dynamic thermal management are carried out by applications in the heat recovery of the steel sintering process. The influences of phase change enthalpy on the system performance are further studied to highlight the role of latent heat in thermal management. Results show that the proportions of fuel consumed in the off, flat and high peak energy utilization sections are optimized from the original 1:6.95:21.71 to 1:2.57:7.02 through the peak shaving and the total consumption of fuel per day is decreased from 6.81 t to 6.34 t. When the phase change enthalpy is reduced from 103 kJ kg−1 to 1 kJ kg−1, the decrease of the energy recovered by the PCM modules leads to the additional 0.06 t fuel consumption per day.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.12.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu150 citations 150 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.12.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Dacheng Li; Yulong Ding; Peilun Wang; Shuhao Wang; Hua Yao; Jihong Wang; Yun Huang;doi: 10.3390/en12112121
Thermal energy storage using the latent heat of phase change materials (PCMs) is a promising technique to solve the time mismatch between the availability and usage of flue gas heat in distributed generation systems (DGSs). A diesel-engine-powered DGS integrated with two-stage tube-type PCM modules for exhaust gas heat recovery was developed and studied. Energy and exergy analysis for the PCM storage unit was carried out to verify the effectiveness of the PCM modules for heat recovery and to highlight the merits of the cascaded configuration through a practical engineering case. Furthermore, the performance of the DGS was evaluated to study the contribution of PCM storage to improving system efficiency. The results showed that 56.4% energy and 48.3% exergy of the input flue gas were stored by the two-stage storage unit. Additional integration of the low-temperature PCM module to the high-temperature module improved the average storage efficiency from 33.6% to 62.3% for energy and 33.1% to 50.8% for exergy. By utilizing the stored energy for heating water, the thermal efficiency of the diesel engine was increased from the original 35.8% to 41.9%, while the exergy efficiency was improved from 29.5% to 29.7%.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/11/2121/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12112121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/11/2121/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12112121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Dacheng Li; Tiejun Lu; Nan Hua; Yi Wang; Lifang Zheng; Yi Jin; Yulong Ding; Yongliang Li;A dynamic modeling framework based on an intelligent approach is proposed to identify the complex behaviors of solid-gas sorption systems. An experimental system was built and tested to assist in developing a model of the system performance during the adsorption and desorption processes. The variations in the thermal effects and gaseous environment accompanying the reactions were considered when designing the model. An optimization platform based on a multi-population genetic algorithm and artificial criteria was established to identify the modeling coefficients and quantify the effects of condition changes on the reactions. The calibration of the simulation results against the tested data showed good accuracy, where the coefficient of determination was greater than 0.988. The outcome of this study could provide a modeling basis for the optimization of solid-gas sorption systems and contribute a potential tool for uncovering key characteristics associated with materials and components.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enss.2023.05.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enss.2023.05.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Wei He; Jihong Wang; Jihong Wang; Mark Dooner; Marcus King; Songshan Guo; Dacheng Li;Although the penetration of renewable energy in power systems has been substantially increased globally in the last decade, fossil fuels are still important in providing the essential flexibility required to reliably maintain the system balance. In 2019, more than one quarter of power generation in Europe and over 40% of the UK’s electricity generation was from fossil fuels (mainly gas). For achieving the net-zero greenhouse gas emission target around the middle of this century, these fossil fuels have to be decarbonised in the coming decades. Bulk-scale energy storage has been recognised as a key technology to overcome the reduced dispatchability associated with the decrease of fossil fuels in generation. Taking the UK power system as a case study, this paper presents an assessment of geological resources for bulk-scale compressed air energy storage (CAES), and an optimal planning framework for CAES in combination with solar and wind to replace fossil fuels in the power generation system. The analysis reveals up to 725 GWh of ready-to-use capacity by utilising existing underground salt caverns in the UK. These potential CAES sites with added solar and wind generation equal to the generation from fossil fuels in 2018 can reduce carbon emissions by 84% with a cost increase by 29%, compared to the system in 2018. The results indicate the plausibly achievable cost-effectiveness of CAES as bulk-scale energy storage for power system decarbonisation in countries the geological resources are available.\ud \ud
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.116097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 33 citations 33 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.116097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors: Haiqi Wu; Jinji Gao; Dacheng Li;A capacity-regulation system based on a novel rotary control valve for reciprocating refrigeration compressor is proposed and designed for the first time. The regulation system is mainly composed of a rotary control valve and an adaptive regulation system. The structure and working principle of the rotary control valve is described in detail, and the control process of the adaptive regulation system for the valve is studied together with the program design. In addition, the parameters for the design and control of the rotary control valve are theoretically determined. To verify the feasibility and effectiveness of the proposed system, a three-cylinder reciprocating compressor was adopted as a test device. Experimental results showed that the technology was able to realize continuous stepless capacity regulation for the compressor within the range of (0)10-100%, and power consumption decreased correspondingly with the load reduction. (C) 2013 Elsevier Ltd and IIR. All rights reserved.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijrefrig.2013.04.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijrefrig.2013.04.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:Elsevier BV Funded by:UKRI | Joint UK-India Clean Ener..., UKRI | Supergen Storage Network ...UKRI| Joint UK-India Clean Energy Centre (JUICE) ,UKRI| Supergen Storage Network Plus 2019Mark Dooner; Jihong Wang; Marcus King; Xing Luo; Wei He; Dacheng Li;Current power systems are still highly reliant on dispatchable fossil fuels to meet variable electrical demand. As fossil fuel generation is progressively replaced with intermittent and less predictable renewable energy generation to decarbonize the power system, Electrical energy storage (EES) technologies are increasingly required to address the supply-demand balance challenge over a wide range of timescales. However, the current use of EES technologies in power systems is significantly below the estimated capacity required for power decarbonization. This paper presents a comprehensive review of EES technologies and investigates how to accelerate the uptake of EES in power systems by reviewing and discussing techno-economic requirements for EES. Individual EES technologies and power system applications are described, which provides guidance for the appraisal of specific EES technologies for specific power system services. Plausibly required scales and technology types of EES over different regions are then reviewed, followed by discussions on storage cost modelling and predictions for different EES technologies. Opportunities and challenges in developing scalable, economically viable and socio-environmental EES technologies are discussed. The paper explores EES's evolving roles and challenges in power system decarbonization and provides useful information and guidance on EES for further R&D, storage market building and policy making in the transition to zero-carbon power systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.adapen.2021.100060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 138 citations 138 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.adapen.2021.100060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Marcus King; Dacheng Li; Mark Dooner; Saikat Ghosh; Jatindra Nath Roy; Chandan Chakraborty; Jihong Wang;doi: 10.3390/en14144072
The efficiency of solar photovoltaic (PV) panels is greatly reduced by panel soiling and high temperatures. A mechanism for eliminating both of these sources of inefficiencies is presented by integrating solar PV generation with a compressed air system. High-pressure air can be stored and used to blow over the surface of PV panels, removing present dust and cooling the panels, increasing output power. A full-system mathematical model of the proposed system is presented, comprised of compressed air generation and storage, panel temperature, panel cleaning, and PV power generation. Simulation results indicate the benefit of employing compressed air for cleaning and cooling solar PV panels. For a fixed volume of compressed air, it is advantageous to blow air over the panels early in the day if the panel is soiled or when solar radiation is most abundant with the highest achievable flow rate if the panel is clean. These strategies have been shown to achieve the greatest energy captures for a single PV panel. When comparing the energy for air compression to the energy gain from cleaning a single PV over a two-week period, an energy ROI of 23.8 is determined. The system has the potential to eliminate the requirement for additional manual cleaning of solar PV panels.
CORE arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/14/4072/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14144072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/14/4072/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14144072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Funded by:UKRI | Heat Accumulation from Re..., UKRI | GREEN-ICEs: Generation of...UKRI| Heat Accumulation from Renewables with Valid Energy Storage and Transformation - HARVEST ,UKRI| GREEN-ICEs: Generation of REfrigerated ENergy Integrated with Cold Energy storageDacheng Li; Tiejun Lu; Zhibin Yu; Wenji Song; Yulong Ding; Yongliang Li;To promote the formation of CO2 hydrate for cold energy storage, the influence of gas-inducing agitation at varying operating speeds were studied experimentally. A comparison was made with normal stirring (without gas inducing) from the perspectives of deviation from equilibrium condition, subcooling, agglomeration, and hydrate production. The test results revealed that gas-inducing agitation contributed to a closer shift of the hydrate formation profiles towards equilibrium conditions when compared to normal stirring. However, this advantage became less pronounced as the stirring speed increased. Notably, a substantial improvement in subcooling phenomena was observed when transitioning from 250 rpm normal stirring to 500 rpm, decreasing the induction time to 19.3%. Comparing normal stirring, the incorporation of a gas-inducing stirrer further reduced the induction time by 68.6% at 400 rpm. Nevertheless, further increasing agitation speed for both sets did not yield apparent improvement in the subcooling phenomenon. In contrast to normal stirring, gas-inducing agitation effectively prevented hydrate agglomeration at a lower speed and led to increased hydrate production at the same rotation speed. An ascending trend in hydrate production was achieved as agitation accelerated from a low speed to a specific speed, e.g., 400 rpm for gas-inducing stirring and 500 rpm for normal stirring. However, further elevating the stirring speed did not stimulate greater hydrate production. The findings of this study indicated the existence of double-sided effects in using gas-inducing stirring for hydrate promotion and a crucial speed range (e.g., 400∼450 rpm in this study) essential for the efficient implementation of gas-inducing technology. Operating at this prescribed speed range was recommended to improve the energy Return on Investment, maintaining high hydrate production, and enhancing the controllability of cold storage systems. This study provides practical insights for applying gas-inducing technology in gas hydrate reactors, contributing to the development of green cold energy storage.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gerr.2024.100047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gerr.2024.100047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016Publisher:MDPI AG Yun Huang; Dacheng Li; Zhijian Peng; Yulong Ding; Peilun Wang; Yi Wang; Xingang Zheng;doi: 10.3390/en9060394
Latent heat thermal energy storage (TES) plays an important role in the advocation of TES in contrast to sensible energy storage because of the large storage energy densities per unit mass/volume possible at a nearly constant thermal energy. In the current study, a heat exchange device with a zigzag configuration containing multiple phase-change-materials (m-PCMs) was considered, and an experimental system was built to validate the model for a single PCM. A two-dimensional numerical model was developed using the ANSYS Fluent 14.0 software program. The energy fractions method was put forward to calculate the average Ste number and the influence of Re and Ste numbers on the discharge process were studied. The influence of phase change temperature among m-PCMs on the solidification process has also been studied. A new boundary condition was defined to determine the combined effect of the Re and Ste numbers on the discharging process. The modelling results show that for a given input power, the Ste (or Re) number has a significant impact on the discharging process; however, the period value of inlet velocity has almost no impact on it. Besides, the zigzag plate with m-PCMs has a good impact on the temperature shock as “filter action” in the discharging process.
Energies arrow_drop_down EnergiesOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1996-1073/9/6/394/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9060394&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1996-1073/9/6/394/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9060394&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Dacheng Li; Songshan Guo; Wei He; Marcus King; Jihong Wang;Combined Heat and Power (CHP) systems are considered as a transitional solution towards zero carbon emissions in the next couple of decades. The current CHP systems are mainly controlled by thermal led strategy, that is, the electrical power generation depends on the thermal energy demand. The mismatch between the power generation and load demand leads to the deficient energy utilisation and economic loss. An innovative combined planning method is proposed in the paper to improve the economic gains of the CHP systems by integrating the lithium-ion battery storage system (LBSS). The paper focuses on the simultaneous optimisation of storage capacity design and operation strategy formulation of the LBSS subject to the variations of the load and power generation from CHP with consideration of LBSS degradation and cost, and Time-of-Use pricing structures. The new strategy is implemented and tested using the University of Warwick campus CHP system combined with the LBSS facilities. The results show that the method could improve the economic performance of CHP systems. The developed method is applicable to any CHP systems optimisation with integrated LBSS.
CORE arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.110731&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.110731&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Dacheng Li; Jihong Wang; Yulong Ding; Hua Yao; Yun Huang;Abstract To effectively utilize waste heat resulted in industrial production processes, this study investigates the dynamic thermal management using phase change material (PCM) thermal storage technique for the heat recovery system. The heat transfer process of a tube-type PCM storage module is analyzed and the dynamic model is developed for the optimization of system operation. The flag to indicate different working modes of the storage module is introduced as a system decision variable, which is used in developing an intelligent algorithm adopting biogeography-based optimization method for dynamic control of the system. The effectiveness of the dynamic model is verified via real demonstration experimental tests and the maximum relative error is 5.47%. The validation of the algorithm and evaluation of the dynamic thermal management are carried out by applications in the heat recovery of the steel sintering process. The influences of phase change enthalpy on the system performance are further studied to highlight the role of latent heat in thermal management. Results show that the proportions of fuel consumed in the off, flat and high peak energy utilization sections are optimized from the original 1:6.95:21.71 to 1:2.57:7.02 through the peak shaving and the total consumption of fuel per day is decreased from 6.81 t to 6.34 t. When the phase change enthalpy is reduced from 103 kJ kg−1 to 1 kJ kg−1, the decrease of the energy recovered by the PCM modules leads to the additional 0.06 t fuel consumption per day.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.12.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu150 citations 150 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.12.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Dacheng Li; Yulong Ding; Peilun Wang; Shuhao Wang; Hua Yao; Jihong Wang; Yun Huang;doi: 10.3390/en12112121
Thermal energy storage using the latent heat of phase change materials (PCMs) is a promising technique to solve the time mismatch between the availability and usage of flue gas heat in distributed generation systems (DGSs). A diesel-engine-powered DGS integrated with two-stage tube-type PCM modules for exhaust gas heat recovery was developed and studied. Energy and exergy analysis for the PCM storage unit was carried out to verify the effectiveness of the PCM modules for heat recovery and to highlight the merits of the cascaded configuration through a practical engineering case. Furthermore, the performance of the DGS was evaluated to study the contribution of PCM storage to improving system efficiency. The results showed that 56.4% energy and 48.3% exergy of the input flue gas were stored by the two-stage storage unit. Additional integration of the low-temperature PCM module to the high-temperature module improved the average storage efficiency from 33.6% to 62.3% for energy and 33.1% to 50.8% for exergy. By utilizing the stored energy for heating water, the thermal efficiency of the diesel engine was increased from the original 35.8% to 41.9%, while the exergy efficiency was improved from 29.5% to 29.7%.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/11/2121/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12112121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/11/2121/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12112121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Dacheng Li; Tiejun Lu; Nan Hua; Yi Wang; Lifang Zheng; Yi Jin; Yulong Ding; Yongliang Li;A dynamic modeling framework based on an intelligent approach is proposed to identify the complex behaviors of solid-gas sorption systems. An experimental system was built and tested to assist in developing a model of the system performance during the adsorption and desorption processes. The variations in the thermal effects and gaseous environment accompanying the reactions were considered when designing the model. An optimization platform based on a multi-population genetic algorithm and artificial criteria was established to identify the modeling coefficients and quantify the effects of condition changes on the reactions. The calibration of the simulation results against the tested data showed good accuracy, where the coefficient of determination was greater than 0.988. The outcome of this study could provide a modeling basis for the optimization of solid-gas sorption systems and contribute a potential tool for uncovering key characteristics associated with materials and components.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enss.2023.05.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enss.2023.05.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Wei He; Jihong Wang; Jihong Wang; Mark Dooner; Marcus King; Songshan Guo; Dacheng Li;Although the penetration of renewable energy in power systems has been substantially increased globally in the last decade, fossil fuels are still important in providing the essential flexibility required to reliably maintain the system balance. In 2019, more than one quarter of power generation in Europe and over 40% of the UK’s electricity generation was from fossil fuels (mainly gas). For achieving the net-zero greenhouse gas emission target around the middle of this century, these fossil fuels have to be decarbonised in the coming decades. Bulk-scale energy storage has been recognised as a key technology to overcome the reduced dispatchability associated with the decrease of fossil fuels in generation. Taking the UK power system as a case study, this paper presents an assessment of geological resources for bulk-scale compressed air energy storage (CAES), and an optimal planning framework for CAES in combination with solar and wind to replace fossil fuels in the power generation system. The analysis reveals up to 725 GWh of ready-to-use capacity by utilising existing underground salt caverns in the UK. These potential CAES sites with added solar and wind generation equal to the generation from fossil fuels in 2018 can reduce carbon emissions by 84% with a cost increase by 29%, compared to the system in 2018. The results indicate the plausibly achievable cost-effectiveness of CAES as bulk-scale energy storage for power system decarbonisation in countries the geological resources are available.\ud \ud
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.116097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 33 citations 33 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.116097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors: Haiqi Wu; Jinji Gao; Dacheng Li;A capacity-regulation system based on a novel rotary control valve for reciprocating refrigeration compressor is proposed and designed for the first time. The regulation system is mainly composed of a rotary control valve and an adaptive regulation system. The structure and working principle of the rotary control valve is described in detail, and the control process of the adaptive regulation system for the valve is studied together with the program design. In addition, the parameters for the design and control of the rotary control valve are theoretically determined. To verify the feasibility and effectiveness of the proposed system, a three-cylinder reciprocating compressor was adopted as a test device. Experimental results showed that the technology was able to realize continuous stepless capacity regulation for the compressor within the range of (0)10-100%, and power consumption decreased correspondingly with the load reduction. (C) 2013 Elsevier Ltd and IIR. All rights reserved.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijrefrig.2013.04.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijrefrig.2013.04.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:Elsevier BV Funded by:UKRI | Joint UK-India Clean Ener..., UKRI | Supergen Storage Network ...UKRI| Joint UK-India Clean Energy Centre (JUICE) ,UKRI| Supergen Storage Network Plus 2019Mark Dooner; Jihong Wang; Marcus King; Xing Luo; Wei He; Dacheng Li;Current power systems are still highly reliant on dispatchable fossil fuels to meet variable electrical demand. As fossil fuel generation is progressively replaced with intermittent and less predictable renewable energy generation to decarbonize the power system, Electrical energy storage (EES) technologies are increasingly required to address the supply-demand balance challenge over a wide range of timescales. However, the current use of EES technologies in power systems is significantly below the estimated capacity required for power decarbonization. This paper presents a comprehensive review of EES technologies and investigates how to accelerate the uptake of EES in power systems by reviewing and discussing techno-economic requirements for EES. Individual EES technologies and power system applications are described, which provides guidance for the appraisal of specific EES technologies for specific power system services. Plausibly required scales and technology types of EES over different regions are then reviewed, followed by discussions on storage cost modelling and predictions for different EES technologies. Opportunities and challenges in developing scalable, economically viable and socio-environmental EES technologies are discussed. The paper explores EES's evolving roles and challenges in power system decarbonization and provides useful information and guidance on EES for further R&D, storage market building and policy making in the transition to zero-carbon power systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.adapen.2021.100060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 138 citations 138 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.adapen.2021.100060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Marcus King; Dacheng Li; Mark Dooner; Saikat Ghosh; Jatindra Nath Roy; Chandan Chakraborty; Jihong Wang;doi: 10.3390/en14144072
The efficiency of solar photovoltaic (PV) panels is greatly reduced by panel soiling and high temperatures. A mechanism for eliminating both of these sources of inefficiencies is presented by integrating solar PV generation with a compressed air system. High-pressure air can be stored and used to blow over the surface of PV panels, removing present dust and cooling the panels, increasing output power. A full-system mathematical model of the proposed system is presented, comprised of compressed air generation and storage, panel temperature, panel cleaning, and PV power generation. Simulation results indicate the benefit of employing compressed air for cleaning and cooling solar PV panels. For a fixed volume of compressed air, it is advantageous to blow air over the panels early in the day if the panel is soiled or when solar radiation is most abundant with the highest achievable flow rate if the panel is clean. These strategies have been shown to achieve the greatest energy captures for a single PV panel. When comparing the energy for air compression to the energy gain from cleaning a single PV over a two-week period, an energy ROI of 23.8 is determined. The system has the potential to eliminate the requirement for additional manual cleaning of solar PV panels.
CORE arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/14/4072/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14144072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/14/4072/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14144072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Funded by:UKRI | Heat Accumulation from Re..., UKRI | GREEN-ICEs: Generation of...UKRI| Heat Accumulation from Renewables with Valid Energy Storage and Transformation - HARVEST ,UKRI| GREEN-ICEs: Generation of REfrigerated ENergy Integrated with Cold Energy storageDacheng Li; Tiejun Lu; Zhibin Yu; Wenji Song; Yulong Ding; Yongliang Li;To promote the formation of CO2 hydrate for cold energy storage, the influence of gas-inducing agitation at varying operating speeds were studied experimentally. A comparison was made with normal stirring (without gas inducing) from the perspectives of deviation from equilibrium condition, subcooling, agglomeration, and hydrate production. The test results revealed that gas-inducing agitation contributed to a closer shift of the hydrate formation profiles towards equilibrium conditions when compared to normal stirring. However, this advantage became less pronounced as the stirring speed increased. Notably, a substantial improvement in subcooling phenomena was observed when transitioning from 250 rpm normal stirring to 500 rpm, decreasing the induction time to 19.3%. Comparing normal stirring, the incorporation of a gas-inducing stirrer further reduced the induction time by 68.6% at 400 rpm. Nevertheless, further increasing agitation speed for both sets did not yield apparent improvement in the subcooling phenomenon. In contrast to normal stirring, gas-inducing agitation effectively prevented hydrate agglomeration at a lower speed and led to increased hydrate production at the same rotation speed. An ascending trend in hydrate production was achieved as agitation accelerated from a low speed to a specific speed, e.g., 400 rpm for gas-inducing stirring and 500 rpm for normal stirring. However, further elevating the stirring speed did not stimulate greater hydrate production. The findings of this study indicated the existence of double-sided effects in using gas-inducing stirring for hydrate promotion and a crucial speed range (e.g., 400∼450 rpm in this study) essential for the efficient implementation of gas-inducing technology. Operating at this prescribed speed range was recommended to improve the energy Return on Investment, maintaining high hydrate production, and enhancing the controllability of cold storage systems. This study provides practical insights for applying gas-inducing technology in gas hydrate reactors, contributing to the development of green cold energy storage.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gerr.2024.100047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gerr.2024.100047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016Publisher:MDPI AG Yun Huang; Dacheng Li; Zhijian Peng; Yulong Ding; Peilun Wang; Yi Wang; Xingang Zheng;doi: 10.3390/en9060394
Latent heat thermal energy storage (TES) plays an important role in the advocation of TES in contrast to sensible energy storage because of the large storage energy densities per unit mass/volume possible at a nearly constant thermal energy. In the current study, a heat exchange device with a zigzag configuration containing multiple phase-change-materials (m-PCMs) was considered, and an experimental system was built to validate the model for a single PCM. A two-dimensional numerical model was developed using the ANSYS Fluent 14.0 software program. The energy fractions method was put forward to calculate the average Ste number and the influence of Re and Ste numbers on the discharge process were studied. The influence of phase change temperature among m-PCMs on the solidification process has also been studied. A new boundary condition was defined to determine the combined effect of the Re and Ste numbers on the discharging process. The modelling results show that for a given input power, the Ste (or Re) number has a significant impact on the discharging process; however, the period value of inlet velocity has almost no impact on it. Besides, the zigzag plate with m-PCMs has a good impact on the temperature shock as “filter action” in the discharging process.
Energies arrow_drop_down EnergiesOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1996-1073/9/6/394/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9060394&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1996-1073/9/6/394/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9060394&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu