- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
Funder
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2024 GermanyPublisher:Royal Society of Chemistry (RSC) Funded by:DFGDFGAuthors: Schwarz, Florian; Larenz, Elizabeth;Mechler, Anna Katharina;
Mechler, Anna Katharina
Mechler, Anna Katharina in OpenAIRECorrection for ‘Sustainable electrochemical synthesis of dry formaldehyde from anhydrous methanol’ by Florian Schwarz et al., Green Chem., 2024, 26, 4645–4652, https://doi.org/10.1039/D3GC04978G.
Green Chemistry arrow_drop_down Publikationsserver der RWTH Aachen UniversityArticle . 2024Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4gc90078b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Green Chemistry arrow_drop_down Publikationsserver der RWTH Aachen UniversityArticle . 2024Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4gc90078b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 GermanyPublisher:Royal Society of Chemistry (RSC) Funded by:DFGDFGAuthors: Schwarz, Florian; Larenz, Elizabeth;Mechler, Anna Katharina;
Mechler, Anna Katharina
Mechler, Anna Katharina in OpenAIRECorrection for ‘Sustainable electrochemical synthesis of dry formaldehyde from anhydrous methanol’ by Florian Schwarz et al., Green Chem., 2024, 26, 4645–4652, https://doi.org/10.1039/D3GC04978G.
Green Chemistry arrow_drop_down Publikationsserver der RWTH Aachen UniversityArticle . 2024Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4gc90078b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Green Chemistry arrow_drop_down Publikationsserver der RWTH Aachen UniversityArticle . 2024Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4gc90078b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 GermanyPublisher:Wiley Authors:Bhandari, Sabita;
Bhandari, Sabita
Bhandari, Sabita in OpenAIRESchierholz, Roland;
Schierholz, Roland
Schierholz, Roland in OpenAIREEichel, Rüdiger-A.;
Eichel, Rüdiger-A.
Eichel, Rüdiger-A. in OpenAIRELuna, Ana Laura;
+1 AuthorsLuna, Ana Laura
Luna, Ana Laura in OpenAIREBhandari, Sabita;
Bhandari, Sabita
Bhandari, Sabita in OpenAIRESchierholz, Roland;
Schierholz, Roland
Schierholz, Roland in OpenAIREEichel, Rüdiger-A.;
Eichel, Rüdiger-A.
Eichel, Rüdiger-A. in OpenAIRELuna, Ana Laura;
Luna, Ana Laura
Luna, Ana Laura in OpenAIREMechler, Anna Katharina;
Mechler, Anna Katharina
Mechler, Anna Katharina in OpenAIREBall milling is commonly used to reduce catalyst particle size. However, little attention is paid to further changes that ball milling can cause to the rest of the catalysts’ physicochemical properties, which can impact their intrinsic catalytic activity. The effect of ball milling on the physicochemical properties of NiCoO2, NiO, CoO, and NiO:CoO mixtures is reported and correlated with their electrochemical oxygen evolution reaction (OER) activity. It is also shown that particle fragmentation is an inherent consequence of ball milling, but some oxides can also experience a phase transformation. In the case of rocksalt‐structured CoO, it is partially or entirely transformed to spinel‐structured Co3O4. Additionally, NiCo2O4 with a spinel structure can be formed by ball milling NiO and CoO simultaneously (both rocksalt structures), but only in the absence of water. The changes impact the electrochemical activity of the initial oxides. Ball milled NiCoO2 exhibits the highest activity with a mean potential of 1.563 V at 10 mA cm−2, demonstrating the advantage of having Ni and Co in the same structure. Although NiCo2O4 is also a binary oxide, the results indicate that its metal coordination environment makes it intrinsically less active than NiCoO2 for the OER in alkaline media.
Advanced Energy and ... arrow_drop_down Advanced Energy and Sustainability ResearchArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/aesr.202400183&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Advanced Energy and ... arrow_drop_down Advanced Energy and Sustainability ResearchArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/aesr.202400183&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 GermanyPublisher:Wiley Authors:Bhandari, Sabita;
Bhandari, Sabita
Bhandari, Sabita in OpenAIRESchierholz, Roland;
Schierholz, Roland
Schierholz, Roland in OpenAIREEichel, Rüdiger-A.;
Eichel, Rüdiger-A.
Eichel, Rüdiger-A. in OpenAIRELuna, Ana Laura;
+1 AuthorsLuna, Ana Laura
Luna, Ana Laura in OpenAIREBhandari, Sabita;
Bhandari, Sabita
Bhandari, Sabita in OpenAIRESchierholz, Roland;
Schierholz, Roland
Schierholz, Roland in OpenAIREEichel, Rüdiger-A.;
Eichel, Rüdiger-A.
Eichel, Rüdiger-A. in OpenAIRELuna, Ana Laura;
Luna, Ana Laura
Luna, Ana Laura in OpenAIREMechler, Anna Katharina;
Mechler, Anna Katharina
Mechler, Anna Katharina in OpenAIREBall milling is commonly used to reduce catalyst particle size. However, little attention is paid to further changes that ball milling can cause to the rest of the catalysts’ physicochemical properties, which can impact their intrinsic catalytic activity. The effect of ball milling on the physicochemical properties of NiCoO2, NiO, CoO, and NiO:CoO mixtures is reported and correlated with their electrochemical oxygen evolution reaction (OER) activity. It is also shown that particle fragmentation is an inherent consequence of ball milling, but some oxides can also experience a phase transformation. In the case of rocksalt‐structured CoO, it is partially or entirely transformed to spinel‐structured Co3O4. Additionally, NiCo2O4 with a spinel structure can be formed by ball milling NiO and CoO simultaneously (both rocksalt structures), but only in the absence of water. The changes impact the electrochemical activity of the initial oxides. Ball milled NiCoO2 exhibits the highest activity with a mean potential of 1.563 V at 10 mA cm−2, demonstrating the advantage of having Ni and Co in the same structure. Although NiCo2O4 is also a binary oxide, the results indicate that its metal coordination environment makes it intrinsically less active than NiCoO2 for the OER in alkaline media.
Advanced Energy and ... arrow_drop_down Advanced Energy and Sustainability ResearchArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/aesr.202400183&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Advanced Energy and ... arrow_drop_down Advanced Energy and Sustainability ResearchArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/aesr.202400183&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu