- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2000Publisher:American Chemical Society (ACS) Authors: David J. Harris; Daniel G. Roberts;doi: 10.1021/ef9901894
Measurements of the intrinsic reaction rates of two Australian coal chars (made under laboratory conditions) with O2, CO2, and H2O at increased pressures (up to 30 atm) have been made using a pressurized thermogravimetric analyzer (TGA). It was found that the reaction order in CO2 and H2O was not constant over the pressure range investigatedvarying from 0.5 to 0.8 at atmospheric pressure and decreasing at pressures above approximately 10 atm. The apparent reaction order in oxygen was less affected by pressure over the range 1 to 16 atm. Char surface area after reaction at higher pressures was generally greater than that after reaction at lower pressures. This resulted in a reduced effect of pressure on the intrinsic rates at 10% conversion. Activation energies for all three reactions were not significantly affected by an increase in reaction pressure. The intrinsic rate data obtained in this work were used to estimate the high-temperature reactivity of the chars using a basic knowledge of the pore structu...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ef9901894&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu206 citations 206 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ef9901894&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2000Publisher:American Chemical Society (ACS) Authors: David J. Harris; Daniel G. Roberts;doi: 10.1021/ef9901894
Measurements of the intrinsic reaction rates of two Australian coal chars (made under laboratory conditions) with O2, CO2, and H2O at increased pressures (up to 30 atm) have been made using a pressurized thermogravimetric analyzer (TGA). It was found that the reaction order in CO2 and H2O was not constant over the pressure range investigatedvarying from 0.5 to 0.8 at atmospheric pressure and decreasing at pressures above approximately 10 atm. The apparent reaction order in oxygen was less affected by pressure over the range 1 to 16 atm. Char surface area after reaction at higher pressures was generally greater than that after reaction at lower pressures. This resulted in a reduced effect of pressure on the intrinsic rates at 10% conversion. Activation energies for all three reactions were not significantly affected by an increase in reaction pressure. The intrinsic rate data obtained in this work were used to estimate the high-temperature reactivity of the chars using a basic knowledge of the pore structu...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ef9901894&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu206 citations 206 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ef9901894&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Alexander Y. Ilyushechkin; A. Tremel; David J. Harris; Daniel G. Roberts;Abstract By exploring the links between laboratory-scale gasification data (e.g. slag viscosity measurements, char reactivity considerations) and the performance of the same coals under realistic pilot-scale conditions, we are provided with a dataset that allow us to refine coal test procedures for entrained flow gasification, understand the entrained flow gasification process in significantly more detail than previously, and gain some new insight into how coal reactivity and slag viscosity properties interact to define operating envelopes for specific gasification technologies. The first paper in this two-part series presented a detailed characterisation of a suite of Australian coals using laboratory-scale gasification facilities. This paper presents gasification data obtained from pilot-scale testing of these same coals, and explores the links between laboratory data, coal assessments made using these data, and the performance of the coals under realistic conditions. The results demonstrate a high degree of consistency between laboratory indications of coal reactivity and coal gasification behaviour at pilot scale. This work also demonstrates the impact of interactions between coal conversion properties and slag formation and flow behaviour, and how these interactions dictate operational parameters for the gasifier.
Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2011.10.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2011.10.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Alexander Y. Ilyushechkin; A. Tremel; David J. Harris; Daniel G. Roberts;Abstract By exploring the links between laboratory-scale gasification data (e.g. slag viscosity measurements, char reactivity considerations) and the performance of the same coals under realistic pilot-scale conditions, we are provided with a dataset that allow us to refine coal test procedures for entrained flow gasification, understand the entrained flow gasification process in significantly more detail than previously, and gain some new insight into how coal reactivity and slag viscosity properties interact to define operating envelopes for specific gasification technologies. The first paper in this two-part series presented a detailed characterisation of a suite of Australian coals using laboratory-scale gasification facilities. This paper presents gasification data obtained from pilot-scale testing of these same coals, and explores the links between laboratory data, coal assessments made using these data, and the performance of the coals under realistic conditions. The results demonstrate a high degree of consistency between laboratory indications of coal reactivity and coal gasification behaviour at pilot scale. This work also demonstrates the impact of interactions between coal conversion properties and slag formation and flow behaviour, and how these interactions dictate operational parameters for the gasifier.
Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2011.10.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2011.10.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Kechang Xie; Jilin Tian; Liping Chang; Daniel G. Roberts; Meijun Wang;Abstract Interactions between feedstocks during pyrolysis of coal–biomass blends, and their impacts on product distribution and conversion behavior during utilization, need to be understood if we are to successfully develop systems for the effective co-utilization of biomass and coal. A novel two-stage fixed-bed reactor containing three quartz tubes was designed and used in this study to investigate these interactions, with particular emphasis on the impact on product distribution and char properties. The results show that interactions exist during co-pyrolysis of corncob and lignite blends, which increase overall tar yields and decrease overall gas yields compared with those obtained from pyrolysis of unblended feedstocks, with the interactions between corncob volatiles and lignite playing a dominant role. It is also shown that interactions between chars and volatiles can impact on the reactivity of chars to O2. Consistent with our expectations, there is a link between potassium content in char and its reactivity; however, it is found that for lignite chars in particular the potential impact of potassium is dominated by the changes of char chemical structure. The effect of potassium content is the opposite to that of char chemical structure, leading to significant complexity in determining the net result of any co-pyrolysis interactions on char reactivity. This highlights the importance of understanding these complex interactions to develop the industrial scale co-gasification systems and adjust the distributions of products.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2014.11.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2014.11.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Kechang Xie; Jilin Tian; Liping Chang; Daniel G. Roberts; Meijun Wang;Abstract Interactions between feedstocks during pyrolysis of coal–biomass blends, and their impacts on product distribution and conversion behavior during utilization, need to be understood if we are to successfully develop systems for the effective co-utilization of biomass and coal. A novel two-stage fixed-bed reactor containing three quartz tubes was designed and used in this study to investigate these interactions, with particular emphasis on the impact on product distribution and char properties. The results show that interactions exist during co-pyrolysis of corncob and lignite blends, which increase overall tar yields and decrease overall gas yields compared with those obtained from pyrolysis of unblended feedstocks, with the interactions between corncob volatiles and lignite playing a dominant role. It is also shown that interactions between chars and volatiles can impact on the reactivity of chars to O2. Consistent with our expectations, there is a link between potassium content in char and its reactivity; however, it is found that for lignite chars in particular the potential impact of potassium is dominated by the changes of char chemical structure. The effect of potassium content is the opposite to that of char chemical structure, leading to significant complexity in determining the net result of any co-pyrolysis interactions on char reactivity. This highlights the importance of understanding these complex interactions to develop the industrial scale co-gasification systems and adjust the distributions of products.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2014.11.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2014.11.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:American Chemical Society (ACS) Authors: Daniel G. Roberts; Elizabeth. M. Hodge; David Harris; John F. Stubington;doi: 10.1021/ef900503x
The reaction rates of coal chars with CO2 is an important aspect of coal performance under gasification conditions. Most studies of the char−CO2 reaction are undertaken at temperatures (typically ∼1200 K or below) significantly lower than those found in entrained flow applications, to allow detailed investigations into the surface reaction processes. Application of these data to high temperatures therefore requires consideration of how these reaction rates are affected by gas diffusion through the pore structure of reacting particles, yet there are very few char−CO2 rate data at high temperatures and pressures against which such applications can be tested or verified. This paper presents results of measurements of the char−CO2 reaction rate at high pressures (2.0 MPa) and high temperatures (up to 1673 K) using an entrained-flow reactor and also presents analyses of the morphology of the chars sampled during reaction. Using an effectiveness-factor-based approach, the effects of pore-diffusion and surface r...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ef900503x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ef900503x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:American Chemical Society (ACS) Authors: Daniel G. Roberts; Elizabeth. M. Hodge; David Harris; John F. Stubington;doi: 10.1021/ef900503x
The reaction rates of coal chars with CO2 is an important aspect of coal performance under gasification conditions. Most studies of the char−CO2 reaction are undertaken at temperatures (typically ∼1200 K or below) significantly lower than those found in entrained flow applications, to allow detailed investigations into the surface reaction processes. Application of these data to high temperatures therefore requires consideration of how these reaction rates are affected by gas diffusion through the pore structure of reacting particles, yet there are very few char−CO2 rate data at high temperatures and pressures against which such applications can be tested or verified. This paper presents results of measurements of the char−CO2 reaction rate at high pressures (2.0 MPa) and high temperatures (up to 1673 K) using an entrained-flow reactor and also presents analyses of the morphology of the chars sampled during reaction. Using an effectiveness-factor-based approach, the effects of pore-diffusion and surface r...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ef900503x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ef900503x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors: San Shwe Hla; Alexander Y. Ilyushechkin; Nikolai N. Kinaev; Daniel G. Roberts;Abstract The flow behaviour of coal mineral matter at high temperatures is an important parameter for coal use in entrained flow gasification technologies. Slag flow behaviour is characterised by the temperature dependence of slag viscosity, including the temperature of critical viscosity ( T CV ), which is strongly dependent on slag composition. Moreover, at temperatures below the liquidus temperature this compositional dependence is complicated by the precipitation of solids, and the resultant change in chemical composition of the liquid phase. In the present study, the viscosity behaviour of selected slag compositions is investigated in terms of the dynamics of solid precipitation, compositional changes, and the morphology of crystallised solids. Relationships between slag microstructure, phase composition and viscosity behaviour are described on the basis of viscosity measurements, thermodynamic calculations, and slag quenching experiments. It is shown that the viscosity–temperature behaviour of specific slag compositions was dependent on the amount and size of the solids in the slag, silica/alumina ratio (S/A) and compositional changes of the liquid phase due to solid phase precipitation.
Journal of Non-Cryst... arrow_drop_down Journal of Non-Crystalline SolidsArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jnoncrysol.2010.12.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu81 citations 81 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Non-Cryst... arrow_drop_down Journal of Non-Crystalline SolidsArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jnoncrysol.2010.12.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors: San Shwe Hla; Alexander Y. Ilyushechkin; Nikolai N. Kinaev; Daniel G. Roberts;Abstract The flow behaviour of coal mineral matter at high temperatures is an important parameter for coal use in entrained flow gasification technologies. Slag flow behaviour is characterised by the temperature dependence of slag viscosity, including the temperature of critical viscosity ( T CV ), which is strongly dependent on slag composition. Moreover, at temperatures below the liquidus temperature this compositional dependence is complicated by the precipitation of solids, and the resultant change in chemical composition of the liquid phase. In the present study, the viscosity behaviour of selected slag compositions is investigated in terms of the dynamics of solid precipitation, compositional changes, and the morphology of crystallised solids. Relationships between slag microstructure, phase composition and viscosity behaviour are described on the basis of viscosity measurements, thermodynamic calculations, and slag quenching experiments. It is shown that the viscosity–temperature behaviour of specific slag compositions was dependent on the amount and size of the solids in the slag, silica/alumina ratio (S/A) and compositional changes of the liquid phase due to solid phase precipitation.
Journal of Non-Cryst... arrow_drop_down Journal of Non-Crystalline SolidsArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jnoncrysol.2010.12.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu81 citations 81 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Non-Cryst... arrow_drop_down Journal of Non-Crystalline SolidsArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jnoncrysol.2010.12.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2000Publisher:Elsevier BV David J. Harris; David J. Harris; Kathy E. Benfell; Kathy E. Benfell; Judy G. Bailey; Judy G. Bailey; Terry Wall; Terry Wall; Daniel G. Roberts; Daniel G. Roberts; Daniel G. Roberts; John Lucas; John Lucas; Guisu Liu; Guisu Liu;Chars were made from four Australian coals of varying vitrinite content at pressures of 5, 10, and 15 atm. The morphology of the chars was correlated with the petrography of the parent coal. The intrinsic reaction rates of the chars at high pressures were measured, and no systematic effect of pyrolysis pressure or maceral concentration was found. It is concluded that observed variations in conversion rates under process conditions are likely to be due to char structural properties and not a result of variation in the intrinsic reactivity of the carbon in the chars. Consequently, this paper presents a char structural submodel that is integrated into an existing char combustion model to account for the combustion behavior of char particles of different morphologies. The char morphology used in the model was predicted using the developed correlation with parent coal petrography, so that a petrographic analysis as well as the proximate and ultimate analyses is required for model input. Validation of the model shows that chars produced at high pressure with a high percentage of cenospherical types burn more rapidly under process conditions than those at low pressure, with model predictions matching measurements. It is suggested that incorporating the char structural submodel into the existing char combustion model improves its predictability.
Proceedings of the C... arrow_drop_down Proceedings of the Combustion InstituteArticle . 2000 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0082-0784(00)80633-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu77 citations 77 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Proceedings of the C... arrow_drop_down Proceedings of the Combustion InstituteArticle . 2000 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0082-0784(00)80633-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2000Publisher:Elsevier BV David J. Harris; David J. Harris; Kathy E. Benfell; Kathy E. Benfell; Judy G. Bailey; Judy G. Bailey; Terry Wall; Terry Wall; Daniel G. Roberts; Daniel G. Roberts; Daniel G. Roberts; John Lucas; John Lucas; Guisu Liu; Guisu Liu;Chars were made from four Australian coals of varying vitrinite content at pressures of 5, 10, and 15 atm. The morphology of the chars was correlated with the petrography of the parent coal. The intrinsic reaction rates of the chars at high pressures were measured, and no systematic effect of pyrolysis pressure or maceral concentration was found. It is concluded that observed variations in conversion rates under process conditions are likely to be due to char structural properties and not a result of variation in the intrinsic reactivity of the carbon in the chars. Consequently, this paper presents a char structural submodel that is integrated into an existing char combustion model to account for the combustion behavior of char particles of different morphologies. The char morphology used in the model was predicted using the developed correlation with parent coal petrography, so that a petrographic analysis as well as the proximate and ultimate analyses is required for model input. Validation of the model shows that chars produced at high pressure with a high percentage of cenospherical types burn more rapidly under process conditions than those at low pressure, with model predictions matching measurements. It is suggested that incorporating the char structural submodel into the existing char combustion model improves its predictability.
Proceedings of the C... arrow_drop_down Proceedings of the Combustion InstituteArticle . 2000 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0082-0784(00)80633-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu77 citations 77 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Proceedings of the C... arrow_drop_down Proceedings of the Combustion InstituteArticle . 2000 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0082-0784(00)80633-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV San Shwe Hla; Xiaodong Chen; Xiaodong Chen; Alexander Y. Ilyushechkin; Daniel G. Roberts;Abstract Alkali species in coal play an important role in mineral matter reactions during gasification. Brown coal ashes can be high in sodium (up to 20 wt%), which interacts with other minerals to significantly affect the formation of slag (liquid phase). At high temperatures, sodium in slag affects phase equilibria, liquidus temperature, and slag viscosity. We investigated phase transformations in brown coal ashes at 800–1000 °C and slags at 1200–1600 °C to study the behaviour of sodium species in the range of 3–15 wt% using X-ray powder diffraction, thermogravimetric analysis and electron probe microanalysis. Sodium species appeared in coal ashes in different forms, such as sulfates, carbonates, and alumina-silicates, resulting in different ash bulk compositions. After processing under gasification conditions, alkaline species react with other minerals and may result in the appearance of a liquid phase. In this study, the liquid-phase content of ashes generally increased with increasing sodium concentration. In slags, sodium often decreased the liquidus temperature and solids content below liquidus temperature. It results lower slag viscosity in sodium enriched slags. These findings demonstrate the importance of phase transformations in brown coal mineral matter during gasification, and the potential they have to strongly affect the required operational conditions.
Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2018.06.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2018.06.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV San Shwe Hla; Xiaodong Chen; Xiaodong Chen; Alexander Y. Ilyushechkin; Daniel G. Roberts;Abstract Alkali species in coal play an important role in mineral matter reactions during gasification. Brown coal ashes can be high in sodium (up to 20 wt%), which interacts with other minerals to significantly affect the formation of slag (liquid phase). At high temperatures, sodium in slag affects phase equilibria, liquidus temperature, and slag viscosity. We investigated phase transformations in brown coal ashes at 800–1000 °C and slags at 1200–1600 °C to study the behaviour of sodium species in the range of 3–15 wt% using X-ray powder diffraction, thermogravimetric analysis and electron probe microanalysis. Sodium species appeared in coal ashes in different forms, such as sulfates, carbonates, and alumina-silicates, resulting in different ash bulk compositions. After processing under gasification conditions, alkaline species react with other minerals and may result in the appearance of a liquid phase. In this study, the liquid-phase content of ashes generally increased with increasing sodium concentration. In slags, sodium often decreased the liquidus temperature and solids content below liquidus temperature. It results lower slag viscosity in sodium enriched slags. These findings demonstrate the importance of phase transformations in brown coal mineral matter during gasification, and the potential they have to strongly affect the required operational conditions.
Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2018.06.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2018.06.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: San Shwe Hla; Daniel G. Roberts;pmid: 25882791
The development and deployment of thermochemical waste-to-energy systems requires an understanding of the fundamental characteristics of waste streams. Despite Australia's growing interest in gasification of waste streams, no data are available on their thermochemical properties. This work presents, for the first time, a characterisation of green waste and municipal solid waste in terms of chemistry and energy content. The study took place in Brisbane, the capital city of Queensland. The municipal solid waste was hand-sorted and classified into ten groups, including non-combustibles. The chemical properties of the combustible portion of municipal solid waste were measured directly and compared with calculations made based on their weight ratios in the overall municipal solid waste. The results obtained from both methods were in good agreement. The moisture content of green waste ranged from 29% to 46%. This variability - and the tendency for soil material to contaminate the samples - was the main contributor to the variation of samples' energy content, which ranged between 7.8 and 10.7MJ/kg. The total moisture content of food wastes and garden wastes was as high as 70% and 60%, respectively, while the total moisture content of non-packaging plastics was as low as 2.2%. The overall energy content (lower heating value on a wet basis, LHVwb) of the municipal solid waste was 7.9MJ/kg, which is well above the World Bank-recommended value for utilisation in thermochemical conversion processes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2015.03.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu114 citations 114 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2015.03.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: San Shwe Hla; Daniel G. Roberts;pmid: 25882791
The development and deployment of thermochemical waste-to-energy systems requires an understanding of the fundamental characteristics of waste streams. Despite Australia's growing interest in gasification of waste streams, no data are available on their thermochemical properties. This work presents, for the first time, a characterisation of green waste and municipal solid waste in terms of chemistry and energy content. The study took place in Brisbane, the capital city of Queensland. The municipal solid waste was hand-sorted and classified into ten groups, including non-combustibles. The chemical properties of the combustible portion of municipal solid waste were measured directly and compared with calculations made based on their weight ratios in the overall municipal solid waste. The results obtained from both methods were in good agreement. The moisture content of green waste ranged from 29% to 46%. This variability - and the tendency for soil material to contaminate the samples - was the main contributor to the variation of samples' energy content, which ranged between 7.8 and 10.7MJ/kg. The total moisture content of food wastes and garden wastes was as high as 70% and 60%, respectively, while the total moisture content of non-packaging plastics was as low as 2.2%. The overall energy content (lower heating value on a wet basis, LHVwb) of the municipal solid waste was 7.9MJ/kg, which is well above the World Bank-recommended value for utilisation in thermochemical conversion processes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2015.03.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu114 citations 114 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2015.03.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV San Shwe Hla; Christian Hasse; David J. Harris; M. Vascellari; Daniel G. Roberts;Abstract In this work advanced gasification models of four Australian coals were calibrated using laboratory-scale experiments with the aim of extrapolating these information for simulating large-scale gasification processes using CFD. In particular, the four studied coals, ranging from semi-anthracite to sub-bituminous, were extensively characterized using high-pressure bench and laboratory scale techniques. Coal devolatilization is modeled using the empirical competing two-step models, whose parameters are calibrated in a pre-processing step by means of the advanced CPD, FG-DVC and FLASHCHAIN® pyrolysis models. The results of the advanced pyrolysis models are at first validated against true volatile yield data obtained at high pressures and heating rates from wire-mesh reactor experiments. Char gasification is modeled using a n th-order intrinsic kinetics model. At first, intrinsic char kinetics was measured in kinetic regime from experiments in pressurized thermogravimetric analysis. Then, gasification experiments in a laboratory-scale pressurized entrained flow reactor have been used for estimating the reactivity in pore-diffusion regime, defining the diffusivity inside the particle pores. Finally, the calibration of the same coals have also been tested in a 5 MW pilot-scale gasifier, offering a unique opportunity to apply our model over the continuum of laboratory and pilot scales. The model results again show good agreement with the experimental data of syngas composition and carbon conversion evaluated at the exit of the gasifier. The simulations of the pilot-scale gasifier demonstrates that industrial-scale gasification processes can be accurately predicted using advanced coal conversion models, adequately calibrated through laboratory-scale experiments.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2015.01.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2015.01.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV San Shwe Hla; Christian Hasse; David J. Harris; M. Vascellari; Daniel G. Roberts;Abstract In this work advanced gasification models of four Australian coals were calibrated using laboratory-scale experiments with the aim of extrapolating these information for simulating large-scale gasification processes using CFD. In particular, the four studied coals, ranging from semi-anthracite to sub-bituminous, were extensively characterized using high-pressure bench and laboratory scale techniques. Coal devolatilization is modeled using the empirical competing two-step models, whose parameters are calibrated in a pre-processing step by means of the advanced CPD, FG-DVC and FLASHCHAIN® pyrolysis models. The results of the advanced pyrolysis models are at first validated against true volatile yield data obtained at high pressures and heating rates from wire-mesh reactor experiments. Char gasification is modeled using a n th-order intrinsic kinetics model. At first, intrinsic char kinetics was measured in kinetic regime from experiments in pressurized thermogravimetric analysis. Then, gasification experiments in a laboratory-scale pressurized entrained flow reactor have been used for estimating the reactivity in pore-diffusion regime, defining the diffusivity inside the particle pores. Finally, the calibration of the same coals have also been tested in a 5 MW pilot-scale gasifier, offering a unique opportunity to apply our model over the continuum of laboratory and pilot scales. The model results again show good agreement with the experimental data of syngas composition and carbon conversion evaluated at the exit of the gasifier. The simulations of the pilot-scale gasifier demonstrates that industrial-scale gasification processes can be accurately predicted using advanced coal conversion models, adequately calibrated through laboratory-scale experiments.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2015.01.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2015.01.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: David J. Harris; San Shwe Hla; Daniel G. Roberts;Abstract This paper presents the development of a practical and flexible steady-state gasification model in which existing mechanistic models are incorporated with new knowledge of gasification reaction fundamentals. In particular, intrinsic char gasification kinetics and rates of char gasification are reconciled using a ‘composite effectiveness factor’ by taking into account morphological types of char particles and their impact on char conversion rate. Flows inside an entrained flow gasifier are simplified using ideal chemical reactors consisting of two plug flow and two well stirred reactors. Whilst clearly a simplification of a complex entrained flow gasifier, this approach accounts for the three dimensional aspects of recirculation and mixing and allows rapid convergence as required for incorporation into a practical IGCC process model. Experimental data from gasification of the same coals in a 5 MW th entrained flow gasifier were used to validate the performance of the model. Model calculations of the impact of oxygen-carbon stoichiometry on char conversion, cold gas efficiency (CGE) and product gas composition, using laboratory-scale measurements as inputs, are consistent with measurements at pilot-scale. The model results show that maximum CGEs for the higher reactivity coals with relatively high volatile matter are achieved within a narrow range of O:C ratios between 1.05–1.13, whilst the least reactive coal with high fixed carbon achieves its maximum CGE value at a higher O:C ratios of 1.36. Importantly, the model is able to reflect the significant differences in gasification behaviour of the four coals, which is consistent with lab-scale and larger-scale investigations. This work demonstrates the relevance of bench-scale gasification data in the assessment and interpretation of coal gasification behaviour under complex high pressure and high temperature conditions using appropriate mechanisms and sub-models.
Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2014.12.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2014.12.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: David J. Harris; San Shwe Hla; Daniel G. Roberts;Abstract This paper presents the development of a practical and flexible steady-state gasification model in which existing mechanistic models are incorporated with new knowledge of gasification reaction fundamentals. In particular, intrinsic char gasification kinetics and rates of char gasification are reconciled using a ‘composite effectiveness factor’ by taking into account morphological types of char particles and their impact on char conversion rate. Flows inside an entrained flow gasifier are simplified using ideal chemical reactors consisting of two plug flow and two well stirred reactors. Whilst clearly a simplification of a complex entrained flow gasifier, this approach accounts for the three dimensional aspects of recirculation and mixing and allows rapid convergence as required for incorporation into a practical IGCC process model. Experimental data from gasification of the same coals in a 5 MW th entrained flow gasifier were used to validate the performance of the model. Model calculations of the impact of oxygen-carbon stoichiometry on char conversion, cold gas efficiency (CGE) and product gas composition, using laboratory-scale measurements as inputs, are consistent with measurements at pilot-scale. The model results show that maximum CGEs for the higher reactivity coals with relatively high volatile matter are achieved within a narrow range of O:C ratios between 1.05–1.13, whilst the least reactive coal with high fixed carbon achieves its maximum CGE value at a higher O:C ratios of 1.36. Importantly, the model is able to reflect the significant differences in gasification behaviour of the four coals, which is consistent with lab-scale and larger-scale investigations. This work demonstrates the relevance of bench-scale gasification data in the assessment and interpretation of coal gasification behaviour under complex high pressure and high temperature conditions using appropriate mechanisms and sub-models.
Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2014.12.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2014.12.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2000Publisher:American Chemical Society (ACS) Authors: David J. Harris; Daniel G. Roberts;doi: 10.1021/ef9901894
Measurements of the intrinsic reaction rates of two Australian coal chars (made under laboratory conditions) with O2, CO2, and H2O at increased pressures (up to 30 atm) have been made using a pressurized thermogravimetric analyzer (TGA). It was found that the reaction order in CO2 and H2O was not constant over the pressure range investigatedvarying from 0.5 to 0.8 at atmospheric pressure and decreasing at pressures above approximately 10 atm. The apparent reaction order in oxygen was less affected by pressure over the range 1 to 16 atm. Char surface area after reaction at higher pressures was generally greater than that after reaction at lower pressures. This resulted in a reduced effect of pressure on the intrinsic rates at 10% conversion. Activation energies for all three reactions were not significantly affected by an increase in reaction pressure. The intrinsic rate data obtained in this work were used to estimate the high-temperature reactivity of the chars using a basic knowledge of the pore structu...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ef9901894&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu206 citations 206 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ef9901894&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2000Publisher:American Chemical Society (ACS) Authors: David J. Harris; Daniel G. Roberts;doi: 10.1021/ef9901894
Measurements of the intrinsic reaction rates of two Australian coal chars (made under laboratory conditions) with O2, CO2, and H2O at increased pressures (up to 30 atm) have been made using a pressurized thermogravimetric analyzer (TGA). It was found that the reaction order in CO2 and H2O was not constant over the pressure range investigatedvarying from 0.5 to 0.8 at atmospheric pressure and decreasing at pressures above approximately 10 atm. The apparent reaction order in oxygen was less affected by pressure over the range 1 to 16 atm. Char surface area after reaction at higher pressures was generally greater than that after reaction at lower pressures. This resulted in a reduced effect of pressure on the intrinsic rates at 10% conversion. Activation energies for all three reactions were not significantly affected by an increase in reaction pressure. The intrinsic rate data obtained in this work were used to estimate the high-temperature reactivity of the chars using a basic knowledge of the pore structu...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ef9901894&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu206 citations 206 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ef9901894&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Alexander Y. Ilyushechkin; A. Tremel; David J. Harris; Daniel G. Roberts;Abstract By exploring the links between laboratory-scale gasification data (e.g. slag viscosity measurements, char reactivity considerations) and the performance of the same coals under realistic pilot-scale conditions, we are provided with a dataset that allow us to refine coal test procedures for entrained flow gasification, understand the entrained flow gasification process in significantly more detail than previously, and gain some new insight into how coal reactivity and slag viscosity properties interact to define operating envelopes for specific gasification technologies. The first paper in this two-part series presented a detailed characterisation of a suite of Australian coals using laboratory-scale gasification facilities. This paper presents gasification data obtained from pilot-scale testing of these same coals, and explores the links between laboratory data, coal assessments made using these data, and the performance of the coals under realistic conditions. The results demonstrate a high degree of consistency between laboratory indications of coal reactivity and coal gasification behaviour at pilot scale. This work also demonstrates the impact of interactions between coal conversion properties and slag formation and flow behaviour, and how these interactions dictate operational parameters for the gasifier.
Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2011.10.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2011.10.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Alexander Y. Ilyushechkin; A. Tremel; David J. Harris; Daniel G. Roberts;Abstract By exploring the links between laboratory-scale gasification data (e.g. slag viscosity measurements, char reactivity considerations) and the performance of the same coals under realistic pilot-scale conditions, we are provided with a dataset that allow us to refine coal test procedures for entrained flow gasification, understand the entrained flow gasification process in significantly more detail than previously, and gain some new insight into how coal reactivity and slag viscosity properties interact to define operating envelopes for specific gasification technologies. The first paper in this two-part series presented a detailed characterisation of a suite of Australian coals using laboratory-scale gasification facilities. This paper presents gasification data obtained from pilot-scale testing of these same coals, and explores the links between laboratory data, coal assessments made using these data, and the performance of the coals under realistic conditions. The results demonstrate a high degree of consistency between laboratory indications of coal reactivity and coal gasification behaviour at pilot scale. This work also demonstrates the impact of interactions between coal conversion properties and slag formation and flow behaviour, and how these interactions dictate operational parameters for the gasifier.
Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2011.10.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2011.10.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Kechang Xie; Jilin Tian; Liping Chang; Daniel G. Roberts; Meijun Wang;Abstract Interactions between feedstocks during pyrolysis of coal–biomass blends, and their impacts on product distribution and conversion behavior during utilization, need to be understood if we are to successfully develop systems for the effective co-utilization of biomass and coal. A novel two-stage fixed-bed reactor containing three quartz tubes was designed and used in this study to investigate these interactions, with particular emphasis on the impact on product distribution and char properties. The results show that interactions exist during co-pyrolysis of corncob and lignite blends, which increase overall tar yields and decrease overall gas yields compared with those obtained from pyrolysis of unblended feedstocks, with the interactions between corncob volatiles and lignite playing a dominant role. It is also shown that interactions between chars and volatiles can impact on the reactivity of chars to O2. Consistent with our expectations, there is a link between potassium content in char and its reactivity; however, it is found that for lignite chars in particular the potential impact of potassium is dominated by the changes of char chemical structure. The effect of potassium content is the opposite to that of char chemical structure, leading to significant complexity in determining the net result of any co-pyrolysis interactions on char reactivity. This highlights the importance of understanding these complex interactions to develop the industrial scale co-gasification systems and adjust the distributions of products.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2014.11.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2014.11.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Kechang Xie; Jilin Tian; Liping Chang; Daniel G. Roberts; Meijun Wang;Abstract Interactions between feedstocks during pyrolysis of coal–biomass blends, and their impacts on product distribution and conversion behavior during utilization, need to be understood if we are to successfully develop systems for the effective co-utilization of biomass and coal. A novel two-stage fixed-bed reactor containing three quartz tubes was designed and used in this study to investigate these interactions, with particular emphasis on the impact on product distribution and char properties. The results show that interactions exist during co-pyrolysis of corncob and lignite blends, which increase overall tar yields and decrease overall gas yields compared with those obtained from pyrolysis of unblended feedstocks, with the interactions between corncob volatiles and lignite playing a dominant role. It is also shown that interactions between chars and volatiles can impact on the reactivity of chars to O2. Consistent with our expectations, there is a link between potassium content in char and its reactivity; however, it is found that for lignite chars in particular the potential impact of potassium is dominated by the changes of char chemical structure. The effect of potassium content is the opposite to that of char chemical structure, leading to significant complexity in determining the net result of any co-pyrolysis interactions on char reactivity. This highlights the importance of understanding these complex interactions to develop the industrial scale co-gasification systems and adjust the distributions of products.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2014.11.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2014.11.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:American Chemical Society (ACS) Authors: Daniel G. Roberts; Elizabeth. M. Hodge; David Harris; John F. Stubington;doi: 10.1021/ef900503x
The reaction rates of coal chars with CO2 is an important aspect of coal performance under gasification conditions. Most studies of the char−CO2 reaction are undertaken at temperatures (typically ∼1200 K or below) significantly lower than those found in entrained flow applications, to allow detailed investigations into the surface reaction processes. Application of these data to high temperatures therefore requires consideration of how these reaction rates are affected by gas diffusion through the pore structure of reacting particles, yet there are very few char−CO2 rate data at high temperatures and pressures against which such applications can be tested or verified. This paper presents results of measurements of the char−CO2 reaction rate at high pressures (2.0 MPa) and high temperatures (up to 1673 K) using an entrained-flow reactor and also presents analyses of the morphology of the chars sampled during reaction. Using an effectiveness-factor-based approach, the effects of pore-diffusion and surface r...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ef900503x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ef900503x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:American Chemical Society (ACS) Authors: Daniel G. Roberts; Elizabeth. M. Hodge; David Harris; John F. Stubington;doi: 10.1021/ef900503x
The reaction rates of coal chars with CO2 is an important aspect of coal performance under gasification conditions. Most studies of the char−CO2 reaction are undertaken at temperatures (typically ∼1200 K or below) significantly lower than those found in entrained flow applications, to allow detailed investigations into the surface reaction processes. Application of these data to high temperatures therefore requires consideration of how these reaction rates are affected by gas diffusion through the pore structure of reacting particles, yet there are very few char−CO2 rate data at high temperatures and pressures against which such applications can be tested or verified. This paper presents results of measurements of the char−CO2 reaction rate at high pressures (2.0 MPa) and high temperatures (up to 1673 K) using an entrained-flow reactor and also presents analyses of the morphology of the chars sampled during reaction. Using an effectiveness-factor-based approach, the effects of pore-diffusion and surface r...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ef900503x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ef900503x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors: San Shwe Hla; Alexander Y. Ilyushechkin; Nikolai N. Kinaev; Daniel G. Roberts;Abstract The flow behaviour of coal mineral matter at high temperatures is an important parameter for coal use in entrained flow gasification technologies. Slag flow behaviour is characterised by the temperature dependence of slag viscosity, including the temperature of critical viscosity ( T CV ), which is strongly dependent on slag composition. Moreover, at temperatures below the liquidus temperature this compositional dependence is complicated by the precipitation of solids, and the resultant change in chemical composition of the liquid phase. In the present study, the viscosity behaviour of selected slag compositions is investigated in terms of the dynamics of solid precipitation, compositional changes, and the morphology of crystallised solids. Relationships between slag microstructure, phase composition and viscosity behaviour are described on the basis of viscosity measurements, thermodynamic calculations, and slag quenching experiments. It is shown that the viscosity–temperature behaviour of specific slag compositions was dependent on the amount and size of the solids in the slag, silica/alumina ratio (S/A) and compositional changes of the liquid phase due to solid phase precipitation.
Journal of Non-Cryst... arrow_drop_down Journal of Non-Crystalline SolidsArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jnoncrysol.2010.12.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu81 citations 81 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Non-Cryst... arrow_drop_down Journal of Non-Crystalline SolidsArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jnoncrysol.2010.12.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors: San Shwe Hla; Alexander Y. Ilyushechkin; Nikolai N. Kinaev; Daniel G. Roberts;Abstract The flow behaviour of coal mineral matter at high temperatures is an important parameter for coal use in entrained flow gasification technologies. Slag flow behaviour is characterised by the temperature dependence of slag viscosity, including the temperature of critical viscosity ( T CV ), which is strongly dependent on slag composition. Moreover, at temperatures below the liquidus temperature this compositional dependence is complicated by the precipitation of solids, and the resultant change in chemical composition of the liquid phase. In the present study, the viscosity behaviour of selected slag compositions is investigated in terms of the dynamics of solid precipitation, compositional changes, and the morphology of crystallised solids. Relationships between slag microstructure, phase composition and viscosity behaviour are described on the basis of viscosity measurements, thermodynamic calculations, and slag quenching experiments. It is shown that the viscosity–temperature behaviour of specific slag compositions was dependent on the amount and size of the solids in the slag, silica/alumina ratio (S/A) and compositional changes of the liquid phase due to solid phase precipitation.
Journal of Non-Cryst... arrow_drop_down Journal of Non-Crystalline SolidsArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jnoncrysol.2010.12.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu81 citations 81 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Non-Cryst... arrow_drop_down Journal of Non-Crystalline SolidsArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jnoncrysol.2010.12.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2000Publisher:Elsevier BV David J. Harris; David J. Harris; Kathy E. Benfell; Kathy E. Benfell; Judy G. Bailey; Judy G. Bailey; Terry Wall; Terry Wall; Daniel G. Roberts; Daniel G. Roberts; Daniel G. Roberts; John Lucas; John Lucas; Guisu Liu; Guisu Liu;Chars were made from four Australian coals of varying vitrinite content at pressures of 5, 10, and 15 atm. The morphology of the chars was correlated with the petrography of the parent coal. The intrinsic reaction rates of the chars at high pressures were measured, and no systematic effect of pyrolysis pressure or maceral concentration was found. It is concluded that observed variations in conversion rates under process conditions are likely to be due to char structural properties and not a result of variation in the intrinsic reactivity of the carbon in the chars. Consequently, this paper presents a char structural submodel that is integrated into an existing char combustion model to account for the combustion behavior of char particles of different morphologies. The char morphology used in the model was predicted using the developed correlation with parent coal petrography, so that a petrographic analysis as well as the proximate and ultimate analyses is required for model input. Validation of the model shows that chars produced at high pressure with a high percentage of cenospherical types burn more rapidly under process conditions than those at low pressure, with model predictions matching measurements. It is suggested that incorporating the char structural submodel into the existing char combustion model improves its predictability.
Proceedings of the C... arrow_drop_down Proceedings of the Combustion InstituteArticle . 2000 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0082-0784(00)80633-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu77 citations 77 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Proceedings of the C... arrow_drop_down Proceedings of the Combustion InstituteArticle . 2000 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0082-0784(00)80633-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2000Publisher:Elsevier BV David J. Harris; David J. Harris; Kathy E. Benfell; Kathy E. Benfell; Judy G. Bailey; Judy G. Bailey; Terry Wall; Terry Wall; Daniel G. Roberts; Daniel G. Roberts; Daniel G. Roberts; John Lucas; John Lucas; Guisu Liu; Guisu Liu;Chars were made from four Australian coals of varying vitrinite content at pressures of 5, 10, and 15 atm. The morphology of the chars was correlated with the petrography of the parent coal. The intrinsic reaction rates of the chars at high pressures were measured, and no systematic effect of pyrolysis pressure or maceral concentration was found. It is concluded that observed variations in conversion rates under process conditions are likely to be due to char structural properties and not a result of variation in the intrinsic reactivity of the carbon in the chars. Consequently, this paper presents a char structural submodel that is integrated into an existing char combustion model to account for the combustion behavior of char particles of different morphologies. The char morphology used in the model was predicted using the developed correlation with parent coal petrography, so that a petrographic analysis as well as the proximate and ultimate analyses is required for model input. Validation of the model shows that chars produced at high pressure with a high percentage of cenospherical types burn more rapidly under process conditions than those at low pressure, with model predictions matching measurements. It is suggested that incorporating the char structural submodel into the existing char combustion model improves its predictability.
Proceedings of the C... arrow_drop_down Proceedings of the Combustion InstituteArticle . 2000 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0082-0784(00)80633-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu77 citations 77 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Proceedings of the C... arrow_drop_down Proceedings of the Combustion InstituteArticle . 2000 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0082-0784(00)80633-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV San Shwe Hla; Xiaodong Chen; Xiaodong Chen; Alexander Y. Ilyushechkin; Daniel G. Roberts;Abstract Alkali species in coal play an important role in mineral matter reactions during gasification. Brown coal ashes can be high in sodium (up to 20 wt%), which interacts with other minerals to significantly affect the formation of slag (liquid phase). At high temperatures, sodium in slag affects phase equilibria, liquidus temperature, and slag viscosity. We investigated phase transformations in brown coal ashes at 800–1000 °C and slags at 1200–1600 °C to study the behaviour of sodium species in the range of 3–15 wt% using X-ray powder diffraction, thermogravimetric analysis and electron probe microanalysis. Sodium species appeared in coal ashes in different forms, such as sulfates, carbonates, and alumina-silicates, resulting in different ash bulk compositions. After processing under gasification conditions, alkaline species react with other minerals and may result in the appearance of a liquid phase. In this study, the liquid-phase content of ashes generally increased with increasing sodium concentration. In slags, sodium often decreased the liquidus temperature and solids content below liquidus temperature. It results lower slag viscosity in sodium enriched slags. These findings demonstrate the importance of phase transformations in brown coal mineral matter during gasification, and the potential they have to strongly affect the required operational conditions.
Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2018.06.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2018.06.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV San Shwe Hla; Xiaodong Chen; Xiaodong Chen; Alexander Y. Ilyushechkin; Daniel G. Roberts;Abstract Alkali species in coal play an important role in mineral matter reactions during gasification. Brown coal ashes can be high in sodium (up to 20 wt%), which interacts with other minerals to significantly affect the formation of slag (liquid phase). At high temperatures, sodium in slag affects phase equilibria, liquidus temperature, and slag viscosity. We investigated phase transformations in brown coal ashes at 800–1000 °C and slags at 1200–1600 °C to study the behaviour of sodium species in the range of 3–15 wt% using X-ray powder diffraction, thermogravimetric analysis and electron probe microanalysis. Sodium species appeared in coal ashes in different forms, such as sulfates, carbonates, and alumina-silicates, resulting in different ash bulk compositions. After processing under gasification conditions, alkaline species react with other minerals and may result in the appearance of a liquid phase. In this study, the liquid-phase content of ashes generally increased with increasing sodium concentration. In slags, sodium often decreased the liquidus temperature and solids content below liquidus temperature. It results lower slag viscosity in sodium enriched slags. These findings demonstrate the importance of phase transformations in brown coal mineral matter during gasification, and the potential they have to strongly affect the required operational conditions.
Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2018.06.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2018.06.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: San Shwe Hla; Daniel G. Roberts;pmid: 25882791
The development and deployment of thermochemical waste-to-energy systems requires an understanding of the fundamental characteristics of waste streams. Despite Australia's growing interest in gasification of waste streams, no data are available on their thermochemical properties. This work presents, for the first time, a characterisation of green waste and municipal solid waste in terms of chemistry and energy content. The study took place in Brisbane, the capital city of Queensland. The municipal solid waste was hand-sorted and classified into ten groups, including non-combustibles. The chemical properties of the combustible portion of municipal solid waste were measured directly and compared with calculations made based on their weight ratios in the overall municipal solid waste. The results obtained from both methods were in good agreement. The moisture content of green waste ranged from 29% to 46%. This variability - and the tendency for soil material to contaminate the samples - was the main contributor to the variation of samples' energy content, which ranged between 7.8 and 10.7MJ/kg. The total moisture content of food wastes and garden wastes was as high as 70% and 60%, respectively, while the total moisture content of non-packaging plastics was as low as 2.2%. The overall energy content (lower heating value on a wet basis, LHVwb) of the municipal solid waste was 7.9MJ/kg, which is well above the World Bank-recommended value for utilisation in thermochemical conversion processes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2015.03.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu114 citations 114 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2015.03.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: San Shwe Hla; Daniel G. Roberts;pmid: 25882791
The development and deployment of thermochemical waste-to-energy systems requires an understanding of the fundamental characteristics of waste streams. Despite Australia's growing interest in gasification of waste streams, no data are available on their thermochemical properties. This work presents, for the first time, a characterisation of green waste and municipal solid waste in terms of chemistry and energy content. The study took place in Brisbane, the capital city of Queensland. The municipal solid waste was hand-sorted and classified into ten groups, including non-combustibles. The chemical properties of the combustible portion of municipal solid waste were measured directly and compared with calculations made based on their weight ratios in the overall municipal solid waste. The results obtained from both methods were in good agreement. The moisture content of green waste ranged from 29% to 46%. This variability - and the tendency for soil material to contaminate the samples - was the main contributor to the variation of samples' energy content, which ranged between 7.8 and 10.7MJ/kg. The total moisture content of food wastes and garden wastes was as high as 70% and 60%, respectively, while the total moisture content of non-packaging plastics was as low as 2.2%. The overall energy content (lower heating value on a wet basis, LHVwb) of the municipal solid waste was 7.9MJ/kg, which is well above the World Bank-recommended value for utilisation in thermochemical conversion processes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2015.03.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu114 citations 114 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2015.03.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV San Shwe Hla; Christian Hasse; David J. Harris; M. Vascellari; Daniel G. Roberts;Abstract In this work advanced gasification models of four Australian coals were calibrated using laboratory-scale experiments with the aim of extrapolating these information for simulating large-scale gasification processes using CFD. In particular, the four studied coals, ranging from semi-anthracite to sub-bituminous, were extensively characterized using high-pressure bench and laboratory scale techniques. Coal devolatilization is modeled using the empirical competing two-step models, whose parameters are calibrated in a pre-processing step by means of the advanced CPD, FG-DVC and FLASHCHAIN® pyrolysis models. The results of the advanced pyrolysis models are at first validated against true volatile yield data obtained at high pressures and heating rates from wire-mesh reactor experiments. Char gasification is modeled using a n th-order intrinsic kinetics model. At first, intrinsic char kinetics was measured in kinetic regime from experiments in pressurized thermogravimetric analysis. Then, gasification experiments in a laboratory-scale pressurized entrained flow reactor have been used for estimating the reactivity in pore-diffusion regime, defining the diffusivity inside the particle pores. Finally, the calibration of the same coals have also been tested in a 5 MW pilot-scale gasifier, offering a unique opportunity to apply our model over the continuum of laboratory and pilot scales. The model results again show good agreement with the experimental data of syngas composition and carbon conversion evaluated at the exit of the gasifier. The simulations of the pilot-scale gasifier demonstrates that industrial-scale gasification processes can be accurately predicted using advanced coal conversion models, adequately calibrated through laboratory-scale experiments.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2015.01.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2015.01.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV San Shwe Hla; Christian Hasse; David J. Harris; M. Vascellari; Daniel G. Roberts;Abstract In this work advanced gasification models of four Australian coals were calibrated using laboratory-scale experiments with the aim of extrapolating these information for simulating large-scale gasification processes using CFD. In particular, the four studied coals, ranging from semi-anthracite to sub-bituminous, were extensively characterized using high-pressure bench and laboratory scale techniques. Coal devolatilization is modeled using the empirical competing two-step models, whose parameters are calibrated in a pre-processing step by means of the advanced CPD, FG-DVC and FLASHCHAIN® pyrolysis models. The results of the advanced pyrolysis models are at first validated against true volatile yield data obtained at high pressures and heating rates from wire-mesh reactor experiments. Char gasification is modeled using a n th-order intrinsic kinetics model. At first, intrinsic char kinetics was measured in kinetic regime from experiments in pressurized thermogravimetric analysis. Then, gasification experiments in a laboratory-scale pressurized entrained flow reactor have been used for estimating the reactivity in pore-diffusion regime, defining the diffusivity inside the particle pores. Finally, the calibration of the same coals have also been tested in a 5 MW pilot-scale gasifier, offering a unique opportunity to apply our model over the continuum of laboratory and pilot scales. The model results again show good agreement with the experimental data of syngas composition and carbon conversion evaluated at the exit of the gasifier. The simulations of the pilot-scale gasifier demonstrates that industrial-scale gasification processes can be accurately predicted using advanced coal conversion models, adequately calibrated through laboratory-scale experiments.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2015.01.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2015.01.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: David J. Harris; San Shwe Hla; Daniel G. Roberts;Abstract This paper presents the development of a practical and flexible steady-state gasification model in which existing mechanistic models are incorporated with new knowledge of gasification reaction fundamentals. In particular, intrinsic char gasification kinetics and rates of char gasification are reconciled using a ‘composite effectiveness factor’ by taking into account morphological types of char particles and their impact on char conversion rate. Flows inside an entrained flow gasifier are simplified using ideal chemical reactors consisting of two plug flow and two well stirred reactors. Whilst clearly a simplification of a complex entrained flow gasifier, this approach accounts for the three dimensional aspects of recirculation and mixing and allows rapid convergence as required for incorporation into a practical IGCC process model. Experimental data from gasification of the same coals in a 5 MW th entrained flow gasifier were used to validate the performance of the model. Model calculations of the impact of oxygen-carbon stoichiometry on char conversion, cold gas efficiency (CGE) and product gas composition, using laboratory-scale measurements as inputs, are consistent with measurements at pilot-scale. The model results show that maximum CGEs for the higher reactivity coals with relatively high volatile matter are achieved within a narrow range of O:C ratios between 1.05–1.13, whilst the least reactive coal with high fixed carbon achieves its maximum CGE value at a higher O:C ratios of 1.36. Importantly, the model is able to reflect the significant differences in gasification behaviour of the four coals, which is consistent with lab-scale and larger-scale investigations. This work demonstrates the relevance of bench-scale gasification data in the assessment and interpretation of coal gasification behaviour under complex high pressure and high temperature conditions using appropriate mechanisms and sub-models.
Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2014.12.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2014.12.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: David J. Harris; San Shwe Hla; Daniel G. Roberts;Abstract This paper presents the development of a practical and flexible steady-state gasification model in which existing mechanistic models are incorporated with new knowledge of gasification reaction fundamentals. In particular, intrinsic char gasification kinetics and rates of char gasification are reconciled using a ‘composite effectiveness factor’ by taking into account morphological types of char particles and their impact on char conversion rate. Flows inside an entrained flow gasifier are simplified using ideal chemical reactors consisting of two plug flow and two well stirred reactors. Whilst clearly a simplification of a complex entrained flow gasifier, this approach accounts for the three dimensional aspects of recirculation and mixing and allows rapid convergence as required for incorporation into a practical IGCC process model. Experimental data from gasification of the same coals in a 5 MW th entrained flow gasifier were used to validate the performance of the model. Model calculations of the impact of oxygen-carbon stoichiometry on char conversion, cold gas efficiency (CGE) and product gas composition, using laboratory-scale measurements as inputs, are consistent with measurements at pilot-scale. The model results show that maximum CGEs for the higher reactivity coals with relatively high volatile matter are achieved within a narrow range of O:C ratios between 1.05–1.13, whilst the least reactive coal with high fixed carbon achieves its maximum CGE value at a higher O:C ratios of 1.36. Importantly, the model is able to reflect the significant differences in gasification behaviour of the four coals, which is consistent with lab-scale and larger-scale investigations. This work demonstrates the relevance of bench-scale gasification data in the assessment and interpretation of coal gasification behaviour under complex high pressure and high temperature conditions using appropriate mechanisms and sub-models.
Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2014.12.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2014.12.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu