- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2025Publisher:Wiley Kseniia Kravchenko; Christian C. Voigt; Jan Volkholz; Alexandre Courtiol; Shannon E. Currie;ABSTRACTPredicting species range shifts in response to environmental change requires the determination of regions where individuals maintain a positive energy budget. For hibernating animals, this budget depends on two physiological states (normothermy and torpor) that alternate in response to ambient temperature. To study range shifts of hibernators like the common noctule (Nyctalus noctula), we developed an ecophysiological approach that integrates metabolic rates, physiological states, and environmental conditions. Our model accurately hindcasted the northward range shift of this migratory bat over the past 50 years. Under climate change forecasts SSP1‐2.6, SSP2‐4.5, SSP3‐7.0, and SSP5‐8.5, for which winters will shorten by 1.4–41 days and warm by 0.11°C–2.3°C, the hibernation area is predicted to shift by 78–732 km and expand north‐eastward by 5.8%–14% by 2100. Mean ambient temperature and winter duration prove sufficient to approximate the hibernation niche and may be used to predict changes in hibernation areas where collecting physiological measurements is difficult.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.70119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.70119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:The Company of Biologists Funded by:DFGDFGSara A. Troxell; Sara A. Troxell; Sara A. Troxell; Marc W. Holderied; Christian C. Voigt; Gunārs Pētersons;ABSTRACTAerial migration is the fastest, yet most energetically demanding way of seasonal movement between habitats. However, for many taxa, and bats in particular, we lack a clear understanding of the energy requirements for migration. Here, we examined the energetic cost and flight speed of the long-distance migratory Nathusius’ bat (Pipistrellus nathusii). We measured flight metabolism in relation to airspeed in a wind tunnel, inferred the optimal traveling speed over long distances, i.e. maximum range speed, and compared this value with flight speed measured in wild conspecifics. Body mass and wing morphologies were similar in captive and wild bats, indicating that the body condition of captive bats was similar to that of migratory bats. Nine out of the 12 captive bats exhibited a U-shaped relationship between flight metabolic power and airspeed when flying in the wind tunnel. The flight metabolic rate across all airspeeds averaged 0.98±0.28 W, which corresponds well to established allometric relationships between flight metabolic rate and body mass for bats. During summer migration, P. nathusii traveled at an average speed of 6.9±0.7 m s−1, which was significantly higher than the minimum power speed (5.8±1.0 m s−1), yet within the range of expected maximum range speed inferred from wind tunnel experiments. This suggests that P. nathusii may migrate at an energetically optimal speed and that aerial refueling does not substantially lower migratory speed in P. nathusii.
Journal of Experimen... arrow_drop_down University of Bristol: Bristol ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1242/jeb.176396&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Experimen... arrow_drop_down University of Bristol: Bristol ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1242/jeb.176396&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Embargo end date: 14 Apr 2023 GermanyPublisher:Elsevier BV Christine Reusch; Ana Ailin Paul; Marcus Fritze; Stephanie Kramer-Schadt; Christian C. Voigt;pmid: 36681078
Many countries are investing heavily in wind power generation,1 triggering a high demand for suitable land. As a result, wind energy facilities are increasingly being installed in forests,2,3 despite the fact that forests are crucial for the protection of terrestrial biodiversity.4 This green-green dilemma is particularly evident for bats, as most species at risk of colliding with wind turbines roost in trees.2 With some of these species reported to be declining,5,6,7,8 we see an urgent need to understand how bats respond to wind turbines in forested areas, especially in Europe where all bat species are legally protected. We used miniaturized global positioning system (GPS) units to study how European common noctule bats (Nyctalus noctula), a species that is highly vulnerable at turbines,9 respond to wind turbines in forests. Data from 60 tagged common noctules yielded a total of 8,129 positions, of which 2.3% were recorded at distances <100 m from the nearest turbine. Bats were particularly active at turbines <500 m near roosts, which may require such turbines to be shut down more frequently at times of high bat activity to reduce collision risk. Beyond roosts, bats avoided turbines over several kilometers, supporting earlier findings on habitat loss for forest-associated bats.10 This habitat loss should be compensated by developing parts of the forest as refugia for bats. Our study highlights that it can be particularly challenging to generate wind energy in forested areas in an ecologically sustainable manner with minimal impact on forests and the wildlife that inhabit them.
Current Biology arrow_drop_down Fachrepositorium LebenswissenschaftenArticle . 2023License: CC BYData sources: Fachrepositorium LebenswissenschaftenRefubium - Repositorium der Freien Universität BerlinArticle . 2023License: CC BYData sources: Refubium - Repositorium der Freien Universität Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cub.2022.12.050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Current Biology arrow_drop_down Fachrepositorium LebenswissenschaftenArticle . 2023License: CC BYData sources: Fachrepositorium LebenswissenschaftenRefubium - Repositorium der Freien Universität BerlinArticle . 2023License: CC BYData sources: Refubium - Repositorium der Freien Universität Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cub.2022.12.050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Springer Science and Business Media LLC Authors: Maela Merlet; David X. Soto; Laurent Arthur; Christian C. Voigt;Abstract Wind turbines used to combat climate change pose a green-green dilemma when endangered and protected wildlife species are killed by collisions with spinning blades. Here, we investigated the geographic origin of bats killed by wind turbines along an east-west transect in France to determine the spatial extent of this conflict in Western Europe. We analysed stable hydrogen isotopes in the fur keratin of 60 common noctule bats ( Nyctalus noctula ) killed by wind turbines during summer migration in four regions of France to predict their geographic origin using models based on precipitation isoscapes. We first separated migratory from regional individuals based on fur isotope ratios of local bats. Across all regions, 71.7% of common noctules killed by turbines were of regional and 28.3% of distant origin, the latter being predominantly females from northeastern Europe. We observed a higher proportion of migratory individuals from western sites compared to eastern sites. Our study suggests that wind-turbine-related losses of common noctule bats may impact distant breeding populations across whole Eurasia, confirming that migratory bats are highly vulnerable at wind turbines and that effective conservation measures, such as temporary curtailment of turbine operation, should be mandatory to protect them from collisions with wind turbines.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-5347084/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-5347084/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2022Embargo end date: 20 Jun 2022 GermanyPublisher:Elsevier BV Authors: Christine Reusch; Maja Lozar; Stephanie Kramer-Schadt; Christian C. Voigt;(Uploaded by Plazi for the Bat Literature Project) S Wind energy production is particularly rewarding along coastlines, yet coastlines are often important as migratory corridors for wildlife. This creates a conflict between energy production from renewable sources and conservation goals, which needs to be considered during environmental planning. To shed light on the spatial interactions of a high collision risk bat species with coastal wind turbines (WT), we analysed 32 tracks of 11 common noctule bats (Nyctalus noctula) in Northern Germany with miniaturized global positioning system units yielding 6266 locations. We used three spatial models to infer on the preferred and avoided landscape features in interaction with WT. We found 3.4% of all locations close to WT, with bats preferring areas with high levels of impervious surface, identified as farmhouses. Common noctule bats were also more present close to WT adjacent to paths and waterbodies. At the local scale, >70% of common noctule bats avoided WT, yet if bats approached WT we counted more positions at large WT, specifically close to known roosts. Our study highlights that coastal WT should not be placed next to feeding grounds and bat roosts. Additionally, avoidance of WT by bats indicates that foraging bats may suffer from habitat loss in coastal landscapes with high turbine densities. To mitigate the conflict between wind energy power production and conservation goals at coastal sites, wind turbines should be placed at distance to habitat features preferred by bats and turbine densities should be limited.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefFachrepositorium LebenswissenschaftenArticle . 2022Data sources: Fachrepositorium LebenswissenschaftenRefubium - Repositorium der Freien Universität BerlinArticle . 2022License: CC BYData sources: Refubium - Repositorium der Freien Universität Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2022.114715&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefFachrepositorium LebenswissenschaftenArticle . 2022Data sources: Fachrepositorium LebenswissenschaftenRefubium - Repositorium der Freien Universität BerlinArticle . 2022License: CC BYData sources: Refubium - Repositorium der Freien Universität Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2022.114715&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:AIP Publishing Authors: Christian C. Voigt; Tanja M. Straka; Marcus Fritze;doi: 10.1063/1.5118784
Although renewable energy production is widely accepted as clean, it is not necessarily environmental neutral since, for example, wind turbines kill large numbers of airborne animals such as bats. Consequently, stakeholders involved in the planning and operation of wind turbines are often in conflict when trying to reconcile both goals, namely, promoting wind energy production and protecting bats. We report the responses to an online questionnaire sent out to stakeholders to assess this conflict. More than 80% of stakeholders acknowledged the conflict between bat conservation and wind energy production; yet, the majority was confident about solutions and all desired an ecologically sustainable energy transition. All groups, except members of the wind energy sector, disagreed with the statements that wind energy production is of higher priority than biodiversity protection and that global warming is more critical than the biodiversity crisis. All groups agreed that more measures have to be taken to make wind energy production ecologically sustainable and that the society should be included to pay for the implementation of these measures. All stakeholders except for members of the wind energy sector agreed on that revenue losses from wind energy production and delays in the transition process should be acceptable to resolve the green–green dilemma. Among offered choices, most stakeholders suggested engaging in more research, improving the efficiency of energy use and implementing context dependent cut-in speed during wind turbine operation. The suggestion to weaken the legal protection of wildlife species was dismissed by all, underlining the consensus to protect biodiversity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.5118784&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.5118784&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 United StatesPublisher:Oxford University Press (OUP) Christian C Voigt; Enrico Bernard; Joe Chun-Chia Huang; Winifred F Frick; Christian Kerbiriou; Kate MacEwan; Fiona Mathews; Armando Rodríguez-Durán; Carolin Scholz; Paul W Webala; Justin Welbergen; Michael Whitby;pmid: 38720909
pmc: PMC11075649
Abstract Wind energy production is growing rapidly worldwide in an effort to reduce greenhouse gas emissions. However, wind energy production is not environmentally neutral. Negative impacts on volant animals, such as bats, include fatalities at turbines and habitat loss due to land-use change and displacement. Siting turbines away from ecologically sensitive areas and implementing measures to reduce fatalities are critical to protecting bat populations. Restricting turbine operations during periods of high bat activity is the most effective form of mitigation currently available to reduce fatalities. Compensating for habitat loss and offsetting mortality are not often practiced, because meaningful offsets are lacking. Legal frameworks to prevent or mitigate the negative impacts of wind energy on bats are absent in most countries, especially in emerging markets. Therefore, governments and lending institutions are key in reconciling wind energy production with biodiversity goals by requiring sufficient environmental standards for wind energy projects.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2024License: CC BYFull-Text: https://escholarship.org/uc/item/8sk2q57cData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/biosci/biae023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 12 citations 12 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2024License: CC BYFull-Text: https://escholarship.org/uc/item/8sk2q57cData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/biosci/biae023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 PolandPaltrinieri, Laura; Razgour, Orly; Santini, Luca; Russo, Danilo; Aihartza, Joxerra; Aizpurua, Ostaizka; Amorim, Francisco; Ancillotto, Leonardo; Bilgin, Rasit; Briggs, Philip; Cantù-Salazar, Lisette; Cistrone, Luca; Dechmann, Dina; Eldegard, Katrine; Fjelldal, Mari; Froidevaux, Jérémy; Garin, Inazio; Hamel, Luke; Juste, Javier; Korine, Carmi; Leuchtmann, Maxime; Martinoli, Adriano; Mas, Maria; Mathews, Fiona; McKay, Reed; Molenaar, Thijs; Morris, Colin; Nistreanu, Victoria; Olival, Kevin; Pereswiet-Soltan, Andrea; Péter, Áron; Phelps, Kendra; Pope, Lucy; Rebelo, Hugo; Preatoni, Damiano; Puig-Monserat, Xavier; Roche, Niamh; Ruczyński, Ireneusz; D. Sándor, Attila; Sørås, Rune; Spada, Martina; Toshkova, Nia; van der Kooij, Jeroen; Voigt, Christian; Zegarek, Marcin; Benítez-López, Ana;According to Bergmann's and Allen's rules, climate change may drive morphological shifts in species, affecting body size and appendage length. These rules predict that species in colder climates tend to be larger and have shorter appendages to improve thermoregulation. Bats are thought to be sensitive to climate and are therefore expected to respond to climatic changes across space and time. We conducted a phylogenetic meta‐analysis on &gt; 27 000 forearm length (FAL) and body mass (BM) measurements from 20 sedentary European bat species to examine body size patterns. We assessed the relationships between body size and environmental variables (winter and summer temperatures, and summer precipitation) across geographic locations, and also analysed temporal trends in body size. We found sex‐specific morphological shifts in the body size of European bats in response to temperature and precipitation patterns across space, but no clear temporal changes due to high interspecific variability. Across Europe, male FAL decreased with increasing summer and winter temperatures, and BM increased with greater precipitation. In contrast, both FAL and BM of female bats increased with summer precipitation and decreased with winter temperatures. Our data can confirm Bergmann's rule for both males and females, while females' BM variations are also related to summer precipitation, suggesting a potential link to resource availability. Allen's rule is confirmed only in males in relation to summer temperature, while in females FAL and BM decrease proportionally with increasing temperature, maintaining a constant allometric relationship incompatible with Allen's rule. This study provides new insights into sex and species‐dependent morphological changes in bat body size in response to temperature and precipitation patterns. It highlights how body size variation reflects adaptations to temperature and precipitation patterns, thus providing insights into potential species‐level morphological responses to climate change across Europe.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1002/ecog.0...Article . 2025Data sources: The Knowledge Base of the University of Gdańskadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dris___02463::f6e32c507d2bb051f593b1b11d503152&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1002/ecog.0...Article . 2025Data sources: The Knowledge Base of the University of Gdańskadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dris___02463::f6e32c507d2bb051f593b1b11d503152&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Reusch, Christine; Paul, Ana Ailin; Fritze, Markus; Kramer-Schadt, Stephanie; Voigt, Christian C;{"references": ["1 GWEC (Global Wind Energy Council) (2021). https://gwec.net/wp-content/uploads/2021/03/GWEC-Global-Wind-Report-2021.pdf ; Viewed 25th November 2021.", "2 Arnett, E.B., Baerwald, E.F., Mathews, F., Rodrigues, L., Rodr\u00edguez-Dur\u00e1n, A., Rydell, J., Villegas-Patraca, R., and Voigt, C.C. (2016). Impacts of wind energy development on bats: a global perspective. In Bats in the Anthropocene: conservation of bats in a changing world (pp. 295-323). Springer, Cham.", "3 Bunzel, K., Bovet, J., Thr\u00e4n, D., and Eichhorn, M. (2019). Hidden outlaws in the forest? A legal and spatial analysis of onshore wind energy in Germany. Energy Research & Social Science 55, 14-25.", "4 FAO, \"Global Forest Resources Assessment 2015\u2014How are the world's forests changing?\" (Food and Agriculture Organization of the United Nations, 2015)", "5 Frick, W. F., Baerwald, E. F., Pollock, J. F., Barclay, R. M. R., Szymanski, J. A., Weller, T. J., Russell, A. L., Loeb, S. C., Medellin, R. A., and McGuire, L. P. (2017). Fatalities at wind turbines may threaten population viability of a migratory bat. Biological Conservation 209, 172-177.", "6 Friedenberg, N. A., and Frick, W. F. (2021). Assessing fatality minimization for hoary bats amid continued wind energy development. Biological Conservation 262, 109309.", "7 BfN (Bundesamt f\u00fcr Naturschutz). 2018. National Implementation Report to EUROBATS; accessed on 28.12.2021 at https://www.eurobats.org/sites/default/files/documents/pdf/Meeting_of_Parties/Inf.MoP8_.21_NIR_Germany.pdf", "8 Printz, L., Tschapka, M., and Vogeler, A. (2021). The common noctule bat (Nyctalus noctula): population trends from artificial roosts and the effect of biotic and abiotic parameters on the probability of occupation. Journal of Urban Ecology 7 (1), juab033.", "9 Rydell, J., Bach, L., Dubourg-Savage, M.J., Green, M., Rodrigues, L., and Hedenstr\u00f6m, A. (2010). Bat mortality at wind turbines in northwestern Europe. Acta Chiropterologica 12(2): 261-274.", "10 Ellerbrok, J.S., Delius, A., Peter, F., Farwig, N., and Voigt, C.C. (2022). Activity of forest specialist bats decreases towards wind turbines at forest sites. Journal of Applied Ecology 00: 1\u2013 10. https://doi.org/10.1111/1365-2664.14249"]} Many countries are investing heavily in wind power generation,1 triggering a high demand for suitable land. As a result, wind energy facilities are increasingly being installed in forests,2,3 despite the fact that forests are crucial for the protection of terrestrial biodiversity.4 This green-green dilemma is particularly evident for bats, as most species at risk of colliding with wind turbines roost in trees.2 With some of these species reported to be declining,5-8 we see an urgent need to understand how bats respond to wind turbines in forested areas, especially in Europe where all bat species are legally protected. We used miniaturized global positioning system (GPS) units to study how European common noctule bats (Nyctalus noctula), a species that is highly vulnerable at turbines,9 respond to wind turbines in forests. Data from 60 tagged common noctules yielded a total of 8129 positions, of which 2.3% were recorded at distances <100 m from the nearest turbine. Bats were particularly active at turbines <500 m near roosts, which may require such turbines to be shut down more frequently at times of high bat activity to reduce collision risk. Beyond roosts, bats avoided turbines over several kilometers, supporting earlier findings on habitat loss for forest-associated bats.10 This habitat loss should be compensated by developing parts of the forest as refugia for bats. Our study highlights that it can be particularly challenging to generate wind energy in forested areas in an ecologically sustainable manner with minimal impact on forests and the wildlife that inhabit them. This project was funded by the Deutsche Bundesstiftung Umwelt DBU (34411/01-43/0).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7535029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 3visibility views 3 download downloads 9 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7535029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Pensoft Publishers Florian Jeltsch; Manuel Roeleke; Ahmed Abdelfattah; Robert Arlinghaus; Gabriele Berg; Niels Blaum; Luc De Meester; Elke Dittmann; Jana Anja Eccard; Bertrand Fournier; Ursula Gaedke; Cara Gallagher; Lynn Govaert; Mark Hauber; Jonathan M. Jeschke; Stephanie Kramer-Schadt; Anja Linstädter; Ulrike Lucke; Valeria Mazza; Ralf Metzler; Claas Nendel; Viktoriia Radchuk; Matthias C. Rillig; Masahiro Ryo; Katharina Scheiter; Ralph Tiedemann; Britta Tietjen; Christian C. Voigt; Guntram Weithoff; Justyna Wolinska; Damaris Zurell;doi: 10.3897/ibe.1.148200
Biodiversity loss and widespread ecosystem degradation are among the most pressing challenges of our time, requiring urgent action. Yet our understanding of their causes remains limited because prevailing ecological concepts and approaches often overlook the underlying complex interactions of individuals of the same or different species, interacting with each other and with their environment. We propose a paradigm shift in ecological science, moving from simplifying frameworks that use species, population or community averages to an integrative approach that recognizes individual organisms as fundamental agents of ecological change. The urgency of the biodiversity crisis requires such a paradigm shift to advance ecology towards a predictive science by elucidating the causal mechanisms linking individual variation and adaptive behaviour to emergent properties of populations, communities, ecosystems, and ecological interactions with human interventions. Recent advances in computational technologies, sensors, and analytical tools now offer unprecedented opportunities to overcome past challenges and lay the foundation for a truly integrated Individual-Based Global Change Ecology (IBGCE). Unravelling the potential role of individual variability in global change impact analyses will require a systematic combination of empirical, experimental and modelling studies across systems, while taking into account multiple drivers of global change and their interactions. Key priorities include refining theoretical frameworks, developing benchmark models and standardized toolsets, and systematically incorporating individual variation and adaptive behaviour into empirical field work, experiments and predictive models. The emerging synergies between individual-based modelling, big data approaches, and machine learning hold great promise for addressing the inherent complexity of ecosystems. Each step in the development of IBGCE must systematically balance the complexity of the individual perspective with parsimony, computational efficiency, and experimental feasibility. IBGCE aims to unravel and predict the dynamics of biodiversity in the Anthropocene through a comprehensive study of individual organisms, their variability and their interactions. It will provide a critical foundation for considering individual variation and behaviour for future conservation and sustainability management, taking into account individual-to-ecosystem pathways and feedbacks.
https://doi.org/10.3... arrow_drop_down https://doi.org/10.3897/ibe.1....Article . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3897/ibe.1.148200&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.3... arrow_drop_down https://doi.org/10.3897/ibe.1....Article . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3897/ibe.1.148200&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2025Publisher:Wiley Kseniia Kravchenko; Christian C. Voigt; Jan Volkholz; Alexandre Courtiol; Shannon E. Currie;ABSTRACTPredicting species range shifts in response to environmental change requires the determination of regions where individuals maintain a positive energy budget. For hibernating animals, this budget depends on two physiological states (normothermy and torpor) that alternate in response to ambient temperature. To study range shifts of hibernators like the common noctule (Nyctalus noctula), we developed an ecophysiological approach that integrates metabolic rates, physiological states, and environmental conditions. Our model accurately hindcasted the northward range shift of this migratory bat over the past 50 years. Under climate change forecasts SSP1‐2.6, SSP2‐4.5, SSP3‐7.0, and SSP5‐8.5, for which winters will shorten by 1.4–41 days and warm by 0.11°C–2.3°C, the hibernation area is predicted to shift by 78–732 km and expand north‐eastward by 5.8%–14% by 2100. Mean ambient temperature and winter duration prove sufficient to approximate the hibernation niche and may be used to predict changes in hibernation areas where collecting physiological measurements is difficult.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.70119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.70119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:The Company of Biologists Funded by:DFGDFGSara A. Troxell; Sara A. Troxell; Sara A. Troxell; Marc W. Holderied; Christian C. Voigt; Gunārs Pētersons;ABSTRACTAerial migration is the fastest, yet most energetically demanding way of seasonal movement between habitats. However, for many taxa, and bats in particular, we lack a clear understanding of the energy requirements for migration. Here, we examined the energetic cost and flight speed of the long-distance migratory Nathusius’ bat (Pipistrellus nathusii). We measured flight metabolism in relation to airspeed in a wind tunnel, inferred the optimal traveling speed over long distances, i.e. maximum range speed, and compared this value with flight speed measured in wild conspecifics. Body mass and wing morphologies were similar in captive and wild bats, indicating that the body condition of captive bats was similar to that of migratory bats. Nine out of the 12 captive bats exhibited a U-shaped relationship between flight metabolic power and airspeed when flying in the wind tunnel. The flight metabolic rate across all airspeeds averaged 0.98±0.28 W, which corresponds well to established allometric relationships between flight metabolic rate and body mass for bats. During summer migration, P. nathusii traveled at an average speed of 6.9±0.7 m s−1, which was significantly higher than the minimum power speed (5.8±1.0 m s−1), yet within the range of expected maximum range speed inferred from wind tunnel experiments. This suggests that P. nathusii may migrate at an energetically optimal speed and that aerial refueling does not substantially lower migratory speed in P. nathusii.
Journal of Experimen... arrow_drop_down University of Bristol: Bristol ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1242/jeb.176396&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Experimen... arrow_drop_down University of Bristol: Bristol ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1242/jeb.176396&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Embargo end date: 14 Apr 2023 GermanyPublisher:Elsevier BV Christine Reusch; Ana Ailin Paul; Marcus Fritze; Stephanie Kramer-Schadt; Christian C. Voigt;pmid: 36681078
Many countries are investing heavily in wind power generation,1 triggering a high demand for suitable land. As a result, wind energy facilities are increasingly being installed in forests,2,3 despite the fact that forests are crucial for the protection of terrestrial biodiversity.4 This green-green dilemma is particularly evident for bats, as most species at risk of colliding with wind turbines roost in trees.2 With some of these species reported to be declining,5,6,7,8 we see an urgent need to understand how bats respond to wind turbines in forested areas, especially in Europe where all bat species are legally protected. We used miniaturized global positioning system (GPS) units to study how European common noctule bats (Nyctalus noctula), a species that is highly vulnerable at turbines,9 respond to wind turbines in forests. Data from 60 tagged common noctules yielded a total of 8,129 positions, of which 2.3% were recorded at distances <100 m from the nearest turbine. Bats were particularly active at turbines <500 m near roosts, which may require such turbines to be shut down more frequently at times of high bat activity to reduce collision risk. Beyond roosts, bats avoided turbines over several kilometers, supporting earlier findings on habitat loss for forest-associated bats.10 This habitat loss should be compensated by developing parts of the forest as refugia for bats. Our study highlights that it can be particularly challenging to generate wind energy in forested areas in an ecologically sustainable manner with minimal impact on forests and the wildlife that inhabit them.
Current Biology arrow_drop_down Fachrepositorium LebenswissenschaftenArticle . 2023License: CC BYData sources: Fachrepositorium LebenswissenschaftenRefubium - Repositorium der Freien Universität BerlinArticle . 2023License: CC BYData sources: Refubium - Repositorium der Freien Universität Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cub.2022.12.050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Current Biology arrow_drop_down Fachrepositorium LebenswissenschaftenArticle . 2023License: CC BYData sources: Fachrepositorium LebenswissenschaftenRefubium - Repositorium der Freien Universität BerlinArticle . 2023License: CC BYData sources: Refubium - Repositorium der Freien Universität Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cub.2022.12.050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Springer Science and Business Media LLC Authors: Maela Merlet; David X. Soto; Laurent Arthur; Christian C. Voigt;Abstract Wind turbines used to combat climate change pose a green-green dilemma when endangered and protected wildlife species are killed by collisions with spinning blades. Here, we investigated the geographic origin of bats killed by wind turbines along an east-west transect in France to determine the spatial extent of this conflict in Western Europe. We analysed stable hydrogen isotopes in the fur keratin of 60 common noctule bats ( Nyctalus noctula ) killed by wind turbines during summer migration in four regions of France to predict their geographic origin using models based on precipitation isoscapes. We first separated migratory from regional individuals based on fur isotope ratios of local bats. Across all regions, 71.7% of common noctules killed by turbines were of regional and 28.3% of distant origin, the latter being predominantly females from northeastern Europe. We observed a higher proportion of migratory individuals from western sites compared to eastern sites. Our study suggests that wind-turbine-related losses of common noctule bats may impact distant breeding populations across whole Eurasia, confirming that migratory bats are highly vulnerable at wind turbines and that effective conservation measures, such as temporary curtailment of turbine operation, should be mandatory to protect them from collisions with wind turbines.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-5347084/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-5347084/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2022Embargo end date: 20 Jun 2022 GermanyPublisher:Elsevier BV Authors: Christine Reusch; Maja Lozar; Stephanie Kramer-Schadt; Christian C. Voigt;(Uploaded by Plazi for the Bat Literature Project) S Wind energy production is particularly rewarding along coastlines, yet coastlines are often important as migratory corridors for wildlife. This creates a conflict between energy production from renewable sources and conservation goals, which needs to be considered during environmental planning. To shed light on the spatial interactions of a high collision risk bat species with coastal wind turbines (WT), we analysed 32 tracks of 11 common noctule bats (Nyctalus noctula) in Northern Germany with miniaturized global positioning system units yielding 6266 locations. We used three spatial models to infer on the preferred and avoided landscape features in interaction with WT. We found 3.4% of all locations close to WT, with bats preferring areas with high levels of impervious surface, identified as farmhouses. Common noctule bats were also more present close to WT adjacent to paths and waterbodies. At the local scale, >70% of common noctule bats avoided WT, yet if bats approached WT we counted more positions at large WT, specifically close to known roosts. Our study highlights that coastal WT should not be placed next to feeding grounds and bat roosts. Additionally, avoidance of WT by bats indicates that foraging bats may suffer from habitat loss in coastal landscapes with high turbine densities. To mitigate the conflict between wind energy power production and conservation goals at coastal sites, wind turbines should be placed at distance to habitat features preferred by bats and turbine densities should be limited.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefFachrepositorium LebenswissenschaftenArticle . 2022Data sources: Fachrepositorium LebenswissenschaftenRefubium - Repositorium der Freien Universität BerlinArticle . 2022License: CC BYData sources: Refubium - Repositorium der Freien Universität Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2022.114715&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefFachrepositorium LebenswissenschaftenArticle . 2022Data sources: Fachrepositorium LebenswissenschaftenRefubium - Repositorium der Freien Universität BerlinArticle . 2022License: CC BYData sources: Refubium - Repositorium der Freien Universität Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2022.114715&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:AIP Publishing Authors: Christian C. Voigt; Tanja M. Straka; Marcus Fritze;doi: 10.1063/1.5118784
Although renewable energy production is widely accepted as clean, it is not necessarily environmental neutral since, for example, wind turbines kill large numbers of airborne animals such as bats. Consequently, stakeholders involved in the planning and operation of wind turbines are often in conflict when trying to reconcile both goals, namely, promoting wind energy production and protecting bats. We report the responses to an online questionnaire sent out to stakeholders to assess this conflict. More than 80% of stakeholders acknowledged the conflict between bat conservation and wind energy production; yet, the majority was confident about solutions and all desired an ecologically sustainable energy transition. All groups, except members of the wind energy sector, disagreed with the statements that wind energy production is of higher priority than biodiversity protection and that global warming is more critical than the biodiversity crisis. All groups agreed that more measures have to be taken to make wind energy production ecologically sustainable and that the society should be included to pay for the implementation of these measures. All stakeholders except for members of the wind energy sector agreed on that revenue losses from wind energy production and delays in the transition process should be acceptable to resolve the green–green dilemma. Among offered choices, most stakeholders suggested engaging in more research, improving the efficiency of energy use and implementing context dependent cut-in speed during wind turbine operation. The suggestion to weaken the legal protection of wildlife species was dismissed by all, underlining the consensus to protect biodiversity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.5118784&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.5118784&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 United StatesPublisher:Oxford University Press (OUP) Christian C Voigt; Enrico Bernard; Joe Chun-Chia Huang; Winifred F Frick; Christian Kerbiriou; Kate MacEwan; Fiona Mathews; Armando Rodríguez-Durán; Carolin Scholz; Paul W Webala; Justin Welbergen; Michael Whitby;pmid: 38720909
pmc: PMC11075649
Abstract Wind energy production is growing rapidly worldwide in an effort to reduce greenhouse gas emissions. However, wind energy production is not environmentally neutral. Negative impacts on volant animals, such as bats, include fatalities at turbines and habitat loss due to land-use change and displacement. Siting turbines away from ecologically sensitive areas and implementing measures to reduce fatalities are critical to protecting bat populations. Restricting turbine operations during periods of high bat activity is the most effective form of mitigation currently available to reduce fatalities. Compensating for habitat loss and offsetting mortality are not often practiced, because meaningful offsets are lacking. Legal frameworks to prevent or mitigate the negative impacts of wind energy on bats are absent in most countries, especially in emerging markets. Therefore, governments and lending institutions are key in reconciling wind energy production with biodiversity goals by requiring sufficient environmental standards for wind energy projects.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2024License: CC BYFull-Text: https://escholarship.org/uc/item/8sk2q57cData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/biosci/biae023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 12 citations 12 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2024License: CC BYFull-Text: https://escholarship.org/uc/item/8sk2q57cData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/biosci/biae023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 PolandPaltrinieri, Laura; Razgour, Orly; Santini, Luca; Russo, Danilo; Aihartza, Joxerra; Aizpurua, Ostaizka; Amorim, Francisco; Ancillotto, Leonardo; Bilgin, Rasit; Briggs, Philip; Cantù-Salazar, Lisette; Cistrone, Luca; Dechmann, Dina; Eldegard, Katrine; Fjelldal, Mari; Froidevaux, Jérémy; Garin, Inazio; Hamel, Luke; Juste, Javier; Korine, Carmi; Leuchtmann, Maxime; Martinoli, Adriano; Mas, Maria; Mathews, Fiona; McKay, Reed; Molenaar, Thijs; Morris, Colin; Nistreanu, Victoria; Olival, Kevin; Pereswiet-Soltan, Andrea; Péter, Áron; Phelps, Kendra; Pope, Lucy; Rebelo, Hugo; Preatoni, Damiano; Puig-Monserat, Xavier; Roche, Niamh; Ruczyński, Ireneusz; D. Sándor, Attila; Sørås, Rune; Spada, Martina; Toshkova, Nia; van der Kooij, Jeroen; Voigt, Christian; Zegarek, Marcin; Benítez-López, Ana;According to Bergmann's and Allen's rules, climate change may drive morphological shifts in species, affecting body size and appendage length. These rules predict that species in colder climates tend to be larger and have shorter appendages to improve thermoregulation. Bats are thought to be sensitive to climate and are therefore expected to respond to climatic changes across space and time. We conducted a phylogenetic meta‐analysis on &gt; 27 000 forearm length (FAL) and body mass (BM) measurements from 20 sedentary European bat species to examine body size patterns. We assessed the relationships between body size and environmental variables (winter and summer temperatures, and summer precipitation) across geographic locations, and also analysed temporal trends in body size. We found sex‐specific morphological shifts in the body size of European bats in response to temperature and precipitation patterns across space, but no clear temporal changes due to high interspecific variability. Across Europe, male FAL decreased with increasing summer and winter temperatures, and BM increased with greater precipitation. In contrast, both FAL and BM of female bats increased with summer precipitation and decreased with winter temperatures. Our data can confirm Bergmann's rule for both males and females, while females' BM variations are also related to summer precipitation, suggesting a potential link to resource availability. Allen's rule is confirmed only in males in relation to summer temperature, while in females FAL and BM decrease proportionally with increasing temperature, maintaining a constant allometric relationship incompatible with Allen's rule. This study provides new insights into sex and species‐dependent morphological changes in bat body size in response to temperature and precipitation patterns. It highlights how body size variation reflects adaptations to temperature and precipitation patterns, thus providing insights into potential species‐level morphological responses to climate change across Europe.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1002/ecog.0...Article . 2025Data sources: The Knowledge Base of the University of Gdańskadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dris___02463::f6e32c507d2bb051f593b1b11d503152&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1002/ecog.0...Article . 2025Data sources: The Knowledge Base of the University of Gdańskadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dris___02463::f6e32c507d2bb051f593b1b11d503152&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Reusch, Christine; Paul, Ana Ailin; Fritze, Markus; Kramer-Schadt, Stephanie; Voigt, Christian C;{"references": ["1 GWEC (Global Wind Energy Council) (2021). https://gwec.net/wp-content/uploads/2021/03/GWEC-Global-Wind-Report-2021.pdf ; Viewed 25th November 2021.", "2 Arnett, E.B., Baerwald, E.F., Mathews, F., Rodrigues, L., Rodr\u00edguez-Dur\u00e1n, A., Rydell, J., Villegas-Patraca, R., and Voigt, C.C. (2016). Impacts of wind energy development on bats: a global perspective. In Bats in the Anthropocene: conservation of bats in a changing world (pp. 295-323). Springer, Cham.", "3 Bunzel, K., Bovet, J., Thr\u00e4n, D., and Eichhorn, M. (2019). Hidden outlaws in the forest? A legal and spatial analysis of onshore wind energy in Germany. Energy Research & Social Science 55, 14-25.", "4 FAO, \"Global Forest Resources Assessment 2015\u2014How are the world's forests changing?\" (Food and Agriculture Organization of the United Nations, 2015)", "5 Frick, W. F., Baerwald, E. F., Pollock, J. F., Barclay, R. M. R., Szymanski, J. A., Weller, T. J., Russell, A. L., Loeb, S. C., Medellin, R. A., and McGuire, L. P. (2017). Fatalities at wind turbines may threaten population viability of a migratory bat. Biological Conservation 209, 172-177.", "6 Friedenberg, N. A., and Frick, W. F. (2021). Assessing fatality minimization for hoary bats amid continued wind energy development. Biological Conservation 262, 109309.", "7 BfN (Bundesamt f\u00fcr Naturschutz). 2018. National Implementation Report to EUROBATS; accessed on 28.12.2021 at https://www.eurobats.org/sites/default/files/documents/pdf/Meeting_of_Parties/Inf.MoP8_.21_NIR_Germany.pdf", "8 Printz, L., Tschapka, M., and Vogeler, A. (2021). The common noctule bat (Nyctalus noctula): population trends from artificial roosts and the effect of biotic and abiotic parameters on the probability of occupation. Journal of Urban Ecology 7 (1), juab033.", "9 Rydell, J., Bach, L., Dubourg-Savage, M.J., Green, M., Rodrigues, L., and Hedenstr\u00f6m, A. (2010). Bat mortality at wind turbines in northwestern Europe. Acta Chiropterologica 12(2): 261-274.", "10 Ellerbrok, J.S., Delius, A., Peter, F., Farwig, N., and Voigt, C.C. (2022). Activity of forest specialist bats decreases towards wind turbines at forest sites. Journal of Applied Ecology 00: 1\u2013 10. https://doi.org/10.1111/1365-2664.14249"]} Many countries are investing heavily in wind power generation,1 triggering a high demand for suitable land. As a result, wind energy facilities are increasingly being installed in forests,2,3 despite the fact that forests are crucial for the protection of terrestrial biodiversity.4 This green-green dilemma is particularly evident for bats, as most species at risk of colliding with wind turbines roost in trees.2 With some of these species reported to be declining,5-8 we see an urgent need to understand how bats respond to wind turbines in forested areas, especially in Europe where all bat species are legally protected. We used miniaturized global positioning system (GPS) units to study how European common noctule bats (Nyctalus noctula), a species that is highly vulnerable at turbines,9 respond to wind turbines in forests. Data from 60 tagged common noctules yielded a total of 8129 positions, of which 2.3% were recorded at distances <100 m from the nearest turbine. Bats were particularly active at turbines <500 m near roosts, which may require such turbines to be shut down more frequently at times of high bat activity to reduce collision risk. Beyond roosts, bats avoided turbines over several kilometers, supporting earlier findings on habitat loss for forest-associated bats.10 This habitat loss should be compensated by developing parts of the forest as refugia for bats. Our study highlights that it can be particularly challenging to generate wind energy in forested areas in an ecologically sustainable manner with minimal impact on forests and the wildlife that inhabit them. This project was funded by the Deutsche Bundesstiftung Umwelt DBU (34411/01-43/0).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7535029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 3visibility views 3 download downloads 9 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7535029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Pensoft Publishers Florian Jeltsch; Manuel Roeleke; Ahmed Abdelfattah; Robert Arlinghaus; Gabriele Berg; Niels Blaum; Luc De Meester; Elke Dittmann; Jana Anja Eccard; Bertrand Fournier; Ursula Gaedke; Cara Gallagher; Lynn Govaert; Mark Hauber; Jonathan M. Jeschke; Stephanie Kramer-Schadt; Anja Linstädter; Ulrike Lucke; Valeria Mazza; Ralf Metzler; Claas Nendel; Viktoriia Radchuk; Matthias C. Rillig; Masahiro Ryo; Katharina Scheiter; Ralph Tiedemann; Britta Tietjen; Christian C. Voigt; Guntram Weithoff; Justyna Wolinska; Damaris Zurell;doi: 10.3897/ibe.1.148200
Biodiversity loss and widespread ecosystem degradation are among the most pressing challenges of our time, requiring urgent action. Yet our understanding of their causes remains limited because prevailing ecological concepts and approaches often overlook the underlying complex interactions of individuals of the same or different species, interacting with each other and with their environment. We propose a paradigm shift in ecological science, moving from simplifying frameworks that use species, population or community averages to an integrative approach that recognizes individual organisms as fundamental agents of ecological change. The urgency of the biodiversity crisis requires such a paradigm shift to advance ecology towards a predictive science by elucidating the causal mechanisms linking individual variation and adaptive behaviour to emergent properties of populations, communities, ecosystems, and ecological interactions with human interventions. Recent advances in computational technologies, sensors, and analytical tools now offer unprecedented opportunities to overcome past challenges and lay the foundation for a truly integrated Individual-Based Global Change Ecology (IBGCE). Unravelling the potential role of individual variability in global change impact analyses will require a systematic combination of empirical, experimental and modelling studies across systems, while taking into account multiple drivers of global change and their interactions. Key priorities include refining theoretical frameworks, developing benchmark models and standardized toolsets, and systematically incorporating individual variation and adaptive behaviour into empirical field work, experiments and predictive models. The emerging synergies between individual-based modelling, big data approaches, and machine learning hold great promise for addressing the inherent complexity of ecosystems. Each step in the development of IBGCE must systematically balance the complexity of the individual perspective with parsimony, computational efficiency, and experimental feasibility. IBGCE aims to unravel and predict the dynamics of biodiversity in the Anthropocene through a comprehensive study of individual organisms, their variability and their interactions. It will provide a critical foundation for considering individual variation and behaviour for future conservation and sustainability management, taking into account individual-to-ecosystem pathways and feedbacks.
https://doi.org/10.3... arrow_drop_down https://doi.org/10.3897/ibe.1....Article . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3897/ibe.1.148200&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.3... arrow_drop_down https://doi.org/10.3897/ibe.1....Article . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3897/ibe.1.148200&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu