- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Embargo end date: 01 Oct 2023 United Kingdom, South Africa, Switzerland, GermanyPublisher:Wiley Funded by:DFG, EC | Group-Dynamics-TCBDFG ,EC| Group-Dynamics-TCBRisely, Alice; Müller‐Klein, Nadine; Schmid, Dominik W; Wilhelm, Kerstin; Clutton‐Brock, Tim H; Manser, Marta B; Sommer, Simone;AbstractClimate change and climate‐driven increases in infectious disease threaten wildlife populations globally. Gut microbial responses are predicted to either buffer or exacerbate the negative impacts of these twin pressures on host populations. However, examples that document how gut microbial communities respond to long‐term shifts in climate and associated disease risk, and the consequences for host survival, are rare. Over the past two decades, wild meerkats inhabiting the Kalahari have experienced rapidly rising temperatures, which is linked to the spread of tuberculosis (TB). We show that over the same period, the faecal microbiota of this population has become enriched in Bacteroidia and impoverished in lactic acid bacteria (LAB), a group of bacteria including Lactococcus and Lactobacillus that are considered gut mutualists. These shifts occurred within individuals yet were compounded over generations, and were better explained by mean maximum temperatures than mean rainfall over the previous year. Enriched Bacteroidia were additionally associated with TB exposure and disease, the dry season and poorer body condition, factors that were all directly linked to reduced future survival. Lastly, abundances of LAB taxa were independently and positively linked to future survival, while enriched taxa did not predict survival. Together, these results point towards extreme temperatures driving an expansion of a disease‐associated pathobiome and loss of beneficial taxa. Our study provides the first evidence from a longitudinally sampled population that climate change is restructuring wildlife gut microbiota, and that these changes may amplify the negative impacts of climate change through the loss of gut mutualists. While the plastic response of host‐associated microbiotas is key for host adaptation under normal environmental fluctuations, extreme temperature increases might lead to a breakdown of coevolved host–mutualist relationships.
Global Change Biolog... arrow_drop_down UP Research Data RepositoryArticle . 2023License: CC BY NCFull-Text: http://hdl.handle.net/2263/96756Data sources: Bielefeld Academic Search Engine (BASE)Zurich Open Repository and ArchiveArticle . 2023License: CC BY NCData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16877&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down UP Research Data RepositoryArticle . 2023License: CC BY NCFull-Text: http://hdl.handle.net/2263/96756Data sources: Bielefeld Academic Search Engine (BASE)Zurich Open Repository and ArchiveArticle . 2023License: CC BY NCData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16877&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Wiley Emma Blackburn; Malcolm Burgess; Benedictus Freeman; Alice Risely; Arin Izang; Sam Ivande; Chris Hewson; Will Cresswell;doi: 10.1111/ibi.12509
handle: 10023/15514
The spatial scale of non‐breeding areas used by long‐distance migrant animals can vary from specific, relatively small non‐breeding areas for each independent breeding population (high connectivity) to a distribution over a large non‐breeding area with mixing of breeding populations (low connectivity). Measuring variation in the degree of connectivity and how it arises is crucial to predict how migratory animals can respond to global habitat and climate change because low connectivity is likely to be an adaptation to environmental uncertainty. Here, we assess whether use of non‐breeding areas in a long‐distance migrant may be stochastic by measuring the degree of connectivity, and whether it is annually variable. Twenty‐nine wintering Whinchats tagged with geolocators over 2 years within 40 km2 in central Nigeria were found to be breeding over 2.55 million km2 (26% of the land area of Europe), without an asymptote being approached in the relationship between area and sample size. Ranges differed in size between years by 1.51 million km2 and only 15% of the total breeding range across both years overlapped (8% overlap between years when only first‐year birds were considered), well above the range size difference and below the proportion of overlap that would be predicted from two equivalent groups breeding at random locations within the observed range. Mean distance between breeding locations (i.e. migratory spread) differed significantly between years (604 ± 18 km in 2013 and 869 ± 33 km in 2014). The results showed very low and variable connectivity that was reasonably robust to the errors and assumptions inherent in the use of geolocators, but with the caveat of having only ranges of 2 years to compare, and the sensitivity of range to the breeding locations of a small number of individuals. However, if representative, the results suggest the scope for between‐year variation (cohort effects) to determine migrant distribution on a large scale. Furthermore, for species with similarly low connectivity, we would predict breeding population trends to reflect average conditions across large non‐breeding areas: thus, as large areas of Africa become subject to habitat loss, migrant populations throughout Europe will decline.
Ibis arrow_drop_down St Andrews Research RepositoryArticle . 2017 . Peer-reviewedData sources: St Andrews Research RepositoryUniversity of St Andrews: Digital Research RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ibi.12509&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Ibis arrow_drop_down St Andrews Research RepositoryArticle . 2017 . Peer-reviewedData sources: St Andrews Research RepositoryUniversity of St Andrews: Digital Research RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ibi.12509&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Embargo end date: 01 Oct 2023 United Kingdom, South Africa, Switzerland, GermanyPublisher:Wiley Funded by:DFG, EC | Group-Dynamics-TCBDFG ,EC| Group-Dynamics-TCBRisely, Alice; Müller‐Klein, Nadine; Schmid, Dominik W; Wilhelm, Kerstin; Clutton‐Brock, Tim H; Manser, Marta B; Sommer, Simone;AbstractClimate change and climate‐driven increases in infectious disease threaten wildlife populations globally. Gut microbial responses are predicted to either buffer or exacerbate the negative impacts of these twin pressures on host populations. However, examples that document how gut microbial communities respond to long‐term shifts in climate and associated disease risk, and the consequences for host survival, are rare. Over the past two decades, wild meerkats inhabiting the Kalahari have experienced rapidly rising temperatures, which is linked to the spread of tuberculosis (TB). We show that over the same period, the faecal microbiota of this population has become enriched in Bacteroidia and impoverished in lactic acid bacteria (LAB), a group of bacteria including Lactococcus and Lactobacillus that are considered gut mutualists. These shifts occurred within individuals yet were compounded over generations, and were better explained by mean maximum temperatures than mean rainfall over the previous year. Enriched Bacteroidia were additionally associated with TB exposure and disease, the dry season and poorer body condition, factors that were all directly linked to reduced future survival. Lastly, abundances of LAB taxa were independently and positively linked to future survival, while enriched taxa did not predict survival. Together, these results point towards extreme temperatures driving an expansion of a disease‐associated pathobiome and loss of beneficial taxa. Our study provides the first evidence from a longitudinally sampled population that climate change is restructuring wildlife gut microbiota, and that these changes may amplify the negative impacts of climate change through the loss of gut mutualists. While the plastic response of host‐associated microbiotas is key for host adaptation under normal environmental fluctuations, extreme temperature increases might lead to a breakdown of coevolved host–mutualist relationships.
Global Change Biolog... arrow_drop_down UP Research Data RepositoryArticle . 2023License: CC BY NCFull-Text: http://hdl.handle.net/2263/96756Data sources: Bielefeld Academic Search Engine (BASE)Zurich Open Repository and ArchiveArticle . 2023License: CC BY NCData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16877&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down UP Research Data RepositoryArticle . 2023License: CC BY NCFull-Text: http://hdl.handle.net/2263/96756Data sources: Bielefeld Academic Search Engine (BASE)Zurich Open Repository and ArchiveArticle . 2023License: CC BY NCData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16877&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Wiley Emma Blackburn; Malcolm Burgess; Benedictus Freeman; Alice Risely; Arin Izang; Sam Ivande; Chris Hewson; Will Cresswell;doi: 10.1111/ibi.12509
handle: 10023/15514
The spatial scale of non‐breeding areas used by long‐distance migrant animals can vary from specific, relatively small non‐breeding areas for each independent breeding population (high connectivity) to a distribution over a large non‐breeding area with mixing of breeding populations (low connectivity). Measuring variation in the degree of connectivity and how it arises is crucial to predict how migratory animals can respond to global habitat and climate change because low connectivity is likely to be an adaptation to environmental uncertainty. Here, we assess whether use of non‐breeding areas in a long‐distance migrant may be stochastic by measuring the degree of connectivity, and whether it is annually variable. Twenty‐nine wintering Whinchats tagged with geolocators over 2 years within 40 km2 in central Nigeria were found to be breeding over 2.55 million km2 (26% of the land area of Europe), without an asymptote being approached in the relationship between area and sample size. Ranges differed in size between years by 1.51 million km2 and only 15% of the total breeding range across both years overlapped (8% overlap between years when only first‐year birds were considered), well above the range size difference and below the proportion of overlap that would be predicted from two equivalent groups breeding at random locations within the observed range. Mean distance between breeding locations (i.e. migratory spread) differed significantly between years (604 ± 18 km in 2013 and 869 ± 33 km in 2014). The results showed very low and variable connectivity that was reasonably robust to the errors and assumptions inherent in the use of geolocators, but with the caveat of having only ranges of 2 years to compare, and the sensitivity of range to the breeding locations of a small number of individuals. However, if representative, the results suggest the scope for between‐year variation (cohort effects) to determine migrant distribution on a large scale. Furthermore, for species with similarly low connectivity, we would predict breeding population trends to reflect average conditions across large non‐breeding areas: thus, as large areas of Africa become subject to habitat loss, migrant populations throughout Europe will decline.
Ibis arrow_drop_down St Andrews Research RepositoryArticle . 2017 . Peer-reviewedData sources: St Andrews Research RepositoryUniversity of St Andrews: Digital Research RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ibi.12509&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Ibis arrow_drop_down St Andrews Research RepositoryArticle . 2017 . Peer-reviewedData sources: St Andrews Research RepositoryUniversity of St Andrews: Digital Research RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ibi.12509&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu