- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Funder
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Funded by:EC | ConCO2rdeEC| ConCO2rdeWeickardt, Isabell; Lombard, Eric; Zhang, A.; Blank, Lars M.; Guillouet, Stephane;pmid: 40120765
Autotrophic cultivation offers a path to carbon-neutral bioproduction, which is increasingly valuable in the context of climate change mitigation. In this study, the production of isopropanol by Cupriavidus necator is used as an example for CO2 valorisation, and a simple shake bottle system is introduced to facilitate the development of aerobic autotrophic cultivation processes and strain screening. Applying 1.5 bar overpressure in the bottle's headspace enhances gas transfer while pressure decrease was shown to be correlated to biomass and product formation, allowing to follow metabolic activity without sampling. After optimizing cultivation parameters and nickel feeding strategy, the system was applied to compare three different isopropanol-producing strains. The highest autotrophically obtained isopropanol concentration was 2.2 ± 0.5 g L-1 with a specific yield of 0.9 ± 0.2 g gCDW-1 and a minimal by-product concentration of 0.05 ± 0.01 g L-1 acetone. Heterotrophic cultivations were carried out for comparison, obtaining up to 3.4 ± 0.2 g L-1 final isopropanol concentration with a specific yield of 1.4 ± 0.1 g gCDW-1. Although the use of CO2 instead of fructose resulted in a slower process, the overall isopropanol production is promising. This study provides valuable insights into strain behaviour while demonstrating the utility of the presented shake bottle system for advancing autotrophic process development.
Journal of Biotechno... arrow_drop_down Journal of BiotechnologyArticle . 2025 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jbiotec.2025.03.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Biotechno... arrow_drop_down Journal of BiotechnologyArticle . 2025 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jbiotec.2025.03.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Funded by:EC | ConCO2rdeEC| ConCO2rdeWeickardt, Isabell; Lombard, Eric; Zhang, A.; Blank, Lars M.; Guillouet, Stephane;pmid: 40120765
Autotrophic cultivation offers a path to carbon-neutral bioproduction, which is increasingly valuable in the context of climate change mitigation. In this study, the production of isopropanol by Cupriavidus necator is used as an example for CO2 valorisation, and a simple shake bottle system is introduced to facilitate the development of aerobic autotrophic cultivation processes and strain screening. Applying 1.5 bar overpressure in the bottle's headspace enhances gas transfer while pressure decrease was shown to be correlated to biomass and product formation, allowing to follow metabolic activity without sampling. After optimizing cultivation parameters and nickel feeding strategy, the system was applied to compare three different isopropanol-producing strains. The highest autotrophically obtained isopropanol concentration was 2.2 ± 0.5 g L-1 with a specific yield of 0.9 ± 0.2 g gCDW-1 and a minimal by-product concentration of 0.05 ± 0.01 g L-1 acetone. Heterotrophic cultivations were carried out for comparison, obtaining up to 3.4 ± 0.2 g L-1 final isopropanol concentration with a specific yield of 1.4 ± 0.1 g gCDW-1. Although the use of CO2 instead of fructose resulted in a slower process, the overall isopropanol production is promising. This study provides valuable insights into strain behaviour while demonstrating the utility of the presented shake bottle system for advancing autotrophic process development.
Journal of Biotechno... arrow_drop_down Journal of BiotechnologyArticle . 2025 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jbiotec.2025.03.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Biotechno... arrow_drop_down Journal of BiotechnologyArticle . 2025 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jbiotec.2025.03.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu