- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | Engineering new capacitie..., EC | SYNTHPHOTOUKRI| Engineering new capacities for solar energy utilisation in bacteria ,EC| SYNTHPHOTORadek Litvín; Radek Litvín; Václav Šlouf; Elizabeth C. Martin; Tomáš Polívka; Tomáš Polívka; Gürkan Keşan; David J. K. Swainsbury; C. Neil Hunter;pmid: 28528494
RC-LH1-PufX complexes from a genetically modified strain of Rhodobacter sphaeroides that accumulates carotenoids with very long conjugation were studied by ultrafast transient absorption spectroscopy. The complexes predominantly bind the carotenoid diketospirilloxanthin, constituting about 75% of the total carotenoids, which has 13 conjugated C=C bonds, and the conjugation is further extended to two terminal keto groups. Excitation of diketospirilloxanthin in the RC-LH1-PufX complex demonstrates fully functional energy transfer from diketospirilloxanthin to BChl a in the LH1 antenna. As for other purple bacterial LH complexes having carotenoids with long conjugation, the main energy transfer route is via the S2-Qx pathway. However, in contrast to LH2 complexes binding diketospirilloxanthin, in RC-LH1-PufX we observe an additional, minor energy transfer pathway associated with the S1 state of diketospirilloxanthin. By comparing the spectral properties of the S1 state of diketospirilloxanthin in solution, in LH2, and in RC-LH1-PufX, we propose that the carotenoid-binding site in RC-LH1-PufX activates the ICT state of diketospirilloxanthin, resulting in the opening of a minor S1/ICT-mediated energy transfer channel.
Photosynthesis Resea... arrow_drop_down http://dx.doi.org/10.1007/s111...Article . Peer-reviewedData sources: European Union Open Data PortalUniversity of East Anglia: UEA Digital RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11120-017-0397-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Photosynthesis Resea... arrow_drop_down http://dx.doi.org/10.1007/s111...Article . Peer-reviewedData sources: European Union Open Data PortalUniversity of East Anglia: UEA Digital RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11120-017-0397-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 United KingdomPublisher:Elsevier BV Funded by:UKRI | Engineering new capacitie..., UKRI | Mass spectrometry underpi..., EC | EngiNear-IR +2 projectsUKRI| Engineering new capacities for solar energy utilisation in bacteria ,UKRI| Mass spectrometry underpinning synthetic biology, industrial biotechnology and world class bioscience ,EC| EngiNear-IR ,EC| SYNTHPHOTO ,UKRI| White Rose Doctoral Training Partnership in Mechanistic Biology and its Strategic ApplicationJackson, P.J.; Hitchcock, A.; Swainsbury, D.J.K.; Qian, P.; Martin, E.C.; Farmer, D.A.; Dickman, M.J.; Canniffe, D.P.; Neil Hunter, C.;The X-ray crystal structure of the Rhodopseudomonas (Rps.) palustris reaction center-light harvesting 1 (RC-LH1) core complex revealed the presence of a sixth protein component, variably referred to in the literature as helix W, subunit W or protein W. The position of this protein prevents closure of the LH1 ring, possibly to allow diffusion of ubiquinone/ubiquinol between the RC and the cytochrome bc1 complex in analogous fashion to the well-studied PufX protein from Rhodobacter sphaeroides. The identity and function of helix W have remained unknown for over 13years; here we use a combination of biochemistry, mass spectrometry, molecular genetics and electron microscopy to identify this protein as RPA4402 in Rps. palustris CGA009. Protein W shares key conserved sequence features with PufX homologs, and although a deletion mutant was able to grow under photosynthetic conditions with no discernible phenotype, we show that a tagged version of protein W pulls down the RC-LH1 complex. Protein W is not encoded in the photosynthesis gene cluster and our data indicate that only approximately 10% of wild-type Rps. palustris core complexes contain this non-essential subunit; functional and evolutionary consequences of this observation are discussed. The ability to purify uniform RC-LH1 and RC-LH1-protein W preparations will also be beneficial for future structural studies of these bacterial core complexes.
CORE arrow_drop_down White Rose Research OnlineArticle . 2018License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)Biochimica et Biophysica Acta (BBA) - BioenergeticsArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefBiochimica et Biophysica Acta (BBA) - BioenergeticsArticleLicense: CC BY NC NDData sources: UnpayWallBiochimica et Biophysica Acta (BBA) - BioenergeticsArticle . 2018Data sources: Europe PubMed CentralBiochimica et Biophysica Acta (BBA) - BioenergeticsArticle . 2018 . Peer-reviewedData sources: European Union Open Data PortalUniversity of East Anglia: UEA Digital RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.bbabio.2017.11.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down White Rose Research OnlineArticle . 2018License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)Biochimica et Biophysica Acta (BBA) - BioenergeticsArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefBiochimica et Biophysica Acta (BBA) - BioenergeticsArticleLicense: CC BY NC NDData sources: UnpayWallBiochimica et Biophysica Acta (BBA) - BioenergeticsArticle . 2018Data sources: Europe PubMed CentralBiochimica et Biophysica Acta (BBA) - BioenergeticsArticle . 2018 . Peer-reviewedData sources: European Union Open Data PortalUniversity of East Anglia: UEA Digital RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.bbabio.2017.11.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | Engineering new capacitie...UKRI| Engineering new capacities for solar energy utilisation in bacteriaAuthors: Dariusz M. Niedzwiedzki; David J. K. Swainsbury; C. Neil Hunter;Six variants of the LH2 antenna complex from Rba. sphaeroides, comprising the native B800-B850, B800-free LH2 (B850) and four LH2s with various (bacterio)chlorophylls reconstituted into the B800 site, have been investigated with static and time-resolved optical spectroscopies at room temperature and at 77 K. The study particularly focused on how reconstitution of a non-native (bacterio)chlorophylls affects excitation energy transfer between the naturally bound carotenoid spheroidene and artificially substituted pigments in the B800 site. Results demonstrate there is no apparent trend in the overall energy transfer rate from spheroidene to B850 bacteriochlorophyll a; however, a trend in energy transfer rate from the spheroidene S1 state to Qy of the B800 (bacterio)chlorophylls is noticeable. These outcomes were applied to test the validity of previously proposed energy values of the spheroidene S1 state, supporting a value in the vicinity of 13,400 cm-1 (746 nm).
CORE arrow_drop_down COREArticle . 2020License: CC BYFull-Text: https://eprints.whiterose.ac.uk/152296/1/Niedzwiedzki2019_Article_Carotenoid-to-BacterioChloroph.pdfData sources: COREWhite Rose Research OnlineArticleLicense: CC BYFull-Text: http://eprints.whiterose.ac.uk/152296/1/Niedzwiedzki2019_Article_Carotenoid-to-BacterioChloroph.pdfData sources: CORE (RIOXX-UK Aggregator)University of East Anglia digital repositoryArticle . 2020 . Peer-reviewedLicense: CC BYFull-Text: https://ueaeprints.uea.ac.uk/id/eprint/87390/1/Niedzwiedzki_etal_2020_PhotosynthesisResearch.pdfData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2020License: CC BYFull-Text: https://ueaeprints.uea.ac.uk/id/eprint/87390/1/Niedzwiedzki_etal_2020_PhotosynthesisResearch.pdfData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11120-019-00661-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down COREArticle . 2020License: CC BYFull-Text: https://eprints.whiterose.ac.uk/152296/1/Niedzwiedzki2019_Article_Carotenoid-to-BacterioChloroph.pdfData sources: COREWhite Rose Research OnlineArticleLicense: CC BYFull-Text: http://eprints.whiterose.ac.uk/152296/1/Niedzwiedzki2019_Article_Carotenoid-to-BacterioChloroph.pdfData sources: CORE (RIOXX-UK Aggregator)University of East Anglia digital repositoryArticle . 2020 . Peer-reviewedLicense: CC BYFull-Text: https://ueaeprints.uea.ac.uk/id/eprint/87390/1/Niedzwiedzki_etal_2020_PhotosynthesisResearch.pdfData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2020License: CC BYFull-Text: https://ueaeprints.uea.ac.uk/id/eprint/87390/1/Niedzwiedzki_etal_2020_PhotosynthesisResearch.pdfData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11120-019-00661-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Proceedings of the National Academy of Sciences Funded by:UKRI | Singlet Fission in Carote..., UKRI | Engineering new capacitie...UKRI| Singlet Fission in Carotenoid Aggregates (SIFICA) ,UKRI| Engineering new capacities for solar energy utilisation in bacteriaAuthors: Dariusz M. Niedzwiedzki; David J. K. Swainsbury; Daniel P. Canniffe; C. Neil Hunter; +1 AuthorsDariusz M. Niedzwiedzki; David J. K. Swainsbury; Daniel P. Canniffe; C. Neil Hunter; Andrew Hitchcock;Significance Photosynthesis uses carotenoids as light-harvesting pigments and for photoprotective energy dissipation. The carbon–carbon double bond conjugation length of carotenoids ( N ) affects the carotenoid-to-(bacterio)chlorophyll energy transfer efficiency, but the photoprotective capability was considered to be independent of N . Using light-harvesting complex 2 from the model photosynthetic bacterium Rhodobacter sphaeroides containing ζ-carotene ( N = 7) or neurosporene ( N = 9), we demonstrate that decreasing the conjugation length increases the carotenoid-to-bacteriochlorophyll energy transfer efficiency, in the case of ζ-carotene to ∼100%. However, unity quantum efficiency comes at the cost of photoprotection, suggesting that naturally evolved photosynthesis tolerates some energetic loss to allow essential energy dissipation, explaining why longer-conjugation length carotenoids are utilized in native pigment–protein complexes.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1920923117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1920923117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2014 United Kingdom, Netherlands, NetherlandsPublisher:Elsevier BV Authors: Swainsbury, David J K; Friebe, Vincent M; Frese, Raoul N; Jones, Michael R;pmid: 24637165
pmc: PMC4009402
The Rhodobacter sphaeroides reaction centre is a relatively robust and tractable membrane protein that has potential for exploitation in technological applications, including biohybrid devices for photovoltaics and biosensing. This report assessed the usefulness of the photocurrent generated by this reaction centre adhered to a small working electrode as the basis for a biosensor for classes of herbicides used extensively for the control of weeds in major agricultural crops. Photocurrent generation was inhibited in a concentration-dependent manner by the triazides atrazine and terbutryn, but not by nitrile or phenylurea herbicides. Measurements of the effects of these herbicides on the kinetics of charge recombination in photo-oxidised reaction centres in solution showed the same selectivity of response. Titrations of reaction centre photocurrents yielded half maximal inhibitory concentrations of 208nM and 2.1µM for terbutryn and atrazine, respectively, with limits of detection estimated at around 8nM and 50nM, respectively. Photocurrent attenuation provided a direct measure of herbicide concentration, with no need for model-dependent kinetic analysis of the signal used for detection or the use of prohibitively complex instrumentation, and prospects for the use of protein engineering to develop the sensitivity and selectivity of herbicide binding by the Rba. sphaeroides reaction centre are discussed.
Biosensors and Bioel... arrow_drop_down Biosensors and BioelectronicsArticle . 2014Data sources: DANS (Data Archiving and Networked Services)Biosensors and BioelectronicsArticle . 2014License: CC BYData sources: BASE (Open Access Aggregator)University of Bristol: Bristol ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)Biosensors and BioelectronicsArticle . 2014University of East Anglia: UEA Digital RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.bios.2014.02.050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 78 citations 78 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Biosensors and Bioel... arrow_drop_down Biosensors and BioelectronicsArticle . 2014Data sources: DANS (Data Archiving and Networked Services)Biosensors and BioelectronicsArticle . 2014License: CC BYData sources: BASE (Open Access Aggregator)University of Bristol: Bristol ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)Biosensors and BioelectronicsArticle . 2014University of East Anglia: UEA Digital RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.bios.2014.02.050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Elsevier BV Funded by:UKRI | Engineering new capacitie..., EC | SYNTHPHOTO, UKRI | Quantification of the for...UKRI| Engineering new capacities for solar energy utilisation in bacteria ,EC| SYNTHPHOTO ,UKRI| Quantification of the forces that mediate electron transfers between proteinsMayneord, G.E.; Vasilev, C.; Malone, L.A.; Swainsbury, D.J.K.; Hunter, C.N.; Johnson, M.P.;pmid: 31247170
Small diffusible redox proteins play a ubiquitous role in bioenergetic systems, facilitating electron transfer (ET) between membrane bound complexes. Sustaining high ET turnover rates requires that the association between extrinsic and membrane-bound partners is highly specific, yet also sufficiently weak to promote rapid post-ET separation. In oxygenic photosynthesis the small soluble electron carrier protein plastocyanin (Pc) shuttles electrons between the membrane integral cytochrome b6f (cytb6f) and photosystem I (PSI) complexes. Here we use peak-force quantitative nanomechanical mapping (PF-QNM) atomic force microscopy (AFM) to quantify the dynamic forces involved in transient interactions between cognate ET partners. An AFM probe functionalised with Pc molecules is brought into contact with cytb6f complexes, immobilised on a planar silicon surface. PF-QNM interrogates the unbinding force of the cytb6f-Pc interactions at the single molecule level with picoNewton force resolution and on a time scale comparable to the ET time in vivo (ca. 120 μs). Using this approach, we show that although the unbinding force remains unchanged the interaction frequency increases over five-fold when Pc and cytb6f are in opposite redox states, so complementary charges on the cytb6f and Pc cofactors likely contribute to the electrostatic forces that initiate formation of the ET complex. These results suggest that formation of the docking interface is under redox state control, which lowers the probability of unproductive encounters between Pc and cytb6f molecules in the same redox state, ensuring the efficiency and directionality of this central reaction in the 'Z-scheme' of photosynthetic ET.
Biochimica et Biophy... arrow_drop_down Biochimica et Biophysica Acta (BBA) - BioenergeticsArticleLicense: Elsevier Non-CommercialData sources: UnpayWallBiochimica et Biophysica Acta (BBA) - BioenergeticsArticle . 2019 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefhttp://dx.doi.org/10.1016/j.bb...Article . Peer-reviewedData sources: European Union Open Data PortalUniversity of East Anglia: UEA Digital RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.bbabio.2019.06.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Biochimica et Biophy... arrow_drop_down Biochimica et Biophysica Acta (BBA) - BioenergeticsArticleLicense: Elsevier Non-CommercialData sources: UnpayWallBiochimica et Biophysica Acta (BBA) - BioenergeticsArticle . 2019 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefhttp://dx.doi.org/10.1016/j.bb...Article . Peer-reviewedData sources: European Union Open Data PortalUniversity of East Anglia: UEA Digital RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.bbabio.2019.06.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United KingdomPublisher:Proceedings of the National Academy of Sciences Funded by:UKRI | Engineering new capacitie..., EC | PhotoRedesign, UKRI | Elucidating the transient...UKRI| Engineering new capacities for solar energy utilisation in bacteria ,EC| PhotoRedesign ,UKRI| Elucidating the transient nature of electron transfer complexes at the single-molecule levelAuthors: David J. K. Swainsbury; Frederick R. Hawkings; Elizabeth C. Martin; Sabina Musiał; +7 AuthorsDavid J. K. Swainsbury; Frederick R. Hawkings; Elizabeth C. Martin; Sabina Musiał; Jack H. Salisbury; Philip J. Jackson; David A. Farmer; Matthew P. Johnson; C. Alistair Siebert; Andrew Hitchcock; C. Neil Hunter;Cytochrome bc 1 complexes are ubiquinol:cytochrome c oxidoreductases, and as such, they are centrally important components of respiratory and photosynthetic electron transfer chains in many species of bacteria and in mitochondria. The minimal complex has three catalytic components, which are cytochrome b , cytochrome c 1 , and the Rieske iron–sulfur subunit, but the function of mitochondrial cytochrome bc 1 complexes is modified by up to eight supernumerary subunits. The cytochrome bc 1 complex from the purple phototrophic bacterium Rhodobacter sphaeroides has a single supernumerary subunit called subunit IV, which is absent from current structures of the complex. In this work we use the styrene–maleic acid copolymer to purify the R. sphaeroides cytochrome bc 1 complex in native lipid nanodiscs, which retains the labile subunit IV, annular lipids, and natively bound quinones. The catalytic activity of the four-subunit cytochrome bc 1 complex is threefold higher than that of the complex lacking subunit IV. To understand the role of subunit IV, we determined the structure of the four-subunit complex at 2.9 Å using single particle cryogenic electron microscopy. The structure shows the position of the transmembrane domain of subunit IV, which lies across the transmembrane helices of the Rieske and cytochrome c 1 subunits. We observe a quinone at the Q o quinone-binding site and show that occupancy of this site is linked to conformational changes in the Rieske head domain during catalysis. Twelve lipids were structurally resolved, making contacts with the Rieske and cytochrome b subunits, with some spanning both of the two monomers that make up the dimeric complex.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2023 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefProceedings of the National Academy of SciencesArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2217922120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2023 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefProceedings of the National Academy of SciencesArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2217922120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 United KingdomPublisher:Portland Press Ltd. Funded by:EC | PhotoRedesign, UKRI | Engineering new capacitie..., WT | Development of likelihood...EC| PhotoRedesign ,UKRI| Engineering new capacities for solar energy utilisation in bacteria ,WT| Development of likelihood-based methods in structural biologyKasim Sader; C. Neil Hunter; David J. K. Swainsbury; Pu Qian; Pu Qian; Jack H. Salisbury; Andrew Hitchcock; Pablo Castro-Hartmann; Philip J. Jackson; Tristan I. Croll;The dimeric reaction centre light-harvesting 1 (RC-LH1) core complex of Rhodobacter sphaeroides converts absorbed light energy to a charge separation, and then it reduces a quinone electron and proton acceptor to a quinol. The angle between the two monomers imposes a bent configuration on the dimer complex, which exerts a major influence on the curvature of the membrane vesicles, known as chromatophores, where the light-driven photosynthetic reactions take place. To investigate the dimerisation interface between two RC-LH1 monomers, we determined the cryogenic electron microscopy structure of the dimeric complex at 2.9 Å resolution. The structure shows that each monomer consists of a central RC partly enclosed by a 14-subunit LH1 ring held in an open state by PufX and protein-Y polypeptides, thus enabling quinones to enter and leave the complex. Two monomers are brought together through N-terminal interactions between PufX polypeptides on the cytoplasmic side of the complex, augmented by two novel transmembrane polypeptides, designated protein-Z, that bind to the outer faces of the two central LH1 β polypeptides. The precise fit at the dimer interface, enabled by PufX and protein-Z, by C-terminal interactions between opposing LH1 αβ subunits, and by a series of interactions with a bound sulfoquinovosyl diacylglycerol lipid, bring together each monomer creating an S-shaped array of 28 bacteriochlorophylls. The seamless join between the two sets of LH1 bacteriochlorophylls provides a path for excitation energy absorbed by one half of the complex to migrate across the dimer interface to the other half.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2021 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1042/bcj20210696&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 31 citations 31 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2021 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1042/bcj20210696&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United Kingdom, Netherlands, NetherlandsPublisher:Elsevier BV Funded by:UKRI | Engineering purple bacter...UKRI| Engineering purple bacterial photovoltaic complexes for device applicationsAuthors: Friebe, Vincent M.; Swainsbury, David J K; Fyfe, Paul K.; van der Heijden, Wessel; +2 AuthorsFriebe, Vincent M.; Swainsbury, David J K; Fyfe, Paul K.; van der Heijden, Wessel; Jones, Michael R.; Frese, Raoul N.;pmid: 27687473
Upon photoexcitation, the reaction center (RC) pigment-proteins that facilitate natural photosynthesis achieve a metastable separation of electrical charge among the embedded cofactors. Because of the high quantum efficiency of this process, there is a growing interest in their incorporation into biohybrid materials for solar energy conversion, bioelectronics and biosensing. Multiple bioelectrochemical studies have shown that reaction centers from various photosynthetic organisms can be interfaced with diverse electrode materials for the generation of photocurrents, but many mechanistic aspects of native protein functionality in a non-native environment is unknown. In vivo, RC's catalyse ubiquinone-10 reduction, protonation and exchange with other lipid phase ubiquinone-10s via protein-controlled spatial orientation and protein rearrangement. In contrast, the mechanism of ubiquinone-0 reduction, used to facilitate fast RC turnover in an aqueous photoelectrochemical cell (PEC), may not proceed via the same pathway as the native cofactor. In this report we show truncation of the native isoprene tail results in larger RC turnover rates in a PEC despite the removal of the tail's purported role of ubiquinone headgroup orientation and binding. Through the use of reaction centers with single or double mutations, we also show the extent to which two-electron/two-proton ubiquinone chemistry that operates in vivo also underpins the ubiquinone-0 reduction by surface-adsorbed RCs in a PEC. This reveals that only the ubiquinone headgroup is critical to the fast turnover of the RC in a PEC and provides insight into design principles for the development of new biophotovoltaic cells and biosensors.
Biochimica et Biophy... arrow_drop_down Biochimica et Biophysica Acta (BBA) - BioenergeticsArticleLicense: CC BY NC NDData sources: UnpayWallBiochimica et Biophysica Acta (BBA) - BioenergeticsArticle . 2016Data sources: DANS (Data Archiving and Networked Services)University of Bristol: Bristol ResearchArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Biochimica et Biophysica Acta (BBA) - BioenergeticsArticle . 2016 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: CrossrefBiochimica et Biophysica Acta (BBA) - BioenergeticsArticle . 2016University of East Anglia: UEA Digital RepositoryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.bbabio.2016.09.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Biochimica et Biophy... arrow_drop_down Biochimica et Biophysica Acta (BBA) - BioenergeticsArticleLicense: CC BY NC NDData sources: UnpayWallBiochimica et Biophysica Acta (BBA) - BioenergeticsArticle . 2016Data sources: DANS (Data Archiving and Networked Services)University of Bristol: Bristol ResearchArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Biochimica et Biophysica Acta (BBA) - BioenergeticsArticle . 2016 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: CrossrefBiochimica et Biophysica Acta (BBA) - BioenergeticsArticle . 2016University of East Anglia: UEA Digital RepositoryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.bbabio.2016.09.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Article 2022 United KingdomPublisher:Elsevier BV Funded by:EC | PhotoRedesign, UKRI | Molecular Photonic Breadb...EC| PhotoRedesign ,UKRI| Molecular Photonic BreadboardsSutherland, George A.; Qian, Pu; Hunter, C. Neil; Swainsbury, David J. K.; Hitchcock, Andrew;pmid: 36008006
Carotenoids are important photosynthetic pigments that play key roles in light harvesting and energy transfer, photoprotection, and in the folding, assembly, and stabilization of light-harvesting pigment-protein complexes. The genetically tractable purple phototrophic bacteria have been useful for investigating the biosynthesis and function of photosynthetic pigments and cofactors, including carotenoids. Here, we give an overview of the roles of carotenoids in photosynthesis and of their biosynthesis, focusing on the extensively studied purple bacterium Rhodobacter sphaeroides as a model organism. We provide detailed procedures for manipulating carotenoid biosynthesis, and for the preparation and analysis of the light-harvesting and photosynthetic reaction center complexes that bind them. Using appropriate examples from the literature, we discuss how such approaches have enhanced our understanding of the biosynthesis of carotenoids and the photosynthesis-related functions of these fascinating molecules.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1016/bs.mie...Part of book or chapter of book . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/bs.m...Part of book or chapter of book . 2023Data sources: European Union Open Data PortalUniversity of East Anglia: UEA Digital RepositoryPart of book or chapter of book . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/bs.mie.2022.04.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1016/bs.mie...Part of book or chapter of book . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/bs.m...Part of book or chapter of book . 2023Data sources: European Union Open Data PortalUniversity of East Anglia: UEA Digital RepositoryPart of book or chapter of book . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/bs.mie.2022.04.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | Engineering new capacitie..., EC | SYNTHPHOTOUKRI| Engineering new capacities for solar energy utilisation in bacteria ,EC| SYNTHPHOTORadek Litvín; Radek Litvín; Václav Šlouf; Elizabeth C. Martin; Tomáš Polívka; Tomáš Polívka; Gürkan Keşan; David J. K. Swainsbury; C. Neil Hunter;pmid: 28528494
RC-LH1-PufX complexes from a genetically modified strain of Rhodobacter sphaeroides that accumulates carotenoids with very long conjugation were studied by ultrafast transient absorption spectroscopy. The complexes predominantly bind the carotenoid diketospirilloxanthin, constituting about 75% of the total carotenoids, which has 13 conjugated C=C bonds, and the conjugation is further extended to two terminal keto groups. Excitation of diketospirilloxanthin in the RC-LH1-PufX complex demonstrates fully functional energy transfer from diketospirilloxanthin to BChl a in the LH1 antenna. As for other purple bacterial LH complexes having carotenoids with long conjugation, the main energy transfer route is via the S2-Qx pathway. However, in contrast to LH2 complexes binding diketospirilloxanthin, in RC-LH1-PufX we observe an additional, minor energy transfer pathway associated with the S1 state of diketospirilloxanthin. By comparing the spectral properties of the S1 state of diketospirilloxanthin in solution, in LH2, and in RC-LH1-PufX, we propose that the carotenoid-binding site in RC-LH1-PufX activates the ICT state of diketospirilloxanthin, resulting in the opening of a minor S1/ICT-mediated energy transfer channel.
Photosynthesis Resea... arrow_drop_down http://dx.doi.org/10.1007/s111...Article . Peer-reviewedData sources: European Union Open Data PortalUniversity of East Anglia: UEA Digital RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11120-017-0397-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Photosynthesis Resea... arrow_drop_down http://dx.doi.org/10.1007/s111...Article . Peer-reviewedData sources: European Union Open Data PortalUniversity of East Anglia: UEA Digital RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11120-017-0397-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 United KingdomPublisher:Elsevier BV Funded by:UKRI | Engineering new capacitie..., UKRI | Mass spectrometry underpi..., EC | EngiNear-IR +2 projectsUKRI| Engineering new capacities for solar energy utilisation in bacteria ,UKRI| Mass spectrometry underpinning synthetic biology, industrial biotechnology and world class bioscience ,EC| EngiNear-IR ,EC| SYNTHPHOTO ,UKRI| White Rose Doctoral Training Partnership in Mechanistic Biology and its Strategic ApplicationJackson, P.J.; Hitchcock, A.; Swainsbury, D.J.K.; Qian, P.; Martin, E.C.; Farmer, D.A.; Dickman, M.J.; Canniffe, D.P.; Neil Hunter, C.;The X-ray crystal structure of the Rhodopseudomonas (Rps.) palustris reaction center-light harvesting 1 (RC-LH1) core complex revealed the presence of a sixth protein component, variably referred to in the literature as helix W, subunit W or protein W. The position of this protein prevents closure of the LH1 ring, possibly to allow diffusion of ubiquinone/ubiquinol between the RC and the cytochrome bc1 complex in analogous fashion to the well-studied PufX protein from Rhodobacter sphaeroides. The identity and function of helix W have remained unknown for over 13years; here we use a combination of biochemistry, mass spectrometry, molecular genetics and electron microscopy to identify this protein as RPA4402 in Rps. palustris CGA009. Protein W shares key conserved sequence features with PufX homologs, and although a deletion mutant was able to grow under photosynthetic conditions with no discernible phenotype, we show that a tagged version of protein W pulls down the RC-LH1 complex. Protein W is not encoded in the photosynthesis gene cluster and our data indicate that only approximately 10% of wild-type Rps. palustris core complexes contain this non-essential subunit; functional and evolutionary consequences of this observation are discussed. The ability to purify uniform RC-LH1 and RC-LH1-protein W preparations will also be beneficial for future structural studies of these bacterial core complexes.
CORE arrow_drop_down White Rose Research OnlineArticle . 2018License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)Biochimica et Biophysica Acta (BBA) - BioenergeticsArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefBiochimica et Biophysica Acta (BBA) - BioenergeticsArticleLicense: CC BY NC NDData sources: UnpayWallBiochimica et Biophysica Acta (BBA) - BioenergeticsArticle . 2018Data sources: Europe PubMed CentralBiochimica et Biophysica Acta (BBA) - BioenergeticsArticle . 2018 . Peer-reviewedData sources: European Union Open Data PortalUniversity of East Anglia: UEA Digital RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.bbabio.2017.11.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down White Rose Research OnlineArticle . 2018License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)Biochimica et Biophysica Acta (BBA) - BioenergeticsArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefBiochimica et Biophysica Acta (BBA) - BioenergeticsArticleLicense: CC BY NC NDData sources: UnpayWallBiochimica et Biophysica Acta (BBA) - BioenergeticsArticle . 2018Data sources: Europe PubMed CentralBiochimica et Biophysica Acta (BBA) - BioenergeticsArticle . 2018 . Peer-reviewedData sources: European Union Open Data PortalUniversity of East Anglia: UEA Digital RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.bbabio.2017.11.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | Engineering new capacitie...UKRI| Engineering new capacities for solar energy utilisation in bacteriaAuthors: Dariusz M. Niedzwiedzki; David J. K. Swainsbury; C. Neil Hunter;Six variants of the LH2 antenna complex from Rba. sphaeroides, comprising the native B800-B850, B800-free LH2 (B850) and four LH2s with various (bacterio)chlorophylls reconstituted into the B800 site, have been investigated with static and time-resolved optical spectroscopies at room temperature and at 77 K. The study particularly focused on how reconstitution of a non-native (bacterio)chlorophylls affects excitation energy transfer between the naturally bound carotenoid spheroidene and artificially substituted pigments in the B800 site. Results demonstrate there is no apparent trend in the overall energy transfer rate from spheroidene to B850 bacteriochlorophyll a; however, a trend in energy transfer rate from the spheroidene S1 state to Qy of the B800 (bacterio)chlorophylls is noticeable. These outcomes were applied to test the validity of previously proposed energy values of the spheroidene S1 state, supporting a value in the vicinity of 13,400 cm-1 (746 nm).
CORE arrow_drop_down COREArticle . 2020License: CC BYFull-Text: https://eprints.whiterose.ac.uk/152296/1/Niedzwiedzki2019_Article_Carotenoid-to-BacterioChloroph.pdfData sources: COREWhite Rose Research OnlineArticleLicense: CC BYFull-Text: http://eprints.whiterose.ac.uk/152296/1/Niedzwiedzki2019_Article_Carotenoid-to-BacterioChloroph.pdfData sources: CORE (RIOXX-UK Aggregator)University of East Anglia digital repositoryArticle . 2020 . Peer-reviewedLicense: CC BYFull-Text: https://ueaeprints.uea.ac.uk/id/eprint/87390/1/Niedzwiedzki_etal_2020_PhotosynthesisResearch.pdfData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2020License: CC BYFull-Text: https://ueaeprints.uea.ac.uk/id/eprint/87390/1/Niedzwiedzki_etal_2020_PhotosynthesisResearch.pdfData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11120-019-00661-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down COREArticle . 2020License: CC BYFull-Text: https://eprints.whiterose.ac.uk/152296/1/Niedzwiedzki2019_Article_Carotenoid-to-BacterioChloroph.pdfData sources: COREWhite Rose Research OnlineArticleLicense: CC BYFull-Text: http://eprints.whiterose.ac.uk/152296/1/Niedzwiedzki2019_Article_Carotenoid-to-BacterioChloroph.pdfData sources: CORE (RIOXX-UK Aggregator)University of East Anglia digital repositoryArticle . 2020 . Peer-reviewedLicense: CC BYFull-Text: https://ueaeprints.uea.ac.uk/id/eprint/87390/1/Niedzwiedzki_etal_2020_PhotosynthesisResearch.pdfData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2020License: CC BYFull-Text: https://ueaeprints.uea.ac.uk/id/eprint/87390/1/Niedzwiedzki_etal_2020_PhotosynthesisResearch.pdfData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11120-019-00661-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Proceedings of the National Academy of Sciences Funded by:UKRI | Singlet Fission in Carote..., UKRI | Engineering new capacitie...UKRI| Singlet Fission in Carotenoid Aggregates (SIFICA) ,UKRI| Engineering new capacities for solar energy utilisation in bacteriaAuthors: Dariusz M. Niedzwiedzki; David J. K. Swainsbury; Daniel P. Canniffe; C. Neil Hunter; +1 AuthorsDariusz M. Niedzwiedzki; David J. K. Swainsbury; Daniel P. Canniffe; C. Neil Hunter; Andrew Hitchcock;Significance Photosynthesis uses carotenoids as light-harvesting pigments and for photoprotective energy dissipation. The carbon–carbon double bond conjugation length of carotenoids ( N ) affects the carotenoid-to-(bacterio)chlorophyll energy transfer efficiency, but the photoprotective capability was considered to be independent of N . Using light-harvesting complex 2 from the model photosynthetic bacterium Rhodobacter sphaeroides containing ζ-carotene ( N = 7) or neurosporene ( N = 9), we demonstrate that decreasing the conjugation length increases the carotenoid-to-bacteriochlorophyll energy transfer efficiency, in the case of ζ-carotene to ∼100%. However, unity quantum efficiency comes at the cost of photoprotection, suggesting that naturally evolved photosynthesis tolerates some energetic loss to allow essential energy dissipation, explaining why longer-conjugation length carotenoids are utilized in native pigment–protein complexes.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1920923117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1920923117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2014 United Kingdom, Netherlands, NetherlandsPublisher:Elsevier BV Authors: Swainsbury, David J K; Friebe, Vincent M; Frese, Raoul N; Jones, Michael R;pmid: 24637165
pmc: PMC4009402
The Rhodobacter sphaeroides reaction centre is a relatively robust and tractable membrane protein that has potential for exploitation in technological applications, including biohybrid devices for photovoltaics and biosensing. This report assessed the usefulness of the photocurrent generated by this reaction centre adhered to a small working electrode as the basis for a biosensor for classes of herbicides used extensively for the control of weeds in major agricultural crops. Photocurrent generation was inhibited in a concentration-dependent manner by the triazides atrazine and terbutryn, but not by nitrile or phenylurea herbicides. Measurements of the effects of these herbicides on the kinetics of charge recombination in photo-oxidised reaction centres in solution showed the same selectivity of response. Titrations of reaction centre photocurrents yielded half maximal inhibitory concentrations of 208nM and 2.1µM for terbutryn and atrazine, respectively, with limits of detection estimated at around 8nM and 50nM, respectively. Photocurrent attenuation provided a direct measure of herbicide concentration, with no need for model-dependent kinetic analysis of the signal used for detection or the use of prohibitively complex instrumentation, and prospects for the use of protein engineering to develop the sensitivity and selectivity of herbicide binding by the Rba. sphaeroides reaction centre are discussed.
Biosensors and Bioel... arrow_drop_down Biosensors and BioelectronicsArticle . 2014Data sources: DANS (Data Archiving and Networked Services)Biosensors and BioelectronicsArticle . 2014License: CC BYData sources: BASE (Open Access Aggregator)University of Bristol: Bristol ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)Biosensors and BioelectronicsArticle . 2014University of East Anglia: UEA Digital RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.bios.2014.02.050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 78 citations 78 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Biosensors and Bioel... arrow_drop_down Biosensors and BioelectronicsArticle . 2014Data sources: DANS (Data Archiving and Networked Services)Biosensors and BioelectronicsArticle . 2014License: CC BYData sources: BASE (Open Access Aggregator)University of Bristol: Bristol ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)Biosensors and BioelectronicsArticle . 2014University of East Anglia: UEA Digital RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.bios.2014.02.050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Elsevier BV Funded by:UKRI | Engineering new capacitie..., EC | SYNTHPHOTO, UKRI | Quantification of the for...UKRI| Engineering new capacities for solar energy utilisation in bacteria ,EC| SYNTHPHOTO ,UKRI| Quantification of the forces that mediate electron transfers between proteinsMayneord, G.E.; Vasilev, C.; Malone, L.A.; Swainsbury, D.J.K.; Hunter, C.N.; Johnson, M.P.;pmid: 31247170
Small diffusible redox proteins play a ubiquitous role in bioenergetic systems, facilitating electron transfer (ET) between membrane bound complexes. Sustaining high ET turnover rates requires that the association between extrinsic and membrane-bound partners is highly specific, yet also sufficiently weak to promote rapid post-ET separation. In oxygenic photosynthesis the small soluble electron carrier protein plastocyanin (Pc) shuttles electrons between the membrane integral cytochrome b6f (cytb6f) and photosystem I (PSI) complexes. Here we use peak-force quantitative nanomechanical mapping (PF-QNM) atomic force microscopy (AFM) to quantify the dynamic forces involved in transient interactions between cognate ET partners. An AFM probe functionalised with Pc molecules is brought into contact with cytb6f complexes, immobilised on a planar silicon surface. PF-QNM interrogates the unbinding force of the cytb6f-Pc interactions at the single molecule level with picoNewton force resolution and on a time scale comparable to the ET time in vivo (ca. 120 μs). Using this approach, we show that although the unbinding force remains unchanged the interaction frequency increases over five-fold when Pc and cytb6f are in opposite redox states, so complementary charges on the cytb6f and Pc cofactors likely contribute to the electrostatic forces that initiate formation of the ET complex. These results suggest that formation of the docking interface is under redox state control, which lowers the probability of unproductive encounters between Pc and cytb6f molecules in the same redox state, ensuring the efficiency and directionality of this central reaction in the 'Z-scheme' of photosynthetic ET.
Biochimica et Biophy... arrow_drop_down Biochimica et Biophysica Acta (BBA) - BioenergeticsArticleLicense: Elsevier Non-CommercialData sources: UnpayWallBiochimica et Biophysica Acta (BBA) - BioenergeticsArticle . 2019 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefhttp://dx.doi.org/10.1016/j.bb...Article . Peer-reviewedData sources: European Union Open Data PortalUniversity of East Anglia: UEA Digital RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.bbabio.2019.06.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Biochimica et Biophy... arrow_drop_down Biochimica et Biophysica Acta (BBA) - BioenergeticsArticleLicense: Elsevier Non-CommercialData sources: UnpayWallBiochimica et Biophysica Acta (BBA) - BioenergeticsArticle . 2019 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefhttp://dx.doi.org/10.1016/j.bb...Article . Peer-reviewedData sources: European Union Open Data PortalUniversity of East Anglia: UEA Digital RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.bbabio.2019.06.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United KingdomPublisher:Proceedings of the National Academy of Sciences Funded by:UKRI | Engineering new capacitie..., EC | PhotoRedesign, UKRI | Elucidating the transient...UKRI| Engineering new capacities for solar energy utilisation in bacteria ,EC| PhotoRedesign ,UKRI| Elucidating the transient nature of electron transfer complexes at the single-molecule levelAuthors: David J. K. Swainsbury; Frederick R. Hawkings; Elizabeth C. Martin; Sabina Musiał; +7 AuthorsDavid J. K. Swainsbury; Frederick R. Hawkings; Elizabeth C. Martin; Sabina Musiał; Jack H. Salisbury; Philip J. Jackson; David A. Farmer; Matthew P. Johnson; C. Alistair Siebert; Andrew Hitchcock; C. Neil Hunter;Cytochrome bc 1 complexes are ubiquinol:cytochrome c oxidoreductases, and as such, they are centrally important components of respiratory and photosynthetic electron transfer chains in many species of bacteria and in mitochondria. The minimal complex has three catalytic components, which are cytochrome b , cytochrome c 1 , and the Rieske iron–sulfur subunit, but the function of mitochondrial cytochrome bc 1 complexes is modified by up to eight supernumerary subunits. The cytochrome bc 1 complex from the purple phototrophic bacterium Rhodobacter sphaeroides has a single supernumerary subunit called subunit IV, which is absent from current structures of the complex. In this work we use the styrene–maleic acid copolymer to purify the R. sphaeroides cytochrome bc 1 complex in native lipid nanodiscs, which retains the labile subunit IV, annular lipids, and natively bound quinones. The catalytic activity of the four-subunit cytochrome bc 1 complex is threefold higher than that of the complex lacking subunit IV. To understand the role of subunit IV, we determined the structure of the four-subunit complex at 2.9 Å using single particle cryogenic electron microscopy. The structure shows the position of the transmembrane domain of subunit IV, which lies across the transmembrane helices of the Rieske and cytochrome c 1 subunits. We observe a quinone at the Q o quinone-binding site and show that occupancy of this site is linked to conformational changes in the Rieske head domain during catalysis. Twelve lipids were structurally resolved, making contacts with the Rieske and cytochrome b subunits, with some spanning both of the two monomers that make up the dimeric complex.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2023 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefProceedings of the National Academy of SciencesArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2217922120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2023 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefProceedings of the National Academy of SciencesArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2217922120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 United KingdomPublisher:Portland Press Ltd. Funded by:EC | PhotoRedesign, UKRI | Engineering new capacitie..., WT | Development of likelihood...EC| PhotoRedesign ,UKRI| Engineering new capacities for solar energy utilisation in bacteria ,WT| Development of likelihood-based methods in structural biologyKasim Sader; C. Neil Hunter; David J. K. Swainsbury; Pu Qian; Pu Qian; Jack H. Salisbury; Andrew Hitchcock; Pablo Castro-Hartmann; Philip J. Jackson; Tristan I. Croll;The dimeric reaction centre light-harvesting 1 (RC-LH1) core complex of Rhodobacter sphaeroides converts absorbed light energy to a charge separation, and then it reduces a quinone electron and proton acceptor to a quinol. The angle between the two monomers imposes a bent configuration on the dimer complex, which exerts a major influence on the curvature of the membrane vesicles, known as chromatophores, where the light-driven photosynthetic reactions take place. To investigate the dimerisation interface between two RC-LH1 monomers, we determined the cryogenic electron microscopy structure of the dimeric complex at 2.9 Å resolution. The structure shows that each monomer consists of a central RC partly enclosed by a 14-subunit LH1 ring held in an open state by PufX and protein-Y polypeptides, thus enabling quinones to enter and leave the complex. Two monomers are brought together through N-terminal interactions between PufX polypeptides on the cytoplasmic side of the complex, augmented by two novel transmembrane polypeptides, designated protein-Z, that bind to the outer faces of the two central LH1 β polypeptides. The precise fit at the dimer interface, enabled by PufX and protein-Z, by C-terminal interactions between opposing LH1 αβ subunits, and by a series of interactions with a bound sulfoquinovosyl diacylglycerol lipid, bring together each monomer creating an S-shaped array of 28 bacteriochlorophylls. The seamless join between the two sets of LH1 bacteriochlorophylls provides a path for excitation energy absorbed by one half of the complex to migrate across the dimer interface to the other half.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2021 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1042/bcj20210696&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 31 citations 31 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2021 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1042/bcj20210696&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United Kingdom, Netherlands, NetherlandsPublisher:Elsevier BV Funded by:UKRI | Engineering purple bacter...UKRI| Engineering purple bacterial photovoltaic complexes for device applicationsAuthors: Friebe, Vincent M.; Swainsbury, David J K; Fyfe, Paul K.; van der Heijden, Wessel; +2 AuthorsFriebe, Vincent M.; Swainsbury, David J K; Fyfe, Paul K.; van der Heijden, Wessel; Jones, Michael R.; Frese, Raoul N.;pmid: 27687473
Upon photoexcitation, the reaction center (RC) pigment-proteins that facilitate natural photosynthesis achieve a metastable separation of electrical charge among the embedded cofactors. Because of the high quantum efficiency of this process, there is a growing interest in their incorporation into biohybrid materials for solar energy conversion, bioelectronics and biosensing. Multiple bioelectrochemical studies have shown that reaction centers from various photosynthetic organisms can be interfaced with diverse electrode materials for the generation of photocurrents, but many mechanistic aspects of native protein functionality in a non-native environment is unknown. In vivo, RC's catalyse ubiquinone-10 reduction, protonation and exchange with other lipid phase ubiquinone-10s via protein-controlled spatial orientation and protein rearrangement. In contrast, the mechanism of ubiquinone-0 reduction, used to facilitate fast RC turnover in an aqueous photoelectrochemical cell (PEC), may not proceed via the same pathway as the native cofactor. In this report we show truncation of the native isoprene tail results in larger RC turnover rates in a PEC despite the removal of the tail's purported role of ubiquinone headgroup orientation and binding. Through the use of reaction centers with single or double mutations, we also show the extent to which two-electron/two-proton ubiquinone chemistry that operates in vivo also underpins the ubiquinone-0 reduction by surface-adsorbed RCs in a PEC. This reveals that only the ubiquinone headgroup is critical to the fast turnover of the RC in a PEC and provides insight into design principles for the development of new biophotovoltaic cells and biosensors.
Biochimica et Biophy... arrow_drop_down Biochimica et Biophysica Acta (BBA) - BioenergeticsArticleLicense: CC BY NC NDData sources: UnpayWallBiochimica et Biophysica Acta (BBA) - BioenergeticsArticle . 2016Data sources: DANS (Data Archiving and Networked Services)University of Bristol: Bristol ResearchArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Biochimica et Biophysica Acta (BBA) - BioenergeticsArticle . 2016 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: CrossrefBiochimica et Biophysica Acta (BBA) - BioenergeticsArticle . 2016University of East Anglia: UEA Digital RepositoryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.bbabio.2016.09.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Biochimica et Biophy... arrow_drop_down Biochimica et Biophysica Acta (BBA) - BioenergeticsArticleLicense: CC BY NC NDData sources: UnpayWallBiochimica et Biophysica Acta (BBA) - BioenergeticsArticle . 2016Data sources: DANS (Data Archiving and Networked Services)University of Bristol: Bristol ResearchArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Biochimica et Biophysica Acta (BBA) - BioenergeticsArticle . 2016 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: CrossrefBiochimica et Biophysica Acta (BBA) - BioenergeticsArticle . 2016University of East Anglia: UEA Digital RepositoryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.bbabio.2016.09.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Article 2022 United KingdomPublisher:Elsevier BV Funded by:EC | PhotoRedesign, UKRI | Molecular Photonic Breadb...EC| PhotoRedesign ,UKRI| Molecular Photonic BreadboardsSutherland, George A.; Qian, Pu; Hunter, C. Neil; Swainsbury, David J. K.; Hitchcock, Andrew;pmid: 36008006
Carotenoids are important photosynthetic pigments that play key roles in light harvesting and energy transfer, photoprotection, and in the folding, assembly, and stabilization of light-harvesting pigment-protein complexes. The genetically tractable purple phototrophic bacteria have been useful for investigating the biosynthesis and function of photosynthetic pigments and cofactors, including carotenoids. Here, we give an overview of the roles of carotenoids in photosynthesis and of their biosynthesis, focusing on the extensively studied purple bacterium Rhodobacter sphaeroides as a model organism. We provide detailed procedures for manipulating carotenoid biosynthesis, and for the preparation and analysis of the light-harvesting and photosynthetic reaction center complexes that bind them. Using appropriate examples from the literature, we discuss how such approaches have enhanced our understanding of the biosynthesis of carotenoids and the photosynthesis-related functions of these fascinating molecules.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1016/bs.mie...Part of book or chapter of book . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/bs.m...Part of book or chapter of book . 2023Data sources: European Union Open Data PortalUniversity of East Anglia: UEA Digital RepositoryPart of book or chapter of book . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/bs.mie.2022.04.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1016/bs.mie...Part of book or chapter of book . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/bs.m...Part of book or chapter of book . 2023Data sources: European Union Open Data PortalUniversity of East Anglia: UEA Digital RepositoryPart of book or chapter of book . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/bs.mie.2022.04.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu