- home
- Advanced Search
Filters
Year range
-chevron_right GO
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2018 NetherlandsPublisher:MDPI AG Authors: Duong Tran Anh; Long Phi Hoang; Minh Duc Bui; Peter Rutschmann;doi: 10.3390/w10070897
Salinity intrusion in the Vietnamese Mekong Delta (VMD) has been exacerbated significantly in recent years by the changing upstream inflows, sea level rise resulting from climate change, and socioeconomic development activities. Despite significant damage to agricultural production and freshwater supplies, quantitative assessments of future flows and salinization remain limited due to lack of observation data and modelling tools to represent a highly complex hydraulic network. In this study, we combine 1D-MIKE 11 and 2D-MIKE 21 hydrodynamic models to simulate future flows, water level and salinity intrusion in the Hau River—one main river branch in the Mekong Delta. Future hydrological changes are simulated under multiple scenarios of upstream inflow changes, climate change and sea level rise for the 2036–2065 period. We first use the 1D-MIKE 11 to simulate the flow regime throughout the whole VMD using upstream discharges, outlet water levels and rainfall data as boundary conditions. Output from this step is then used to force the 2D-MIKE 21 model to estimate flow velocity, water level and salinity concentration in the Hau River, focusing on the salinization-prone section between Can Tho, Dinh An, and Tran De estuaries. Simulation results show that salinization will increase substantially, characterized by (1) higher salinity intrusion length under spring tide from 6.78% to 7.97%, and 8.62% to 10.89% under neap tide; and (2) progression of the salinity isohalines towards the upper Mekong Delta, from 3.29 km to 3.92 km for 1 practical salinity unit (PSU) under spring tide, and 4.36 km to 4.65 km for 1 PSU concentration under neap tide. Additionally, we found that salinity intrusion will make it more difficult to re-establish the freshwater condition in the estuary in the future. In particular, the flushing time required to replace saltwater with freshwater at the estuaries tends to increase to between 7.27 h for maximum discharge of 4500 m3/s and 58.95 h for discharge of 400 m3/s under the most extreme scenario. Increasing salinization along the Hau River will have important consequences for crop production, freshwater supplies and freshwater ecosystems, therefore requiring timely adaptation responses.
Water arrow_drop_down Wageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w10070897&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 46 citations 46 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Water arrow_drop_down Wageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w10070897&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Informa UK Limited Authors: Duong Tran Anh; Long Phi Hoang; Minh Duc Bui; Peter Rutschmann;The Vietnamese Mekong Delta (VMD) is one of the world’s most vulnerable deltas to climate change and sea level rise. Adequate understandings of future hydrological changes are crucial for effective water management and risk-proofing, however, this knowledge body is currently very limited. This study quantifies the responses of the VMD’s river flow regime to multiple stimuli, namely future upstream inflow variation, local climate change, and sea level rise. The one-dimensional hydrodynamic model MIKE 11 was used to simulate discharges and water levels across the delta. We developed four scenarios to represent changes in the upstream discharges, precipitation changes and sea level rise, covering the 2036–2065 period. We downscaled climate data and applied three bias-correction methods for five General Circulation Models (GCM), and two Representative Concentration Pathways (RCPs). The climate change projections show similar trends of increasing wet season precipitation and decreasing dry season precipitation. However, cross-scenario variations are sometimes large, depending on the individual GCMs, the RCPs and specific locations. The hydraulic simulation results indicate that, under discharge changes between −20% and +10%, combined with in-delta precipitation variations during the dry season, river discharges at the four representative stations could reduce substantially from −2.5% to −100.2%. During the wet season, the calculated river discharges show increase between 7.3% and 46.7% under four considered scenarios. Substantial changes in the VMD’s river flow regime could have potentially serious implications for water management, especially saltwater intrusion, and therefore calling for timely adaptation measures.
International Journa... arrow_drop_down International Journal of River Basin ManagementArticle . 2019Data sources: DANS (Data Archiving and Networked Services)International Journal of River Basin ManagementArticle . 2018 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15715124.2018.1505735&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of River Basin ManagementArticle . 2019Data sources: DANS (Data Archiving and Networked Services)International Journal of River Basin ManagementArticle . 2018 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15715124.2018.1505735&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2018 NetherlandsPublisher:MDPI AG Authors: Duong Tran Anh; Long Phi Hoang; Minh Duc Bui; Peter Rutschmann;doi: 10.3390/w10070897
Salinity intrusion in the Vietnamese Mekong Delta (VMD) has been exacerbated significantly in recent years by the changing upstream inflows, sea level rise resulting from climate change, and socioeconomic development activities. Despite significant damage to agricultural production and freshwater supplies, quantitative assessments of future flows and salinization remain limited due to lack of observation data and modelling tools to represent a highly complex hydraulic network. In this study, we combine 1D-MIKE 11 and 2D-MIKE 21 hydrodynamic models to simulate future flows, water level and salinity intrusion in the Hau River—one main river branch in the Mekong Delta. Future hydrological changes are simulated under multiple scenarios of upstream inflow changes, climate change and sea level rise for the 2036–2065 period. We first use the 1D-MIKE 11 to simulate the flow regime throughout the whole VMD using upstream discharges, outlet water levels and rainfall data as boundary conditions. Output from this step is then used to force the 2D-MIKE 21 model to estimate flow velocity, water level and salinity concentration in the Hau River, focusing on the salinization-prone section between Can Tho, Dinh An, and Tran De estuaries. Simulation results show that salinization will increase substantially, characterized by (1) higher salinity intrusion length under spring tide from 6.78% to 7.97%, and 8.62% to 10.89% under neap tide; and (2) progression of the salinity isohalines towards the upper Mekong Delta, from 3.29 km to 3.92 km for 1 practical salinity unit (PSU) under spring tide, and 4.36 km to 4.65 km for 1 PSU concentration under neap tide. Additionally, we found that salinity intrusion will make it more difficult to re-establish the freshwater condition in the estuary in the future. In particular, the flushing time required to replace saltwater with freshwater at the estuaries tends to increase to between 7.27 h for maximum discharge of 4500 m3/s and 58.95 h for discharge of 400 m3/s under the most extreme scenario. Increasing salinization along the Hau River will have important consequences for crop production, freshwater supplies and freshwater ecosystems, therefore requiring timely adaptation responses.
Water arrow_drop_down Wageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w10070897&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 46 citations 46 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Water arrow_drop_down Wageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w10070897&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Informa UK Limited Authors: Duong Tran Anh; Long Phi Hoang; Minh Duc Bui; Peter Rutschmann;The Vietnamese Mekong Delta (VMD) is one of the world’s most vulnerable deltas to climate change and sea level rise. Adequate understandings of future hydrological changes are crucial for effective water management and risk-proofing, however, this knowledge body is currently very limited. This study quantifies the responses of the VMD’s river flow regime to multiple stimuli, namely future upstream inflow variation, local climate change, and sea level rise. The one-dimensional hydrodynamic model MIKE 11 was used to simulate discharges and water levels across the delta. We developed four scenarios to represent changes in the upstream discharges, precipitation changes and sea level rise, covering the 2036–2065 period. We downscaled climate data and applied three bias-correction methods for five General Circulation Models (GCM), and two Representative Concentration Pathways (RCPs). The climate change projections show similar trends of increasing wet season precipitation and decreasing dry season precipitation. However, cross-scenario variations are sometimes large, depending on the individual GCMs, the RCPs and specific locations. The hydraulic simulation results indicate that, under discharge changes between −20% and +10%, combined with in-delta precipitation variations during the dry season, river discharges at the four representative stations could reduce substantially from −2.5% to −100.2%. During the wet season, the calculated river discharges show increase between 7.3% and 46.7% under four considered scenarios. Substantial changes in the VMD’s river flow regime could have potentially serious implications for water management, especially saltwater intrusion, and therefore calling for timely adaptation measures.
International Journa... arrow_drop_down International Journal of River Basin ManagementArticle . 2019Data sources: DANS (Data Archiving and Networked Services)International Journal of River Basin ManagementArticle . 2018 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15715124.2018.1505735&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of River Basin ManagementArticle . 2019Data sources: DANS (Data Archiving and Networked Services)International Journal of River Basin ManagementArticle . 2018 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15715124.2018.1505735&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu