- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2014 United KingdomPublisher:Elsevier BV Funded by:UKRI | Oxyfuel Combustion - Acad...UKRI| Oxyfuel Combustion - Academic Programme for the UKChalmers, H; Al-Jeboori, M; Anthony, B; Balusamy, S; Black, S; Cavallo Marincola, F; Clements, A; Darabkhani, H; Dennis, J; Farrow, T; Fennell, P; Franchetti, B; Gao, L; Gibbins, J; Hochgreb, S; Hossain, M; Jurado, N; Kempf, A; Liug, H; Lu, G; Ma, L; Navarro-Martinez, S; Nimmo, W; Oakey, J; Pranzitelli, A; Scott, S; Snape, C; Sun, CG; Sun, D; Szuhánszki, J; Trabadela, I; Wigley, F; Yan, Y; Pourkashanian, M;AbstractThe OxyCAP-UK (Oxyfuel Combustion - Academic Programme for the UK) programme was a £2M collaboration involving researchers from seven UK universities, supported by E.On and the Engineering and Physical Sciences Research Council. The programme, which ran from November 2009 to July 2014, has successfully completed a broad range of activities related to development of oxyfuel power plants. This paper provides an overview of key findings arising from the programme. It covers development of UK research pilot test facilities for oxyfuel applications; 2-D and 3-D flame imaging systems for monitoring, analysis and diagnostics; fuel characterisation of biomass and coal for oxyfuel combustion applications; ash transformation/deposition in oxyfuel combustion systems; materials and corrosion in oxyfuel combustion systems; and development of advanced simulation based on CFD modelling.
CORE arrow_drop_down Kent Academic RepositoryArticle . 2014License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)StrathprintsArticle . 2014License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Universitätsbibliographie, Universität Duisburg-EssenArticle . 2014Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down Kent Academic RepositoryArticle . 2014License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)StrathprintsArticle . 2014License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Universitätsbibliographie, Universität Duisburg-EssenArticle . 2014Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Hamidreza Gohari Darabkhani; Edward J. Anthony; Nelia Jurado; John E. Oakey;AbstractOxy-combustion with coal and biomass co-firing is a technology that could revolutionize fossil fuel power generation. It can significantly reduce harmful greenhouse gas emissions and permit the continued use of plentiful coal supplies and thereby secure our future energy needs without the severe environmental impacts expected if fossil fuels are used without CCS.The work presented here was conducted by means of experimental tests co-firing coal and biomass under oxy-firing conditions at the retrofitted 100kWth oxy-combustor facility at Cranfield University. A parametric study was performed with respect to the effect of recycled ratio and fuel variability on gas composition (including SO3), temperatures, heat flux, burn-out and ash deposition. Furthermore, the possible compensation in heat transfer resulting from the higher heat capacity and emissivity of the gases in the oxy-combustion process as compared to the air-firing case was explored. This was done by the use of blends of coal and biomass, and we concluded that this compensation is unlikely to be significant due to the marked differences between heat fluxes reached under air and oxy-firing conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Authors: Jurado Pontes, Nelia; Simms, Nigel J.; Anthony, Edward J.; Oakley, John;Abstract This paper presents the experimental results from co-firing blends of El Cerrejon (EC) coal and cereal co-product (CCP) using several ratios (100/0; 75/25; 50/50; 0/100 (w/w)) under air- and oxy-firing conditions, in a retrofitted 100 kW th pulverised fuel combustor. An on-line high-resolution multi-component Fourier Transform Infra-red (FTIR) analyser was used to measure CO 2 , O 2 , H 2 O, CO, NO, NO 2 , N 2 O, NH 3 , SO 2 , HCl, HF and CH 4 . A comprehensive evaluation of the major and minor species present in the flue gas was carried out to study the effects of the addition of biomass, the firing mode (air/oxy) and the type of recycle (wet/dry) on the gaseous environment in the combustor. It was found that similar CO 2 levels can be reached when using pure coal or pure biomass, on a dry basis. For the minor species, the increase in the share of biomass had the effect of decreasing the SO 2 levels reached in the flue gas and increasing the HCl content. No significant variation in the NO x levels was observed as a consequence of using high percentages of biomass. For ash deposit characterisation, two probes were used for which surface temperatures were controlled at 650° and 750 °C. Environmental scanning electron microscopy (ESEM) with energy dispersive X-ray (EDX) analysis, supported by X-ray diffraction (XRD), were used to study the deposits. The ESEM/EDX and XRD results showed similar sulphur levels in the deposits when varying the share of biomass even though EC coal contains 3.5 times more sulphur than CCP. This is thought to be a consequence of the reaction of sulphur with the alkalis, especially potassium, present at higher levels in the CCP, which produces higher levels of K 2 SO 4 in the combustion gas. Chlorine was only found in the deposits generated using pure CCP under oxy-firing conditions. An evaluation of the different mineral species formed when varying the biomass share and the firing mode was also performed. Results obtained comparing the mineral species in deposits when using 100% CCP, switching from air to oxy-firing conditions, showed that in air-firing CCP deposits had higher levels of aluminium phosphate and arcanite (K 2 SO 4 ). Also, under oxy-firing conditions, 100% CCP-derived deposits had a higher level of potassium magnesium chloride compared 100% EC.
Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2017License: CC BY NC NDFull-Text: http://dx.doi.org/10.1016/j.fuel.2017.01.111Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2017.01.111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2017License: CC BY NC NDFull-Text: http://dx.doi.org/10.1016/j.fuel.2017.01.111Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2017.01.111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2014 United KingdomPublisher:Elsevier BV Funded by:UKRI | Oxyfuel Combustion - Acad...UKRI| Oxyfuel Combustion - Academic Programme for the UKChalmers, H; Al-Jeboori, M; Anthony, B; Balusamy, S; Black, S; Cavallo Marincola, F; Clements, A; Darabkhani, H; Dennis, J; Farrow, T; Fennell, P; Franchetti, B; Gao, L; Gibbins, J; Hochgreb, S; Hossain, M; Jurado, N; Kempf, A; Liug, H; Lu, G; Ma, L; Navarro-Martinez, S; Nimmo, W; Oakey, J; Pranzitelli, A; Scott, S; Snape, C; Sun, CG; Sun, D; Szuhánszki, J; Trabadela, I; Wigley, F; Yan, Y; Pourkashanian, M;AbstractThe OxyCAP-UK (Oxyfuel Combustion - Academic Programme for the UK) programme was a £2M collaboration involving researchers from seven UK universities, supported by E.On and the Engineering and Physical Sciences Research Council. The programme, which ran from November 2009 to July 2014, has successfully completed a broad range of activities related to development of oxyfuel power plants. This paper provides an overview of key findings arising from the programme. It covers development of UK research pilot test facilities for oxyfuel applications; 2-D and 3-D flame imaging systems for monitoring, analysis and diagnostics; fuel characterisation of biomass and coal for oxyfuel combustion applications; ash transformation/deposition in oxyfuel combustion systems; materials and corrosion in oxyfuel combustion systems; and development of advanced simulation based on CFD modelling.
CORE arrow_drop_down Kent Academic RepositoryArticle . 2014License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)StrathprintsArticle . 2014License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Universitätsbibliographie, Universität Duisburg-EssenArticle . 2014Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down Kent Academic RepositoryArticle . 2014License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)StrathprintsArticle . 2014License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Universitätsbibliographie, Universität Duisburg-EssenArticle . 2014Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Hamidreza Gohari Darabkhani; Edward J. Anthony; Nelia Jurado; John E. Oakey;AbstractOxy-combustion with coal and biomass co-firing is a technology that could revolutionize fossil fuel power generation. It can significantly reduce harmful greenhouse gas emissions and permit the continued use of plentiful coal supplies and thereby secure our future energy needs without the severe environmental impacts expected if fossil fuels are used without CCS.The work presented here was conducted by means of experimental tests co-firing coal and biomass under oxy-firing conditions at the retrofitted 100kWth oxy-combustor facility at Cranfield University. A parametric study was performed with respect to the effect of recycled ratio and fuel variability on gas composition (including SO3), temperatures, heat flux, burn-out and ash deposition. Furthermore, the possible compensation in heat transfer resulting from the higher heat capacity and emissivity of the gases in the oxy-combustion process as compared to the air-firing case was explored. This was done by the use of blends of coal and biomass, and we concluded that this compensation is unlikely to be significant due to the marked differences between heat fluxes reached under air and oxy-firing conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Authors: Jurado Pontes, Nelia; Simms, Nigel J.; Anthony, Edward J.; Oakley, John;Abstract This paper presents the experimental results from co-firing blends of El Cerrejon (EC) coal and cereal co-product (CCP) using several ratios (100/0; 75/25; 50/50; 0/100 (w/w)) under air- and oxy-firing conditions, in a retrofitted 100 kW th pulverised fuel combustor. An on-line high-resolution multi-component Fourier Transform Infra-red (FTIR) analyser was used to measure CO 2 , O 2 , H 2 O, CO, NO, NO 2 , N 2 O, NH 3 , SO 2 , HCl, HF and CH 4 . A comprehensive evaluation of the major and minor species present in the flue gas was carried out to study the effects of the addition of biomass, the firing mode (air/oxy) and the type of recycle (wet/dry) on the gaseous environment in the combustor. It was found that similar CO 2 levels can be reached when using pure coal or pure biomass, on a dry basis. For the minor species, the increase in the share of biomass had the effect of decreasing the SO 2 levels reached in the flue gas and increasing the HCl content. No significant variation in the NO x levels was observed as a consequence of using high percentages of biomass. For ash deposit characterisation, two probes were used for which surface temperatures were controlled at 650° and 750 °C. Environmental scanning electron microscopy (ESEM) with energy dispersive X-ray (EDX) analysis, supported by X-ray diffraction (XRD), were used to study the deposits. The ESEM/EDX and XRD results showed similar sulphur levels in the deposits when varying the share of biomass even though EC coal contains 3.5 times more sulphur than CCP. This is thought to be a consequence of the reaction of sulphur with the alkalis, especially potassium, present at higher levels in the CCP, which produces higher levels of K 2 SO 4 in the combustion gas. Chlorine was only found in the deposits generated using pure CCP under oxy-firing conditions. An evaluation of the different mineral species formed when varying the biomass share and the firing mode was also performed. Results obtained comparing the mineral species in deposits when using 100% CCP, switching from air to oxy-firing conditions, showed that in air-firing CCP deposits had higher levels of aluminium phosphate and arcanite (K 2 SO 4 ). Also, under oxy-firing conditions, 100% CCP-derived deposits had a higher level of potassium magnesium chloride compared 100% EC.
Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2017License: CC BY NC NDFull-Text: http://dx.doi.org/10.1016/j.fuel.2017.01.111Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2017.01.111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2017License: CC BY NC NDFull-Text: http://dx.doi.org/10.1016/j.fuel.2017.01.111Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2017.01.111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu