- home
- Advanced Search
- Energy Research
- 2016-2025
- Energy Research
- 2016-2025
description Publicationkeyboard_double_arrow_right Article , Journal 2021 AustraliaPublisher:American Chemical Society (ACS) Funded by:ARC | Future Fellowships - Gran..., ARC | Discovery Projects - Gran..., ARC | Discovery Projects - Gran... +1 projectsARC| Future Fellowships - Grant ID: FT170100224 ,ARC| Discovery Projects - Grant ID: DP190100295 ,ARC| Discovery Projects - Grant ID: DP160103107 ,ARC| Linkage Infrastructure, Equipment and Facilities - Grant ID: LE190100014Haijiao Lu; Julie Tournet; Kamran Dastafkan; Yun Liu; Yun Hau Ng; Siva Krishna Karuturi; Chuan Zhao; Zongyou Yin;Global energy and environmental crises are among the most pressing challenges facing humankind. To overcome these challenges, recent years have seen an upsurge of interest in the development and production of renewable chemical fuels as alternatives to the nonrenewable and high-polluting fossil fuels. Photocatalysis, photoelectrocatalysis, and electrocatalysis provide promising avenues for sustainable energy conversion. Single- and dual-component catalytic systems based on nanomaterials have been intensively studied for decades, but their intrinsic weaknesses hamper their practical applications. Multicomponent nanomaterial-based systems, consisting of three or more components with at least one component in the nanoscale, have recently emerged. The multiple components are integrated together to create synergistic effects and hence overcome the limitation for outperformance. Such higher-efficiency systems based on nanomaterials will potentially bring an additional benefit in balance-of-system costs if they exclude the use of noble metals, considering the expense and sustainability. It is therefore timely to review the research in this field, providing guidance in the development of noble-metal-free multicomponent nanointegration for sustainable energy conversion. In this work, we first recall the fundamentals of catalysis by nanomaterials, multicomponent nanointegration, and reactor configuration for water splitting, CO2 reduction, and N2 reduction. We then systematically review and discuss recent advances in multicomponent-based photocatalytic, photoelectrochemical, and electrochemical systems based on nanomaterials. On the basis of these systems, we further laterally evaluate different multicomponent integration strategies and highlight their impacts on catalytic activity, performance stability, and product selectivity. Finally, we provide conclusions and future prospects for multicomponent nanointegration. This work offers comprehensive insights into the development of cost-competitive multicomponent nanomaterial-based systems for sustainable energy-conversion technologies and assists researchers working toward addressing the global challenges in energy and the environment.
Chemical Reviews arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.chemrev.0c01328&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 179 citations 179 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Chemical Reviews arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.chemrev.0c01328&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Royal Society of Chemistry (RSC) Borui Liu; Huimin Gu; Juan F. Torres; Zongyou Yin; Antonio Tricoli;doi: 10.1039/d3ee03700b
Membrane modification may obstruct metal-ion mass flux, increasing battery overpotential and reducing performance. Balancing shuttle effect of separator-crossing species and minimizing overpotential-induced energy loss is crucial.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2024 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3ee03700b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2024 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3ee03700b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: D...NSF| Collaborative Research: Design of Low-Hysteresis High-Susceptibility Materials by Nanodomain EngineeringZhi Zhu; Akihiro Kushima; Zongyou Yin; Lu Qi; Khalil Amine; Jun Lu; Ju Li;The significant phase change between gaseous and crystalline oxygen deteriorates the performance of lithium–air batteries. Here the authors report a battery with a cathode consisting of Li2O and Co3O4 nanocomposites, which displays stable cyclability and high energy density, without involving any gas evolution.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nenergy.2016.111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 175 citations 175 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nenergy.2016.111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Wiley Funded by:ARC | Discovery Projects - Gran..., ARC | Discovery Projects - Gran..., ARC | Discovery Projects - Gran... +1 projectsARC| Discovery Projects - Grant ID: DP190103548 ,ARC| Discovery Projects - Grant ID: DP170104264 ,ARC| Discovery Projects - Grant ID: DP190100295 ,ARC| Linkage Infrastructure, Equipment and Facilities - Grant ID: LE190100014Nasir Uddin; Huayang Zhang; Yaping Du; Guohua Jia; Shaobin Wang; Zongyou Yin;AbstractThe structure–property engineering of phase‐based materials for redox‐reactive energy conversion and environmental decontamination nanosystems, which are crucial for achieving feasible and sustainable energy and environment treatment technology, is discussed. An exhaustive overview of redox reaction processes, including electrocatalysis, photocatalysis, and photoelectrocatalysis, is given. Through examples of applications of these redox reactions, how structural phase engineering (SPE) strategies can influence the catalytic activity, selectivity, and stability is constructively reviewed and discussed. As observed, to date, much progress has been made in SPE to improve catalytic redox reactions. However, a number of highly intriguing, unresolved issues remain to be discussed, including solar photon‐to‐exciton conversion efficiency, exciton dissociation into active reductive/oxidative electrons/holes, dual‐ and multiphase junctions, selective adsorption/desorption, performance stability, sustainability, etc. To conclude, key challenges and prospects with SPE‐assisted redox reaction systems are highlighted, where further development for the advanced engineering of phase‐based materials will accelerate the sustainable (active, reliable, and scalable) production of valuable chemicals and energy, as well as facilitate environmental treatment.
Australian National ... arrow_drop_down Advanced MaterialsArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Adelaide: Digital LibraryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adma.201905739&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 62 citations 62 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Australian National ... arrow_drop_down Advanced MaterialsArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Adelaide: Digital LibraryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adma.201905739&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Wiley Funded by:ARC | Discovery Projects - Gran..., ARC | ARC Future Fellowships - ..., ARC | Industrial Transformation...ARC| Discovery Projects - Grant ID: DP240100687 ,ARC| ARC Future Fellowships - Grant ID: FT230100059 ,ARC| Industrial Transformation Research Hubs - Grant ID: IH220100012Ruhan Liu; Hang Yin; Peiqi Guo; Xu Liu; Zongyou Yin;Hydrogen gas as a clean energy source, it is a promising alternative to fossil fuels. Therefore, people are actively seeking effective ways to produce hydrogen to cope with the imminent global energy shortage. However, the current production of hydrogen relies on the catalytic reforming of fossil fuels, inducing inevitable environmental pollution. Alternatively, photocatalysis for produce hydrogen gas from reforming alcohols is a promising approach. Especially, other value‐added hydrocarbon products, such as acetone, acetaldehyde, acetic acid, etc., can also be produced during the photoreforming process of alcohols. Meanwhile, reducing the production of COx, making it an environmentally friendly conversion process. Outstandingly, TiO2 and its derivative are excellent photocatalysts. Among them, TiO2 cocatalyzed with noble metal can easily increase the H2 evolution rate to the mmol g−1 h−1 scale. Among the light alcohols isopropyl alcohol has fewer side reactions, methanol and ethanol have higher reaction rate, but they require to reduce the by‐product COx. In this review, the recent developments in this field are summarized; various studies regarding H2 evolution rate, illumination condition, quantum efficiency, etc., are compared; and the development prospects of this field, with the hope of sparking widespread research interest, are proposed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202301708&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202301708&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Hongyang Li; Chengzhi Hu; Yichuan He; Zhehao Sun; Zongyou Yin; Dawei Tang;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.matt.2022.07.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu42 citations 42 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.matt.2022.07.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Royal Society of Chemistry (RSC) Funded by:ARC | Linkage Projects - Grant ..., , ARC | ARC Future Fellowships - ... +1 projectsARC| Linkage Projects - Grant ID: LP210100436 ,[no funder available] ,ARC| ARC Future Fellowships - Grant ID: FT230100059 ,ARC| Discovery Projects - Grant ID: DP240100687Farid Attar; Hang Yin; Simon Lennard Schumann; Julien Langley; Nicholas Cox; Zhiyuan Zeng; Kylie Catchpole; Siva Karuturi; Zongyou Yin;doi: 10.1039/d4ee00445k
EPR aids catalyst research in energy systems by enhancing understanding, optimizing synthesis, elucidating mechanisms, and improving stability.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2024 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee00445k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2024 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee00445k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:Elsevier BV Xue-Feng Yu; Zhuo Wang; Zhuo Wang; Junming Shao; Haitao Zhao; Cheng Heng Pang; Kaili Liu; Kaili Liu; Wentao Li; Wentao Li; Oyawale Adetunji Moses; Wei Chen; Zhengsheng Li; Mukhtar Lawan Adam; Mukhtar Lawan Adam; Zongyou Yin; Chensu Wang; Chensu Wang;Technological advancements in recent decades have greatly transformed the field of material chemistry. Juxtaposing the accentuating energy demand with the pollution associated, urgent measures are required to ensure energy maximization, while reducing the extended experimental time cycle involved in energy production. In lieu of this, the prominence of catalysts in chemical reactions, particularly energy related reactions cannot be undermined, and thus it is critical to discover and design catalyst, towards the optimization of chemical processes and generation of sustainable energy. Most recently, artificial intelligence (AI) has been incorporated into several fields, particularly in advancing catalytic processes. The integration of intensive data set, machine learning models and robotics, provides a very powerful tool in modifying material synthesis and optimization by generating multifarious dataset amenable with machine learning techniques. The employment of robots automates the process of dataset and machine learning models integration in screening intermetallic surfaces of catalyst, with extreme accuracy and swiftness comparable to a number of human researchers. Although, the utilization of robots in catalyst discovery is still in its infancy, in this review we summarize current sway of artificial intelligence in catalyst discovery, briefly describe the application of databases, machine learning models and robots in this field, with emphasis on the consolidation of these monomeric units into a tripartite flow process. We point out current trends of machine learning and hybrid models of first principle calculations (DFT) for generating dataset, which is integrable into autonomous flow process of catalyst discovery. Also, we discuss catalyst discovery for renewable energy related reactions using this tripartite flow process with predetermined descriptors.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.matre.2021.100049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.matre.2021.100049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 AustraliaPublisher:Royal Society of Chemistry (RSC) Doudou Zhang; Haobo Li; Haijiao Lu; Zongyou Yin; Zelio Fusco; Asim Riaz; Karsten Reuter; Kylie Catchpole; Siva Karuturi;doi: 10.1039/d3ee01981k
handle: 2440/140045
A machine-learning methodology was applied to unveil the structure–property relationships of the fabricated ternary Ni, Fe, and Co amorphous oxygen evolution catalyst, showcasing remarkable performance and stability via corrosion engineering.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2023 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefThe University of Adelaide: Digital LibraryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3ee01981k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2023 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefThe University of Adelaide: Digital LibraryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3ee01981k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021 AustraliaPublisher:American Chemical Society (ACS) Funded by:ARC | Future Fellowships - Gran..., ARC | Discovery Projects - Gran..., ARC | Discovery Projects - Gran... +1 projectsARC| Future Fellowships - Grant ID: FT170100224 ,ARC| Discovery Projects - Grant ID: DP190100295 ,ARC| Discovery Projects - Grant ID: DP160103107 ,ARC| Linkage Infrastructure, Equipment and Facilities - Grant ID: LE190100014Haijiao Lu; Julie Tournet; Kamran Dastafkan; Yun Liu; Yun Hau Ng; Siva Krishna Karuturi; Chuan Zhao; Zongyou Yin;Global energy and environmental crises are among the most pressing challenges facing humankind. To overcome these challenges, recent years have seen an upsurge of interest in the development and production of renewable chemical fuels as alternatives to the nonrenewable and high-polluting fossil fuels. Photocatalysis, photoelectrocatalysis, and electrocatalysis provide promising avenues for sustainable energy conversion. Single- and dual-component catalytic systems based on nanomaterials have been intensively studied for decades, but their intrinsic weaknesses hamper their practical applications. Multicomponent nanomaterial-based systems, consisting of three or more components with at least one component in the nanoscale, have recently emerged. The multiple components are integrated together to create synergistic effects and hence overcome the limitation for outperformance. Such higher-efficiency systems based on nanomaterials will potentially bring an additional benefit in balance-of-system costs if they exclude the use of noble metals, considering the expense and sustainability. It is therefore timely to review the research in this field, providing guidance in the development of noble-metal-free multicomponent nanointegration for sustainable energy conversion. In this work, we first recall the fundamentals of catalysis by nanomaterials, multicomponent nanointegration, and reactor configuration for water splitting, CO2 reduction, and N2 reduction. We then systematically review and discuss recent advances in multicomponent-based photocatalytic, photoelectrochemical, and electrochemical systems based on nanomaterials. On the basis of these systems, we further laterally evaluate different multicomponent integration strategies and highlight their impacts on catalytic activity, performance stability, and product selectivity. Finally, we provide conclusions and future prospects for multicomponent nanointegration. This work offers comprehensive insights into the development of cost-competitive multicomponent nanomaterial-based systems for sustainable energy-conversion technologies and assists researchers working toward addressing the global challenges in energy and the environment.
Chemical Reviews arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.chemrev.0c01328&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 179 citations 179 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Chemical Reviews arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.chemrev.0c01328&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Royal Society of Chemistry (RSC) Borui Liu; Huimin Gu; Juan F. Torres; Zongyou Yin; Antonio Tricoli;doi: 10.1039/d3ee03700b
Membrane modification may obstruct metal-ion mass flux, increasing battery overpotential and reducing performance. Balancing shuttle effect of separator-crossing species and minimizing overpotential-induced energy loss is crucial.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2024 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3ee03700b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2024 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3ee03700b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: D...NSF| Collaborative Research: Design of Low-Hysteresis High-Susceptibility Materials by Nanodomain EngineeringZhi Zhu; Akihiro Kushima; Zongyou Yin; Lu Qi; Khalil Amine; Jun Lu; Ju Li;The significant phase change between gaseous and crystalline oxygen deteriorates the performance of lithium–air batteries. Here the authors report a battery with a cathode consisting of Li2O and Co3O4 nanocomposites, which displays stable cyclability and high energy density, without involving any gas evolution.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nenergy.2016.111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 175 citations 175 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nenergy.2016.111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Wiley Funded by:ARC | Discovery Projects - Gran..., ARC | Discovery Projects - Gran..., ARC | Discovery Projects - Gran... +1 projectsARC| Discovery Projects - Grant ID: DP190103548 ,ARC| Discovery Projects - Grant ID: DP170104264 ,ARC| Discovery Projects - Grant ID: DP190100295 ,ARC| Linkage Infrastructure, Equipment and Facilities - Grant ID: LE190100014Nasir Uddin; Huayang Zhang; Yaping Du; Guohua Jia; Shaobin Wang; Zongyou Yin;AbstractThe structure–property engineering of phase‐based materials for redox‐reactive energy conversion and environmental decontamination nanosystems, which are crucial for achieving feasible and sustainable energy and environment treatment technology, is discussed. An exhaustive overview of redox reaction processes, including electrocatalysis, photocatalysis, and photoelectrocatalysis, is given. Through examples of applications of these redox reactions, how structural phase engineering (SPE) strategies can influence the catalytic activity, selectivity, and stability is constructively reviewed and discussed. As observed, to date, much progress has been made in SPE to improve catalytic redox reactions. However, a number of highly intriguing, unresolved issues remain to be discussed, including solar photon‐to‐exciton conversion efficiency, exciton dissociation into active reductive/oxidative electrons/holes, dual‐ and multiphase junctions, selective adsorption/desorption, performance stability, sustainability, etc. To conclude, key challenges and prospects with SPE‐assisted redox reaction systems are highlighted, where further development for the advanced engineering of phase‐based materials will accelerate the sustainable (active, reliable, and scalable) production of valuable chemicals and energy, as well as facilitate environmental treatment.
Australian National ... arrow_drop_down Advanced MaterialsArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Adelaide: Digital LibraryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adma.201905739&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 62 citations 62 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Australian National ... arrow_drop_down Advanced MaterialsArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Adelaide: Digital LibraryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adma.201905739&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Wiley Funded by:ARC | Discovery Projects - Gran..., ARC | ARC Future Fellowships - ..., ARC | Industrial Transformation...ARC| Discovery Projects - Grant ID: DP240100687 ,ARC| ARC Future Fellowships - Grant ID: FT230100059 ,ARC| Industrial Transformation Research Hubs - Grant ID: IH220100012Ruhan Liu; Hang Yin; Peiqi Guo; Xu Liu; Zongyou Yin;Hydrogen gas as a clean energy source, it is a promising alternative to fossil fuels. Therefore, people are actively seeking effective ways to produce hydrogen to cope with the imminent global energy shortage. However, the current production of hydrogen relies on the catalytic reforming of fossil fuels, inducing inevitable environmental pollution. Alternatively, photocatalysis for produce hydrogen gas from reforming alcohols is a promising approach. Especially, other value‐added hydrocarbon products, such as acetone, acetaldehyde, acetic acid, etc., can also be produced during the photoreforming process of alcohols. Meanwhile, reducing the production of COx, making it an environmentally friendly conversion process. Outstandingly, TiO2 and its derivative are excellent photocatalysts. Among them, TiO2 cocatalyzed with noble metal can easily increase the H2 evolution rate to the mmol g−1 h−1 scale. Among the light alcohols isopropyl alcohol has fewer side reactions, methanol and ethanol have higher reaction rate, but they require to reduce the by‐product COx. In this review, the recent developments in this field are summarized; various studies regarding H2 evolution rate, illumination condition, quantum efficiency, etc., are compared; and the development prospects of this field, with the hope of sparking widespread research interest, are proposed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202301708&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202301708&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Hongyang Li; Chengzhi Hu; Yichuan He; Zhehao Sun; Zongyou Yin; Dawei Tang;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.matt.2022.07.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu42 citations 42 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.matt.2022.07.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Royal Society of Chemistry (RSC) Funded by:ARC | Linkage Projects - Grant ..., , ARC | ARC Future Fellowships - ... +1 projectsARC| Linkage Projects - Grant ID: LP210100436 ,[no funder available] ,ARC| ARC Future Fellowships - Grant ID: FT230100059 ,ARC| Discovery Projects - Grant ID: DP240100687Farid Attar; Hang Yin; Simon Lennard Schumann; Julien Langley; Nicholas Cox; Zhiyuan Zeng; Kylie Catchpole; Siva Karuturi; Zongyou Yin;doi: 10.1039/d4ee00445k
EPR aids catalyst research in energy systems by enhancing understanding, optimizing synthesis, elucidating mechanisms, and improving stability.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2024 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee00445k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2024 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee00445k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:Elsevier BV Xue-Feng Yu; Zhuo Wang; Zhuo Wang; Junming Shao; Haitao Zhao; Cheng Heng Pang; Kaili Liu; Kaili Liu; Wentao Li; Wentao Li; Oyawale Adetunji Moses; Wei Chen; Zhengsheng Li; Mukhtar Lawan Adam; Mukhtar Lawan Adam; Zongyou Yin; Chensu Wang; Chensu Wang;Technological advancements in recent decades have greatly transformed the field of material chemistry. Juxtaposing the accentuating energy demand with the pollution associated, urgent measures are required to ensure energy maximization, while reducing the extended experimental time cycle involved in energy production. In lieu of this, the prominence of catalysts in chemical reactions, particularly energy related reactions cannot be undermined, and thus it is critical to discover and design catalyst, towards the optimization of chemical processes and generation of sustainable energy. Most recently, artificial intelligence (AI) has been incorporated into several fields, particularly in advancing catalytic processes. The integration of intensive data set, machine learning models and robotics, provides a very powerful tool in modifying material synthesis and optimization by generating multifarious dataset amenable with machine learning techniques. The employment of robots automates the process of dataset and machine learning models integration in screening intermetallic surfaces of catalyst, with extreme accuracy and swiftness comparable to a number of human researchers. Although, the utilization of robots in catalyst discovery is still in its infancy, in this review we summarize current sway of artificial intelligence in catalyst discovery, briefly describe the application of databases, machine learning models and robots in this field, with emphasis on the consolidation of these monomeric units into a tripartite flow process. We point out current trends of machine learning and hybrid models of first principle calculations (DFT) for generating dataset, which is integrable into autonomous flow process of catalyst discovery. Also, we discuss catalyst discovery for renewable energy related reactions using this tripartite flow process with predetermined descriptors.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.matre.2021.100049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.matre.2021.100049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 AustraliaPublisher:Royal Society of Chemistry (RSC) Doudou Zhang; Haobo Li; Haijiao Lu; Zongyou Yin; Zelio Fusco; Asim Riaz; Karsten Reuter; Kylie Catchpole; Siva Karuturi;doi: 10.1039/d3ee01981k
handle: 2440/140045
A machine-learning methodology was applied to unveil the structure–property relationships of the fabricated ternary Ni, Fe, and Co amorphous oxygen evolution catalyst, showcasing remarkable performance and stability via corrosion engineering.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2023 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefThe University of Adelaide: Digital LibraryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3ee01981k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2023 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefThe University of Adelaide: Digital LibraryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3ee01981k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu