- home
- Advanced Search
Filters
Year range
-chevron_right GO
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021 SpainPublisher:Elsevier BV Naiara Yurrita; Jon Aizpurua; Werther Cambarau; Gorka Imbuluzqueta; Juan María Hernández; Francisco J. Cano; Oihana Zubillaga;Abstract Photovoltaic modules were manufactured by vacuum resin infusion process using glass reinforced epoxy composite as encapsulant where the cells are embedded. Incorporation of ultraviolet absorber (UVA) and hindered amine light stabilizer (HALS) additives to the epoxy resin was studied, given their potential to enhance the performance stability of the modules under ultraviolet (UV) radiation exposure. Photovoltaic and aging performance were examined through the evolution of external quantum efficiency (EQE) spectra, short-circuit current values and colour change. Decrease in the initial photovoltaic performance of the modules was observed, as evidenced in the short-circuit losses when additives are incorporated. Regarding the performance stability, increasing the content of both, UVA and HALS, leaded to improved results with lower short-circuit current loss and yellowness observed due to UV radiation. The most stable module, with cells embedded in 1% UVA and 1% HALS containing composite, showed a 2.8% short-circuit current loss after an UV exposure of 15.4 KWh/m2. UV protection enhancement was obtained in trade-off with initial photovoltaic performance, which should be considered when defining the additives and the amount to be used.
TECNALIA Publication... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2021.111250&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert TECNALIA Publication... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2021.111250&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 SpainPublisher:Elsevier BV Imbuluzqueta, Gorka; Yurrita, Naiara; Aizpurua, Jon; Cano, Francisco J.; Zubillaga, Oihana;Abstract The present work aims encapsulating photovoltaic cells in glass reinforced epoxy composite by vacuum resin infusion, incorporating additives directed to enhance the performance stability of the manufactured photovoltaic modules under ultraviolet (UV) exposure. UV absorber (UVA) and hindered amine light stabilizer (HALS) additives were incorporated in the resin system in different content. Photovoltaic performance and stability under UV radiation exposure were studied through external quantum efficiency (EQE) spectra, chromatic coordinates and short-circuit current values. Decrease in current values and increase in yellowness were observed in the presence of UVA and HALS. However, an enhanced performance stability was observed when additives are incorporated, improving the stability when increasing the additive amount. The most stable module, with cells embedded in 2% additive containing composite, showed a 2.7% short-circuit current loss after UV aging exposure.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2019.109947&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2019.109947&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021 SpainPublisher:Elsevier BV Naiara Yurrita; Jon Aizpurua; Werther Cambarau; Gorka Imbuluzqueta; Juan María Hernández; Francisco J. Cano; Oihana Zubillaga;Abstract Photovoltaic modules were manufactured by vacuum resin infusion process using glass reinforced epoxy composite as encapsulant where the cells are embedded. Incorporation of ultraviolet absorber (UVA) and hindered amine light stabilizer (HALS) additives to the epoxy resin was studied, given their potential to enhance the performance stability of the modules under ultraviolet (UV) radiation exposure. Photovoltaic and aging performance were examined through the evolution of external quantum efficiency (EQE) spectra, short-circuit current values and colour change. Decrease in the initial photovoltaic performance of the modules was observed, as evidenced in the short-circuit losses when additives are incorporated. Regarding the performance stability, increasing the content of both, UVA and HALS, leaded to improved results with lower short-circuit current loss and yellowness observed due to UV radiation. The most stable module, with cells embedded in 1% UVA and 1% HALS containing composite, showed a 2.8% short-circuit current loss after an UV exposure of 15.4 KWh/m2. UV protection enhancement was obtained in trade-off with initial photovoltaic performance, which should be considered when defining the additives and the amount to be used.
TECNALIA Publication... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2021.111250&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert TECNALIA Publication... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2021.111250&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 SpainPublisher:Elsevier BV Imbuluzqueta, Gorka; Yurrita, Naiara; Aizpurua, Jon; Cano, Francisco J.; Zubillaga, Oihana;Abstract The present work aims encapsulating photovoltaic cells in glass reinforced epoxy composite by vacuum resin infusion, incorporating additives directed to enhance the performance stability of the manufactured photovoltaic modules under ultraviolet (UV) exposure. UV absorber (UVA) and hindered amine light stabilizer (HALS) additives were incorporated in the resin system in different content. Photovoltaic performance and stability under UV radiation exposure were studied through external quantum efficiency (EQE) spectra, chromatic coordinates and short-circuit current values. Decrease in current values and increase in yellowness were observed in the presence of UVA and HALS. However, an enhanced performance stability was observed when additives are incorporated, improving the stability when increasing the additive amount. The most stable module, with cells embedded in 2% additive containing composite, showed a 2.7% short-circuit current loss after UV aging exposure.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2019.109947&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2019.109947&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu