- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 HungaryPublisher:Springer Science and Business Media LLC Lorenz T. Keyßer; Jason Hickel; Jason Hickel; Aljoša Slameršak; Diana Ürge-Vorsatz; Paul E. Brockway; Giorgos Kallis; Manfred Lenzen; Julia K. Steinberger;Established climate mitigation scenarios assume continued economic growth in all countries, and reconcile this with the Paris targets by betting on speculative technological change. Post-growth approaches may make it easier to achieve rapid mitigation while improving social outcomes, and should be explored by climate modellers.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-021-00884-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 143 citations 143 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-021-00884-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Graham Palmer; Barney Foran; Samuel Alexander; Lorenz T. Keyßer; Patrick Moriarty; Joshua Floyd; Sangeetha Chandrashekeran; Manfred Lenzen;Abstract Many studies have concluded that the current global economy can transition from fossil fuels to be powered entirely by renewable energy. While supporting such transition, we critique analysis purporting to conclusively demonstrate feasibility. Deep uncertainties remain about whether renewables can maintain, let alone grow, the range and scale of energy services presently provided by fossil fuels. The more optimistic renewable energy studies rely upon assumptions that may be theoretically or technically plausible, but which remain highly uncertain when real-world practicalities are accounted for. This places investigation of energy-society futures squarely in the domain of post-normal science, implying the need for greater ‘knowledge humility’ when framing and interpreting the findings from quantitative modelling exercises conducted to investigate energy futures. Greater appreciation for the limits of what we can know via such techniques reveals ‘energy descent’ as a plausible post-carbon scenario. Given the fundamental dependence of all economic activity on availability of energy in appropriate forms at sufficient rates, profound changes to dominant modes of production and consumption may be required, a view marginalised when more techno-optimistic futures are assumed. Viewing this situation through the lens of ‘post-normal times’ opens avenues for response that can better support societies in navigating viable futures.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.futures.2020.102565&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.futures.2020.102565&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Austria, United Kingdom, Spain, United KingdomPublisher:Informa UK Limited Funded by:ARC | Discovery Early Career Re..., ARC | Developing a global envir..., ARC | Discovery Projects - Gran... +6 projectsARC| Discovery Early Career Researcher Award - Grant ID: DE230101652 ,ARC| Developing a global environmental, social and economic information system ,ARC| Discovery Projects - Grant ID: DP190102277 ,ARC| Discovery Projects - Grant ID: DP200102585 ,ARC| Discovery Projects - Grant ID: DP130101293 ,UKRI| Science and Solutions for a Changing Planet (SSCP) DTP ,ARC| Discovery Projects - Grant ID: DP200103005 ,EC| AXIS ,ARC| Linkage Infrastructure, Equipment and Facilities - Grant ID: LE160100066Kikstra, Jarmo S.; Li, Mengyu; Brockway, Paul E.; Hickel, Jason; Keysser, Lorenz; Malik, Arunima; Rogelj, Joeri; van Ruijven, Bas; Lenzen, Manfred; Universitat Autònoma de Barcelona. Departament d'Antropologia Social i Cultural;handle: 10044/1/108330
IPCC reports, to date, have not featured ambitious mitigation scenarios with degrowth in high-income regions. Here, using MESSAGEix-Australia, we create 51 emissions scenarios for Australia with near-term GDP growth going from +3%/year to rapid reductions (−5%/year) to explore how a traditional integrated assessment model (IAM) represents degrowth from an economic starting point, not just energy demand reduction. We find that stagnating GDP per capita reduces the mid-century need for upscaling solar and wind energy by about 40% compared to the SSP2 growth baseline, and limits future material needs for renewables. Still, solar and wind energy in 2030 is more than quadruple that of 2020. Faster reductions in energy demand may entail higher socio-cultural feasibility concerns, depending on the policies involved. Strong reductions in inequality reduce the risk of lowered access to decent living services. We discuss research needs and possible IAM extensions to improve post-growth and degrowth scenario modelling.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/10044/1/108330Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2023Data sources: Spiral - Imperial College Digital RepositoryDiposit Digital de Documents de la UABArticle . 2024License: CC BYData sources: Diposit Digital de Documents de la UABadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/09535314.2023.2301443&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 12 citations 12 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/10044/1/108330Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2023Data sources: Spiral - Imperial College Digital RepositoryDiposit Digital de Documents de la UABArticle . 2024License: CC BYData sources: Diposit Digital de Documents de la UABadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/09535314.2023.2301443&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:Informa UK Limited Mengyu Li; Lorenz Keyßer; Jarmo S. Kikstra; Jason Hickel; Paul E. Brockway; Nicolas Dai; Arunima Malik; Manfred Lenzen;Empirical evidence increasingly indicates that to achieve sufficiently rapid decarbonisation, high-income economies may need to adopt degrowth policies, scaling down less-necessary forms of production and demand, in addition to rapid deployment of renewables. Calls have been made for degrowth climate mitigation scenarios. However, so far these have not been modelled within the established Integrated Assessment Models (IAMs) for future scenario analysis of the energy-economy-emission nexus, partly because the architecture of these IAMs has growth ‘baked in’. In this work, we modify one of the common IAMs – MESSAGEix – to make it compatible with degrowth scenarios. We simulate scenarios featuring low and negative growth in a high-income economy (Australia). We achieve this by detaching MESSAGEix from its monotonically growing utility function, and by formulating an alternative utility function based on non-monotonic preferences. The outcomes from such modified scenarios reflect some characteristics of degrowth futures, including reduced aggregate production and declining energy and emissions. However, further work is needed to explore other key degrowth features such as sectoral differentiation, redistribution, and provisioning system transformation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/09535314.2023.2245544&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/09535314.2023.2245544&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Embargo end date: 11 May 2021 SwitzerlandPublisher:Springer Science and Business Media LLC Funded by:ARC | Discovery Projects - Gran..., ARC | Developing a global envir..., ARC | Linkage Infrastructure, E...ARC| Discovery Projects - Grant ID: DP130101293 ,ARC| Developing a global environmental, social and economic information system ,ARC| Linkage Infrastructure, Equipment and Facilities - Grant ID: LE160100066Authors: Lorenz T. Keyßer; Manfred Lenzen;Abstract1.5 °C scenarios reported by the Intergovernmental Panel on Climate Change (IPCC) rely on combinations of controversial negative emissions and unprecedented technological change, while assuming continued growth in gross domestic product (GDP). Thus far, the integrated assessment modelling community and the IPCC have neglected to consider degrowth scenarios, where economic output declines due to stringent climate mitigation. Hence, their potential to avoid reliance on negative emissions and speculative rates of technological change remains unexplored. As a first step to address this gap, this paper compares 1.5 °C degrowth scenarios with IPCC archetype scenarios, using a simplified quantitative representation of the fuel-energy-emissions nexus. Here we find that the degrowth scenarios minimize many key risks for feasibility and sustainability compared to technology-driven pathways, such as the reliance on high energy-GDP decoupling, large-scale carbon dioxide removal and large-scale and high-speed renewable energy transformation. However, substantial challenges remain regarding political feasibility. Nevertheless, degrowth pathways should be thoroughly considered.
Nature Communication... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-22884-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 224 citations 224 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Nature Communication... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-22884-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 HungaryPublisher:Springer Science and Business Media LLC Lorenz T. Keyßer; Jason Hickel; Jason Hickel; Aljoša Slameršak; Diana Ürge-Vorsatz; Paul E. Brockway; Giorgos Kallis; Manfred Lenzen; Julia K. Steinberger;Established climate mitigation scenarios assume continued economic growth in all countries, and reconcile this with the Paris targets by betting on speculative technological change. Post-growth approaches may make it easier to achieve rapid mitigation while improving social outcomes, and should be explored by climate modellers.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-021-00884-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 143 citations 143 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-021-00884-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Graham Palmer; Barney Foran; Samuel Alexander; Lorenz T. Keyßer; Patrick Moriarty; Joshua Floyd; Sangeetha Chandrashekeran; Manfred Lenzen;Abstract Many studies have concluded that the current global economy can transition from fossil fuels to be powered entirely by renewable energy. While supporting such transition, we critique analysis purporting to conclusively demonstrate feasibility. Deep uncertainties remain about whether renewables can maintain, let alone grow, the range and scale of energy services presently provided by fossil fuels. The more optimistic renewable energy studies rely upon assumptions that may be theoretically or technically plausible, but which remain highly uncertain when real-world practicalities are accounted for. This places investigation of energy-society futures squarely in the domain of post-normal science, implying the need for greater ‘knowledge humility’ when framing and interpreting the findings from quantitative modelling exercises conducted to investigate energy futures. Greater appreciation for the limits of what we can know via such techniques reveals ‘energy descent’ as a plausible post-carbon scenario. Given the fundamental dependence of all economic activity on availability of energy in appropriate forms at sufficient rates, profound changes to dominant modes of production and consumption may be required, a view marginalised when more techno-optimistic futures are assumed. Viewing this situation through the lens of ‘post-normal times’ opens avenues for response that can better support societies in navigating viable futures.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.futures.2020.102565&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.futures.2020.102565&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Austria, United Kingdom, Spain, United KingdomPublisher:Informa UK Limited Funded by:ARC | Discovery Early Career Re..., ARC | Developing a global envir..., ARC | Discovery Projects - Gran... +6 projectsARC| Discovery Early Career Researcher Award - Grant ID: DE230101652 ,ARC| Developing a global environmental, social and economic information system ,ARC| Discovery Projects - Grant ID: DP190102277 ,ARC| Discovery Projects - Grant ID: DP200102585 ,ARC| Discovery Projects - Grant ID: DP130101293 ,UKRI| Science and Solutions for a Changing Planet (SSCP) DTP ,ARC| Discovery Projects - Grant ID: DP200103005 ,EC| AXIS ,ARC| Linkage Infrastructure, Equipment and Facilities - Grant ID: LE160100066Kikstra, Jarmo S.; Li, Mengyu; Brockway, Paul E.; Hickel, Jason; Keysser, Lorenz; Malik, Arunima; Rogelj, Joeri; van Ruijven, Bas; Lenzen, Manfred; Universitat Autònoma de Barcelona. Departament d'Antropologia Social i Cultural;handle: 10044/1/108330
IPCC reports, to date, have not featured ambitious mitigation scenarios with degrowth in high-income regions. Here, using MESSAGEix-Australia, we create 51 emissions scenarios for Australia with near-term GDP growth going from +3%/year to rapid reductions (−5%/year) to explore how a traditional integrated assessment model (IAM) represents degrowth from an economic starting point, not just energy demand reduction. We find that stagnating GDP per capita reduces the mid-century need for upscaling solar and wind energy by about 40% compared to the SSP2 growth baseline, and limits future material needs for renewables. Still, solar and wind energy in 2030 is more than quadruple that of 2020. Faster reductions in energy demand may entail higher socio-cultural feasibility concerns, depending on the policies involved. Strong reductions in inequality reduce the risk of lowered access to decent living services. We discuss research needs and possible IAM extensions to improve post-growth and degrowth scenario modelling.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/10044/1/108330Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2023Data sources: Spiral - Imperial College Digital RepositoryDiposit Digital de Documents de la UABArticle . 2024License: CC BYData sources: Diposit Digital de Documents de la UABadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/09535314.2023.2301443&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 12 citations 12 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/10044/1/108330Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2023Data sources: Spiral - Imperial College Digital RepositoryDiposit Digital de Documents de la UABArticle . 2024License: CC BYData sources: Diposit Digital de Documents de la UABadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/09535314.2023.2301443&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:Informa UK Limited Mengyu Li; Lorenz Keyßer; Jarmo S. Kikstra; Jason Hickel; Paul E. Brockway; Nicolas Dai; Arunima Malik; Manfred Lenzen;Empirical evidence increasingly indicates that to achieve sufficiently rapid decarbonisation, high-income economies may need to adopt degrowth policies, scaling down less-necessary forms of production and demand, in addition to rapid deployment of renewables. Calls have been made for degrowth climate mitigation scenarios. However, so far these have not been modelled within the established Integrated Assessment Models (IAMs) for future scenario analysis of the energy-economy-emission nexus, partly because the architecture of these IAMs has growth ‘baked in’. In this work, we modify one of the common IAMs – MESSAGEix – to make it compatible with degrowth scenarios. We simulate scenarios featuring low and negative growth in a high-income economy (Australia). We achieve this by detaching MESSAGEix from its monotonically growing utility function, and by formulating an alternative utility function based on non-monotonic preferences. The outcomes from such modified scenarios reflect some characteristics of degrowth futures, including reduced aggregate production and declining energy and emissions. However, further work is needed to explore other key degrowth features such as sectoral differentiation, redistribution, and provisioning system transformation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/09535314.2023.2245544&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/09535314.2023.2245544&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Embargo end date: 11 May 2021 SwitzerlandPublisher:Springer Science and Business Media LLC Funded by:ARC | Discovery Projects - Gran..., ARC | Developing a global envir..., ARC | Linkage Infrastructure, E...ARC| Discovery Projects - Grant ID: DP130101293 ,ARC| Developing a global environmental, social and economic information system ,ARC| Linkage Infrastructure, Equipment and Facilities - Grant ID: LE160100066Authors: Lorenz T. Keyßer; Manfred Lenzen;Abstract1.5 °C scenarios reported by the Intergovernmental Panel on Climate Change (IPCC) rely on combinations of controversial negative emissions and unprecedented technological change, while assuming continued growth in gross domestic product (GDP). Thus far, the integrated assessment modelling community and the IPCC have neglected to consider degrowth scenarios, where economic output declines due to stringent climate mitigation. Hence, their potential to avoid reliance on negative emissions and speculative rates of technological change remains unexplored. As a first step to address this gap, this paper compares 1.5 °C degrowth scenarios with IPCC archetype scenarios, using a simplified quantitative representation of the fuel-energy-emissions nexus. Here we find that the degrowth scenarios minimize many key risks for feasibility and sustainability compared to technology-driven pathways, such as the reliance on high energy-GDP decoupling, large-scale carbon dioxide removal and large-scale and high-speed renewable energy transformation. However, substantial challenges remain regarding political feasibility. Nevertheless, degrowth pathways should be thoroughly considered.
Nature Communication... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-22884-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 224 citations 224 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Nature Communication... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-22884-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu