- home
- Advanced Search
- Energy Research
- 2021-2025
- Energy Research
- 2021-2025
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Jose Antonio Magdalena; Mercedes Llamas; Cristina González-Fernández; Silvia Greses; +1 AuthorsJose Antonio Magdalena; Mercedes Llamas; Cristina González-Fernández; Silvia Greses; Elia Tomás-Pejó;pmid: 32835976
Short-chain fatty acids (SCFAs) are considered building blocks for bioproducts in the so-called carboxylate platform. These compounds can be sustainably produced via anaerobic fermentation (AF) of organic substrates, such as microalgae. However, SCFAs bioconversion efficiency is hampered by the hard cell wall of some microalgae. In this study, one thermal and two enzymatic pretreatments (carbohydrases and proteases) were employed to enhance Chlorella vulgaris biomass solubilization prior to AF. Pretreated and non-pretreated microalgae were assessed in continuous stirred tank reactors (CSTRs) for SCFAs production. Aiming to understand microorganisms' roles in AF depending on the employed substrate, not only bioconversion yields into SCFAs were evaluated but microbial communities were thoroughly characterized. Proteins were responsible for the inherent limitation of raw biomass conversion into SCFAs. Indeed, the proteolytic pretreatment resulted in the highest bioconversion (33.4% SCFAs-COD/CODin), displaying a 4-fold enhancement compared with raw biomass. Population dynamics revealed a microbial biodiversity loss along the AF regardless of the applied pretreatment, evidencing that the imposed operational conditions specialized the microbial community. In fact, a reduced abundance in Euryarchaeota phylum explained the low methanogenic activity, implying SCFAs accumulation. The bacterial community developed in the reactors fed with pretreated microalgae exhibited high acidogenic activities, being dominated by Firmicutes and Bacteroidetes. Firmicutes was by far the dominant phylum when using protease (65% relative abundance) while Bacteroidetes was prevailing in the reactor fed with carbohydrase-pretreated microalgae biomass (40% relative abundance). This fact indicated that the applied pretreatment and macromolecule solubilization have a strong effect on microbial distribution and therefore in SCFAs bioconversion yields.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2020.127942&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu34 citations 34 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2020.127942&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Springer Science and Business Media LLC Authors: Antonio D. Moreno; Cristina González-Fernández; Elia Tomás-Pejó;AbstractIncreasing yeast robustness against lignocellulosic-derived inhibitors and insoluble solids in bioethanol production is essential for the transition to a bio-based economy. This work evaluates the effect exerted by insoluble solids on yeast tolerance to inhibitory compounds, which is crucial in high gravity processes. Adaptive laboratory evolution (ALE) was applied on a xylose-fermentingSaccharomyces cerevisiaestrain to simultaneously increase the tolerance to lignocellulosic inhibitors and insoluble solids. The evolved strain gave rise to a fivefold increase in bioethanol yield in fermentation experiments with high concentration of inhibitors and 10% (w/v) of water insoluble solids. This strain also produced 5% (P > 0.01) more ethanol than the parental in simultaneous saccharification and fermentation of steam-exploded wheat straw, mainly due to an increased xylose consumption. In response to the stress conditions (solids and inhibitors) imposed in ALE, cells induced the expression of genes related to cell wall integrity (SRL1,CWP2,WSC2andWSC4) and general stress response (e.g.,CDC5,DUN1,CTT1,GRE1), simultaneously repressing genes related to protein synthesis and iron transport and homeostasis (e.g.,FTR1,ARN1,FRE1), ultimately leading to the improved phenotype. These results contribute towards understanding molecular mechanisms that cells might use to convert lignocellulosic substrates effectively.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-021-04554-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-021-04554-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Milan Malhotra; Kaoutar Aboudi; Lakshmi Pisharody; Ayush Singh; J. Rajesh Banu; Shashi Kant Bhatia; Sunita Varjani; Sunil Kumar; Cristina González-Fernández; Sumant Kumar; Rajesh Singh; Vinay Kumar Tyagi;Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112642&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu49 citations 49 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112642&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Antonio David Moreno; José Antonio Magdalena; José Miguel Oliva; Silvia Greses; Caterina Coll Lozano; Marcos Latorre-Sánchez; María José Negro; Ana Susmozas; Raquel Iglesias; Mercedes Llamas; Elia Tomás-Pejó; Cristina González-Fernández;Abstract The organic fraction of municipal waste (OFMW), source-sorted (SS-OFMW) and non-sorted (NS-OFMW), was used as raw material for the sequential production of bioethanol and biogas. Non-isothermal and simultaneous saccharification and fermentation (NSSF) resulted in maximum ethanol concentrations of 51 g/L and 26 g/L for SS-OFMW and NS-OFMW samples, showing overall process yields of up to 80 % and 59 %, respectively, even without subjecting substrate to hydrothermal pretreatment. Subsequently, the solid residues resulting from the fermentation were further subjected to anaerobic digestion (AD), showing a methanogenic potential of 384 ± 6 mL CH4/g of volatile solids (VSin) and 322 ± 3 mL CH4/g VSin, respectively. These methane yields were similar or even higher to those obtained when using non-fermented OFMW substrates (SS-OFMW: 380 ± 18 mL CH4/g VSin and NS-OFMW: 239 ± 4 mL CH4/g VSin), highlighting NSSF as a beneficial step to enhance methane yields during AD. Overall, bioconversion of OFMW would benefit from coupling bioethanol and biogas production since the biogas produced might be further employed as bioenergy source to compensate operational costs.
Process Safety and E... arrow_drop_down Process Safety and Environmental ProtectionArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.psep.2020.09.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu39 citations 39 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Process Safety and E... arrow_drop_down Process Safety and Environmental ProtectionArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.psep.2020.09.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Silvia Greses; Cristina González-Fernández; Elia Tomás-Pejó; Mercedes Llamas;pmid: 34134053
Unspecific microorganisms consortia are normally used in anaerobic biodegradation of solid wastes. However, these consortia can be tuned to optimally obtain determined bioproducts. In this study, high value-added products and biogas were obtained via an innovative two-stage anaerobic bioprocess from microalgae biomass. The anaerobic fermentation (AF) entailed the production of short-chain fatty acids (SCFAs) and subsequently, only the solid spent of AF effluent was valorized for methane production via conventional anaerobic digestion (AD). Applied conditions in AF (25 °C, HRT 8 days) favored Firmicutes predominance (64%) enabling a conversion efficiency of 32.1% g SCFAs-COD/g CODin. Opposite, a wider microbial biodiversity was determined in the AD reactor (35 °C, HRT 20 days), being mainly composed by Firmicutes (28.6%), Euryarchaeota (17.7%) and Proteobacteria (15.3%). AD of the AF-solid spent reached 168.9 mL CH4 /g CODin. Strikingly, operational conditions imposed mediated a microbial specialization that maximized product output.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2021.125387&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 32 citations 32 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2021.125387&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 TurkeyPublisher:Elsevier BV Authors: Demiray, Ekin; González-Fernández, Cristina; Tomás-Pejó, Elia;Lignocellulosic biomass utilization is challenging due to the presence of several carbon sources. Thus, microorganisms with different sugar preferences can be used in co-cultures to overcome this hurdle. This work addressed the simultaneous production of lactic acid (LA) from C5 sugars (i.e., xylose) and bioethanol from C6 (i. e., glucose/fructose) with Bacillus coagulans and Kluyveromyces marxianus, respectively. Sequential inoculation and co-inoculation of microorganisms were also compared. At pH 6, co-inoculation in synthetic media resulted in higher bioethanol (0.51 g/g) and LA (0.98 g/g) yields than sequential inoculation. Furthermore, when using lignocellulosic hydrolysates obtained after enzymatic hydrolysis of 20 % w/w pomegranate peels (PP), 92 % and 98 % of the theoretical maximum bioethanol and LA, respectively, were obtained. This study demonstrated the efficient bioethanol/LA co-generation despite the different optimum fermentation conditions of microorganisms and will pave the way to consider co-cultures for improving process efficiency in lignocellulosic biorefineries.
Bioresource Technolo... arrow_drop_down Bioresource Technology ReportsArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefAperta - TÜBİTAK Açık ArşiviOther literature type . 2024License: CC BYData sources: Aperta - TÜBİTAK Açık Arşiviadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biteb.2024.101808&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Bioresource Technolo... arrow_drop_down Bioresource Technology ReportsArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefAperta - TÜBİTAK Açık ArşiviOther literature type . 2024License: CC BYData sources: Aperta - TÜBİTAK Açık Arşiviadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biteb.2024.101808&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 FrancePublisher:Elsevier BV Funded by:EC | PRODIGIOEC| PRODIGIOAuthors: Greses, Silvia; Jimenez, Julie; González-Fernández, Cristina; Steyer, Jean-Philippe;pmid: 38518882
Anaerobic digestion (AD) of microalgae is an intriguing approach for bioenergy production. The scaling-up of AD presents a significant challenge due to the systematic efficiency losses related to process instabilities. To gain a comprehensive understanding of AD behavior, this study assessed a modified version of the anaerobic digestion model No1 (ADM1) + Contois kinetics to represent microalgae AD impacted by overloading. To this end, two new inhibition functions were implemented: inhibition by acetate for acidogenesis/acetogenesis and total volatile fatty acids for hydrolysis. This proposed ADM1 modification (including Contois kinetics) simulated AD behavior during the stable, disturbed and recovery periods, showing that the inhibition functions described in the original ADM1 cannot explain the AD performance under one of the most common perturbations at industrial scale (overloading). The findings underscore the importance of refining the inhibitions present in original ADM1 to better capture and predict the complexities of microalgae AD against overloading.
Institut National de... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2024License: CC BY NCFull-Text: https://hal.inrae.fr/hal-04614166Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2024.130625&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Institut National de... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2024License: CC BY NCFull-Text: https://hal.inrae.fr/hal-04614166Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2024.130625&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Silvia, Greses; Elia, Tomás-Pejó; Giorgos, Markou; Cristina, González-Fernández;pmid: 34999439
Dry anaerobic digestion (D-AD) generates nitrogen-rich effluents that are normally neglected in the circular bioeconomy. The high turbidity and ammonium content hamper nitrogen recovery from these effluents via biological processes, such as microalgae culture. The goal of this study was to demonstrate microalgae growth viability in high-strength D-AD effluents in order to recover nitrogen (N) as microalgae biomass. According to the experimental factorial design conducted in batch reactors, ammonium was identified as the critical inhibitory compound for microalgae growth while turbidity did not exhibit a significantly negative effect. Instead, turbidity resulted advantageous since it promoted high nitrogen uptake rates and biomass production. The presence of organic turbidity resulted in a positive effect that boosted Chlorella growth in a stream with higher ammonium (350 mg NH4+-N L-1) and turbidity (175 NTU) than the inhibition thresholds reported in the literature, reaching 98.7% of N recovery as microalgae biomass. When microalgae culture was scaled up in a photobioreactor operated in continuous mode, microalgae biomass was effectively produced while recovering 100% of N at a hydraulic retention time of 10 days. By imposing long exposure times and high turbidity, Chlorella adaptation to high-strength D-AD effluent resulted in high N uptake and biomass production. This study demonstrated not only the most influencing factor and the optimal NH4+-N and turbidity combination, but also the viability of using D-AD effluents as culture media for microalgae biomass production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2021.12.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2021.12.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:Elsevier BV Silvia Greses; Nicola De Bernardini; Laura Treu; Stefano Campanaro; Cristina González-Fernández;Added-value chemicals production via food waste (FWs) valorization using open-mixed cultures is an emerging approach to replace petrochemical-based compounds. Nevertheless, the effects of operational parameters on the product spectrum remain uncertain given the wide number of co-occurring species and metabolisms. In this study, the identification of 58 metagenome-assembled genomes and their investigation assessed the effect of slight pH variations on microbial dynamics and the corresponding functions when FWs were subjected to anaerobic fermentation (AF) in 1-L continuous stirred tank reactors at 25 °C. The initial pH of 6.5 promoted a microbial community involved in acetate, butyrate and ethanol production, mediated by Bifidobacterium subtile IE007 and Eubacteriaceae IE027 as main species. A slight pH decrease to 6.1 shaped microbial functions that resulted in caproate and H2 production, increasing the relevance of Eubacteriaceae IE037 role. This study elucidated the strong pH effect on product outputs when minimal variations take place in AF.
Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Università di PadovaArticle . 2023License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2023.128920&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 7visibility views 7 download downloads 5 Powered bymore_vert Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Università di PadovaArticle . 2023License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2023.128920&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Mercedes Llamas; Silvia Greses; Jose Antonio Magdalena; Cristina González-Fernández; +1 AuthorsMercedes Llamas; Silvia Greses; Jose Antonio Magdalena; Cristina González-Fernández; Elia Tomás-Pejó;pmid: 37460020
Global reliance on fossil oil should shift to cleaner alternatives to get a decarbonized society. One option to achieve this ambitious goal is the use of biochemicals produced from lignocellulosic biomass (LCB). The inherent low biodegradability of LCB and the inhibitory compounds that might be released during pretreatment are two main challenges for LCB valorization. At microbiological level, constraints are mostly linked to the need for axenic cultures and the preference for certain carbon sources (i.e., glucose). To cope with these issues, this review focuses on efficient LCB conversion via the sugar platform as well as an innovative carboxylate platform taking advantage of the co-cultivation of microorganisms. This review discusses novel trends in the use of microbial communities and co-cultures aiming at different bioproducts co-generation in single reactors as well as in sequential bioprocess combination. The outlook and further perspectives of these alternatives have been outlined for future successful development.
Institut National de... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2023Full-Text: https://hal.inrae.fr/hal-04264232Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2023.129499&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Institut National de... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2023Full-Text: https://hal.inrae.fr/hal-04264232Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2023.129499&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Jose Antonio Magdalena; Mercedes Llamas; Cristina González-Fernández; Silvia Greses; +1 AuthorsJose Antonio Magdalena; Mercedes Llamas; Cristina González-Fernández; Silvia Greses; Elia Tomás-Pejó;pmid: 32835976
Short-chain fatty acids (SCFAs) are considered building blocks for bioproducts in the so-called carboxylate platform. These compounds can be sustainably produced via anaerobic fermentation (AF) of organic substrates, such as microalgae. However, SCFAs bioconversion efficiency is hampered by the hard cell wall of some microalgae. In this study, one thermal and two enzymatic pretreatments (carbohydrases and proteases) were employed to enhance Chlorella vulgaris biomass solubilization prior to AF. Pretreated and non-pretreated microalgae were assessed in continuous stirred tank reactors (CSTRs) for SCFAs production. Aiming to understand microorganisms' roles in AF depending on the employed substrate, not only bioconversion yields into SCFAs were evaluated but microbial communities were thoroughly characterized. Proteins were responsible for the inherent limitation of raw biomass conversion into SCFAs. Indeed, the proteolytic pretreatment resulted in the highest bioconversion (33.4% SCFAs-COD/CODin), displaying a 4-fold enhancement compared with raw biomass. Population dynamics revealed a microbial biodiversity loss along the AF regardless of the applied pretreatment, evidencing that the imposed operational conditions specialized the microbial community. In fact, a reduced abundance in Euryarchaeota phylum explained the low methanogenic activity, implying SCFAs accumulation. The bacterial community developed in the reactors fed with pretreated microalgae exhibited high acidogenic activities, being dominated by Firmicutes and Bacteroidetes. Firmicutes was by far the dominant phylum when using protease (65% relative abundance) while Bacteroidetes was prevailing in the reactor fed with carbohydrase-pretreated microalgae biomass (40% relative abundance). This fact indicated that the applied pretreatment and macromolecule solubilization have a strong effect on microbial distribution and therefore in SCFAs bioconversion yields.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2020.127942&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu34 citations 34 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2020.127942&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Springer Science and Business Media LLC Authors: Antonio D. Moreno; Cristina González-Fernández; Elia Tomás-Pejó;AbstractIncreasing yeast robustness against lignocellulosic-derived inhibitors and insoluble solids in bioethanol production is essential for the transition to a bio-based economy. This work evaluates the effect exerted by insoluble solids on yeast tolerance to inhibitory compounds, which is crucial in high gravity processes. Adaptive laboratory evolution (ALE) was applied on a xylose-fermentingSaccharomyces cerevisiaestrain to simultaneously increase the tolerance to lignocellulosic inhibitors and insoluble solids. The evolved strain gave rise to a fivefold increase in bioethanol yield in fermentation experiments with high concentration of inhibitors and 10% (w/v) of water insoluble solids. This strain also produced 5% (P > 0.01) more ethanol than the parental in simultaneous saccharification and fermentation of steam-exploded wheat straw, mainly due to an increased xylose consumption. In response to the stress conditions (solids and inhibitors) imposed in ALE, cells induced the expression of genes related to cell wall integrity (SRL1,CWP2,WSC2andWSC4) and general stress response (e.g.,CDC5,DUN1,CTT1,GRE1), simultaneously repressing genes related to protein synthesis and iron transport and homeostasis (e.g.,FTR1,ARN1,FRE1), ultimately leading to the improved phenotype. These results contribute towards understanding molecular mechanisms that cells might use to convert lignocellulosic substrates effectively.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-021-04554-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-021-04554-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Milan Malhotra; Kaoutar Aboudi; Lakshmi Pisharody; Ayush Singh; J. Rajesh Banu; Shashi Kant Bhatia; Sunita Varjani; Sunil Kumar; Cristina González-Fernández; Sumant Kumar; Rajesh Singh; Vinay Kumar Tyagi;Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112642&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu49 citations 49 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112642&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Antonio David Moreno; José Antonio Magdalena; José Miguel Oliva; Silvia Greses; Caterina Coll Lozano; Marcos Latorre-Sánchez; María José Negro; Ana Susmozas; Raquel Iglesias; Mercedes Llamas; Elia Tomás-Pejó; Cristina González-Fernández;Abstract The organic fraction of municipal waste (OFMW), source-sorted (SS-OFMW) and non-sorted (NS-OFMW), was used as raw material for the sequential production of bioethanol and biogas. Non-isothermal and simultaneous saccharification and fermentation (NSSF) resulted in maximum ethanol concentrations of 51 g/L and 26 g/L for SS-OFMW and NS-OFMW samples, showing overall process yields of up to 80 % and 59 %, respectively, even without subjecting substrate to hydrothermal pretreatment. Subsequently, the solid residues resulting from the fermentation were further subjected to anaerobic digestion (AD), showing a methanogenic potential of 384 ± 6 mL CH4/g of volatile solids (VSin) and 322 ± 3 mL CH4/g VSin, respectively. These methane yields were similar or even higher to those obtained when using non-fermented OFMW substrates (SS-OFMW: 380 ± 18 mL CH4/g VSin and NS-OFMW: 239 ± 4 mL CH4/g VSin), highlighting NSSF as a beneficial step to enhance methane yields during AD. Overall, bioconversion of OFMW would benefit from coupling bioethanol and biogas production since the biogas produced might be further employed as bioenergy source to compensate operational costs.
Process Safety and E... arrow_drop_down Process Safety and Environmental ProtectionArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.psep.2020.09.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu39 citations 39 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Process Safety and E... arrow_drop_down Process Safety and Environmental ProtectionArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.psep.2020.09.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Silvia Greses; Cristina González-Fernández; Elia Tomás-Pejó; Mercedes Llamas;pmid: 34134053
Unspecific microorganisms consortia are normally used in anaerobic biodegradation of solid wastes. However, these consortia can be tuned to optimally obtain determined bioproducts. In this study, high value-added products and biogas were obtained via an innovative two-stage anaerobic bioprocess from microalgae biomass. The anaerobic fermentation (AF) entailed the production of short-chain fatty acids (SCFAs) and subsequently, only the solid spent of AF effluent was valorized for methane production via conventional anaerobic digestion (AD). Applied conditions in AF (25 °C, HRT 8 days) favored Firmicutes predominance (64%) enabling a conversion efficiency of 32.1% g SCFAs-COD/g CODin. Opposite, a wider microbial biodiversity was determined in the AD reactor (35 °C, HRT 20 days), being mainly composed by Firmicutes (28.6%), Euryarchaeota (17.7%) and Proteobacteria (15.3%). AD of the AF-solid spent reached 168.9 mL CH4 /g CODin. Strikingly, operational conditions imposed mediated a microbial specialization that maximized product output.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2021.125387&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 32 citations 32 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2021.125387&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 TurkeyPublisher:Elsevier BV Authors: Demiray, Ekin; González-Fernández, Cristina; Tomás-Pejó, Elia;Lignocellulosic biomass utilization is challenging due to the presence of several carbon sources. Thus, microorganisms with different sugar preferences can be used in co-cultures to overcome this hurdle. This work addressed the simultaneous production of lactic acid (LA) from C5 sugars (i.e., xylose) and bioethanol from C6 (i. e., glucose/fructose) with Bacillus coagulans and Kluyveromyces marxianus, respectively. Sequential inoculation and co-inoculation of microorganisms were also compared. At pH 6, co-inoculation in synthetic media resulted in higher bioethanol (0.51 g/g) and LA (0.98 g/g) yields than sequential inoculation. Furthermore, when using lignocellulosic hydrolysates obtained after enzymatic hydrolysis of 20 % w/w pomegranate peels (PP), 92 % and 98 % of the theoretical maximum bioethanol and LA, respectively, were obtained. This study demonstrated the efficient bioethanol/LA co-generation despite the different optimum fermentation conditions of microorganisms and will pave the way to consider co-cultures for improving process efficiency in lignocellulosic biorefineries.
Bioresource Technolo... arrow_drop_down Bioresource Technology ReportsArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefAperta - TÜBİTAK Açık ArşiviOther literature type . 2024License: CC BYData sources: Aperta - TÜBİTAK Açık Arşiviadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biteb.2024.101808&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Bioresource Technolo... arrow_drop_down Bioresource Technology ReportsArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefAperta - TÜBİTAK Açık ArşiviOther literature type . 2024License: CC BYData sources: Aperta - TÜBİTAK Açık Arşiviadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biteb.2024.101808&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 FrancePublisher:Elsevier BV Funded by:EC | PRODIGIOEC| PRODIGIOAuthors: Greses, Silvia; Jimenez, Julie; González-Fernández, Cristina; Steyer, Jean-Philippe;pmid: 38518882
Anaerobic digestion (AD) of microalgae is an intriguing approach for bioenergy production. The scaling-up of AD presents a significant challenge due to the systematic efficiency losses related to process instabilities. To gain a comprehensive understanding of AD behavior, this study assessed a modified version of the anaerobic digestion model No1 (ADM1) + Contois kinetics to represent microalgae AD impacted by overloading. To this end, two new inhibition functions were implemented: inhibition by acetate for acidogenesis/acetogenesis and total volatile fatty acids for hydrolysis. This proposed ADM1 modification (including Contois kinetics) simulated AD behavior during the stable, disturbed and recovery periods, showing that the inhibition functions described in the original ADM1 cannot explain the AD performance under one of the most common perturbations at industrial scale (overloading). The findings underscore the importance of refining the inhibitions present in original ADM1 to better capture and predict the complexities of microalgae AD against overloading.
Institut National de... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2024License: CC BY NCFull-Text: https://hal.inrae.fr/hal-04614166Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2024.130625&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Institut National de... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2024License: CC BY NCFull-Text: https://hal.inrae.fr/hal-04614166Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2024.130625&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Silvia, Greses; Elia, Tomás-Pejó; Giorgos, Markou; Cristina, González-Fernández;pmid: 34999439
Dry anaerobic digestion (D-AD) generates nitrogen-rich effluents that are normally neglected in the circular bioeconomy. The high turbidity and ammonium content hamper nitrogen recovery from these effluents via biological processes, such as microalgae culture. The goal of this study was to demonstrate microalgae growth viability in high-strength D-AD effluents in order to recover nitrogen (N) as microalgae biomass. According to the experimental factorial design conducted in batch reactors, ammonium was identified as the critical inhibitory compound for microalgae growth while turbidity did not exhibit a significantly negative effect. Instead, turbidity resulted advantageous since it promoted high nitrogen uptake rates and biomass production. The presence of organic turbidity resulted in a positive effect that boosted Chlorella growth in a stream with higher ammonium (350 mg NH4+-N L-1) and turbidity (175 NTU) than the inhibition thresholds reported in the literature, reaching 98.7% of N recovery as microalgae biomass. When microalgae culture was scaled up in a photobioreactor operated in continuous mode, microalgae biomass was effectively produced while recovering 100% of N at a hydraulic retention time of 10 days. By imposing long exposure times and high turbidity, Chlorella adaptation to high-strength D-AD effluent resulted in high N uptake and biomass production. This study demonstrated not only the most influencing factor and the optimal NH4+-N and turbidity combination, but also the viability of using D-AD effluents as culture media for microalgae biomass production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2021.12.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2021.12.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:Elsevier BV Silvia Greses; Nicola De Bernardini; Laura Treu; Stefano Campanaro; Cristina González-Fernández;Added-value chemicals production via food waste (FWs) valorization using open-mixed cultures is an emerging approach to replace petrochemical-based compounds. Nevertheless, the effects of operational parameters on the product spectrum remain uncertain given the wide number of co-occurring species and metabolisms. In this study, the identification of 58 metagenome-assembled genomes and their investigation assessed the effect of slight pH variations on microbial dynamics and the corresponding functions when FWs were subjected to anaerobic fermentation (AF) in 1-L continuous stirred tank reactors at 25 °C. The initial pH of 6.5 promoted a microbial community involved in acetate, butyrate and ethanol production, mediated by Bifidobacterium subtile IE007 and Eubacteriaceae IE027 as main species. A slight pH decrease to 6.1 shaped microbial functions that resulted in caproate and H2 production, increasing the relevance of Eubacteriaceae IE037 role. This study elucidated the strong pH effect on product outputs when minimal variations take place in AF.
Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Università di PadovaArticle . 2023License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2023.128920&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 7visibility views 7 download downloads 5 Powered bymore_vert Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Università di PadovaArticle . 2023License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2023.128920&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Mercedes Llamas; Silvia Greses; Jose Antonio Magdalena; Cristina González-Fernández; +1 AuthorsMercedes Llamas; Silvia Greses; Jose Antonio Magdalena; Cristina González-Fernández; Elia Tomás-Pejó;pmid: 37460020
Global reliance on fossil oil should shift to cleaner alternatives to get a decarbonized society. One option to achieve this ambitious goal is the use of biochemicals produced from lignocellulosic biomass (LCB). The inherent low biodegradability of LCB and the inhibitory compounds that might be released during pretreatment are two main challenges for LCB valorization. At microbiological level, constraints are mostly linked to the need for axenic cultures and the preference for certain carbon sources (i.e., glucose). To cope with these issues, this review focuses on efficient LCB conversion via the sugar platform as well as an innovative carboxylate platform taking advantage of the co-cultivation of microorganisms. This review discusses novel trends in the use of microbial communities and co-cultures aiming at different bioproducts co-generation in single reactors as well as in sequential bioprocess combination. The outlook and further perspectives of these alternatives have been outlined for future successful development.
Institut National de... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2023Full-Text: https://hal.inrae.fr/hal-04264232Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2023.129499&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Institut National de... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2023Full-Text: https://hal.inrae.fr/hal-04264232Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2023.129499&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu