- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Conference object , Article 2020 Italy, FinlandPublisher:IEEE Authors: Trigona, Carlo; Palosaari, Jaakko; Bai, Yang;handle: 20.500.11769/460493
In this paper, we present a nonlinear energy harvester that is based on a "soft-mode" nonlinearity and is able to work in presence of a truly random excitations. The proposed harvester is configured with a cantilever beam structure, and, at the tip is a cylindrical container filled with freely moving iron balls. The nonlinearity is implemented through the container, as a piecewise function. This structure, in presence of noise, can be assumed as a second order (mass-spring-damper) nonlinear system where the length of the spring changes as a function of external vibration. As will be demonstrated, this nonlinearity will improve the performance of the energy harvester under random excitation. In comparison, the conventional approach based on resonant oscillators is able to collect energy only around its mechanical natural frequency, while the solution pursued here will present a wide spectrum of response. Furthermore, the implemented nonlinearity here does not possess any barrier of potential or mechanical threshold. Because of this, it is able to work at weak signal levels and without mixture of periodic signals. A piezoelectric element has been used to convert the mechanical vibrations into an electrical signal. The system has been modeled and simulated. Experimental validations have been carried out, demonstrating the suitability of the proposed solution.
IRIS - Università de... arrow_drop_down University of Oulu Repository - JultikaArticle . 2020Data sources: University of Oulu Repository - Jultikahttps://doi.org/10.1109/i2mtc4...Conference object . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/i2mtc43012.2020.9128595&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert IRIS - Università de... arrow_drop_down University of Oulu Repository - JultikaArticle . 2020Data sources: University of Oulu Repository - Jultikahttps://doi.org/10.1109/i2mtc4...Conference object . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/i2mtc43012.2020.9128595&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Wiley Pavel Tofel; Pavel Tofel; Jaakko Palosaari; Jari Juuti; Yang Bai;Single‐source energy harvesters that convert solar, thermal, or kinetic energy into electricity for small‐scale smart electronic devices and wireless sensor networks have been under development for decades. When an individual energy source is insufficient for the required electricity generation, multi‐source energy harvesting is indicated. Current technology usually combines different individual harvesters to achieve the capability of harvesting multiple energy sources simultaneously. However, this increases the overall size of the multi‐source harvester, but in microelectronics miniaturization is a critical consideration. Herein, an advanced approach is demonstrated to solve this issue. A single‐material energy harvesting/sensing device is fabricated using a (K0.5Na0.5)NbO3‐Ba(Ni0.5Nb0.5)O3–Δ (KNBNNO) ceramic as the sole energy‐conversion component. This single‐material component is able simultaneously to harvest or sense solar (visible light), thermal (temperature fluctuation), and kinetic (vibration) energy sources by incorporating its photovoltaic, pyroelectric, and piezoelectric effects, respectively. The interactions between different energy conversion effects, e.g., the influence of dynamic behavior on the photovoltaic effect and alternating current–direct current (AC–DC) signal trade‐offs, are assessed and discussed. This research is expected to stimulate energy‐efficient design of electronic devices by integrating both harvesting and sensing functions in the same material/component.
Energy Technology arrow_drop_down Energy TechnologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202000461&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Technology arrow_drop_down Energy TechnologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202000461&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Finland, FinlandPublisher:Wiley Funded by:EC | UNIFYEC| UNIFYAuthors: Anandakrishnan, Sivagnana Sundaram; Yadav, Suhas; Tabeshfar, Mohadeseh; Balanov, Vasilii; +5 AuthorsAnandakrishnan, Sivagnana Sundaram; Yadav, Suhas; Tabeshfar, Mohadeseh; Balanov, Vasilii; Kaushalya, Tharaka; Nelo, Mikko; Peräntie, Jani; Juuti, Jari; Bai, Yang;AbstractPiezoelectric materials are widely used in electromechanical coupling components including actuators, kinetic sensors, and transducers, as well as in kinetic energy harvesters that convert mechanical energy into electricity and thus can power wireless sensing networks and the Internet of Things (IoT). Because the number of deployed energy harvesting powered systems is projected to explode, the supply of piezoelectric energy harvesters is also expected to be boosted. However, despite being able to produce green electricity from the ambient environment, high‐performance piezoelectrics (i.e., piezoelectric ceramics) are energy intensive in research and manufacturing. For instance, the design of new piezoceramics relies on experimental trials, which need high process temperatures and thus cause high consumption and waste of energy. Also, the dominant element in high‐performance piezoceramics is hazardous Pb, but substituting Pb with other nonhazardous elements may lead to a compromise of performance, extending the energy payback time and imposing a question of trade‐offs between energy and environmental benefits. Meanwhile, piezoceramics are not well recycled, raising even more issues in terms of energy saving and environmental protection. This paper discusses these issues and then proposes solutions and provides perspectives to the future development of different aspects of piezoceramic research and industry.
Global Challenges arrow_drop_down University of Oulu Repository - JultikaArticle . 2023Data sources: University of Oulu Repository - Jultikaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/gch2.202300061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Global Challenges arrow_drop_down University of Oulu Repository - JultikaArticle . 2023Data sources: University of Oulu Repository - Jultikaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/gch2.202300061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Spain, United Kingdom, Germany, United Kingdom, United Kingdom, Italy, United States, Italy, United Kingdom, Italy, United Kingdom, United Kingdom, Australia, United Kingdom, France, FinlandPublisher:IOP Publishing Funded by:EC | GrapheneCore3, EC | WiPLASH, DFG | GLECS - Graphene enabled ... +7 projectsEC| GrapheneCore3 ,EC| WiPLASH ,DFG| GLECS - Graphene enabled flexible high-frequency electronic circuits ,UKRI| Photocapacitors for Ambient Energy Applications ,UKRI| Optogenetics-inspired photoelectric memories based on flexible nanogap electrodes ,EC| 2D-EPL ,UKRI| KiriTEG - Innovative manufacturing approach to making flexible thermal energy harvesting devices ,MIUR ,DFG ,EC| GreEnergyVincenzo Pecunia; S Ravi P Silva; Jamie D Phillips; Elisa Artegiani; Alessandro Romeo; Hongjae Shim; Jongsung Park; Jin Hyeok Kim; Jae Sung Yun; Gregory C Welch; Bryon W Larson; Myles Creran; Audrey Laventure; Kezia Sasitharan; Natalie Flores-Diaz; Marina Freitag; Jie Xu; Thomas M Brown; Benxuan Li; Yiwen Wang; Zhe Li; Bo Hou; Behrang H Hamadani; Emmanuel Defay; Veronika Kovacova; Sebastjan Glinsek; Sohini Kar-Narayan; Yang Bai; Da Bin Kim; Yong Soo Cho; Agnė Žukauskaitė; Stephan Barth; Feng Ru Fan; Wenzhuo Wu; Pedro Costa; Javier del Campo; Senentxu Lanceros-Mendez; Hamideh Khanbareh; Zhong Lin Wang; Xiong Pu; Caofeng Pan; Renyun Zhang; Jing Xu; Xun Zhao; Yihao Zhou; Guorui Chen; Trinny Tat; Il Woo Ock; Jun Chen; Sontyana Adonijah Graham; Jae Su Yu; Ling-Zhi Huang; Dan-Dan Li; Ming-Guo Ma; Jikui Luo; Feng Jiang; Pooi See Lee; Bhaskar Dudem; Venkateswaran Vivekananthan; Mercouri G Kanatzidis; Hongyao Xie; Xiao-Lei Shi; Zhi-Gang Chen; Alexander Riss; Michael Parzer; Fabian Garmroudi; Ernst Bauer; Duncan Zavanelli; Madison K Brod; Muath Al Malki; G Jeffrey Snyder; Kirill Kovnir; Susan M Kauzlarich; Ctirad Uher; Jinle Lan; Yuan-Hua Lin; Luis Fonseca; Alex Morata; Marisol Martin-Gonzalez; Giovanni Pennelli; David Berthebaud; Takao Mori; Robert J Quinn; Jan-Willem G Bos; Christophe Candolfi; Patrick Gougeon; Philippe Gall; Bertrand Lenoir; Deepak Venkateshvaran; Bernd Kaestner; Yunshan Zhao; Gang Zhang; Yoshiyuki Nonoguchi; Bob C Schroeder; Emiliano Bilotti; Akanksha K Menon; Jeffrey J Urban; Oliver Fenwick; Ceyla Asker; A Alec Talin; Thomas D Anthopoulos; Tommaso Losi; Fabrizio Viola; Mario Caironi; Dimitra G Georgiadou; Li Ding; Lian-Mao Peng; Zhenxing Wang; Muh-Dey Wei; Renato Negra; Max C Lemme; Mahmoud Wagih; Steve Beeby; Taofeeq Ibn-Mohammed; K B Mustapha; A P Joshi;handle: 10261/349460 , 11562/1111772 , 11584/376343 , 10023/28295
AbstractAmbient energy harvesting has great potential to contribute to sustainable development and address growing environmental challenges. Converting waste energy from energy-intensive processes and systems (e.g. combustion engines and furnaces) is crucial to reducing their environmental impact and achieving net-zero emissions. Compact energy harvesters will also be key to powering the exponentially growing smart devices ecosystem that is part of the Internet of Things, thus enabling futuristic applications that can improve our quality of life (e.g. smart homes, smart cities, smart manufacturing, and smart healthcare). To achieve these goals, innovative materials are needed to efficiently convert ambient energy into electricity through various physical mechanisms, such as the photovoltaic effect, thermoelectricity, piezoelectricity, triboelectricity, and radiofrequency wireless power transfer. By bringing together the perspectives of experts in various types of energy harvesting materials, this Roadmap provides extensive insights into recent advances and present challenges in the field. Additionally, the Roadmap analyses the key performance metrics of these technologies in relation to their ultimate energy conversion limits. Building on these insights, the Roadmap outlines promising directions for future research to fully harness the potential of energy harvesting materials for green energy anytime, anywhere.
IRIS - Università de... arrow_drop_down IRIS - Università degli Studi di VeronaArticle . 2023License: CC 0Full-Text: https://iris.univr.it/bitstream/11562/1111772/2/Pecunia_2023_J._Phys._Mater._6_042501.pdfData sources: IRIS - Università degli Studi di Veronae-Prints SotonArticle . 2023License: CC BYFull-Text: https://eprints.soton.ac.uk/478217/1/Pecunia_et_al_2023_J._Phys._Mater._10.1088_2515_7639_acc550.pdfData sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/9bk579nbData sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2023License: CC BYFull-Text: https://hdl.handle.net/10023/28295Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Oulu Repository - JultikaArticle . 2023Data sources: University of Oulu Repository - JultikaThe University of Manchester - Institutional RepositoryArticle . 2023Data sources: The University of Manchester - Institutional RepositoryeScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaPublikationsserver der RWTH Aachen UniversityArticle . 2023Data sources: Publikationsserver der RWTH Aachen UniversitySt Andrews Research RepositoryArticle . 2023 . Peer-reviewedData sources: St Andrews Research RepositoryQueensland University of Technology: QUT ePrintsArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2515-7639/acc550&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 62 citations 62 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 57visibility views 57 download downloads 47 Powered bymore_vert IRIS - Università de... arrow_drop_down IRIS - Università degli Studi di VeronaArticle . 2023License: CC 0Full-Text: https://iris.univr.it/bitstream/11562/1111772/2/Pecunia_2023_J._Phys._Mater._6_042501.pdfData sources: IRIS - Università degli Studi di Veronae-Prints SotonArticle . 2023License: CC BYFull-Text: https://eprints.soton.ac.uk/478217/1/Pecunia_et_al_2023_J._Phys._Mater._10.1088_2515_7639_acc550.pdfData sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/9bk579nbData sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2023License: CC BYFull-Text: https://hdl.handle.net/10023/28295Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Oulu Repository - JultikaArticle . 2023Data sources: University of Oulu Repository - JultikaThe University of Manchester - Institutional RepositoryArticle . 2023Data sources: The University of Manchester - Institutional RepositoryeScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaPublikationsserver der RWTH Aachen UniversityArticle . 2023Data sources: Publikationsserver der RWTH Aachen UniversitySt Andrews Research RepositoryArticle . 2023 . Peer-reviewedData sources: St Andrews Research RepositoryQueensland University of Technology: QUT ePrintsArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2515-7639/acc550&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 FinlandPublisher:Wiley Funded by:AKA | Towards adaptive nanoelec...AKA| Towards adaptive nanoelectronic devices by mechanical control of ferroelectric domainsGaurav Vats; Jani Peräntie; Jari Juuti; Jan Seidel; Yang Bai;The concept of multisource energy harvesting (of light, kinetic, and thermal energy) using a single material has recently been proposed. Herein, the realization of this novel concept is discussed and insight into the electric field‐assisted modulation of photocurrent and pyroelectric current in a bandgap‐engineered ferroelectric KNBNNO ((K0.5Na0.5)NbO3‐2 mol% Ba(Ni0.5Nb0.5)O3−δ) is provided. Thereafter, direct current (DC) electrical modulation under the simultaneous inputs of light and thermal changes for photovoltaic and pyroelectric effects, respectively, is utilized to achieve several orders of increase in the output current density. This is attributed to a light‐assisted increase in the material's electrical conductivity and ferroelectric photovoltaic effect. The phenomena of electro–optic and thermo–electro–optic DC modulations are further used to propose two novel energy‐conversion cycles. The performance of both the proposed energy conversion cycles is compared with that of the Olsen cycle. The electro–optic and thermo–electro–optic cycles are found to harvest 7–10 times more energy than the Olsen cycle alone, respectively. Moreover, both energy‐conversion cycles offer broader flexibility and ease in operating conditions, thus paving a way toward the practical applications of multisource energy harvesting with a single material for enhanced energy‐conversion capability and device/system compactness.
Energy Technology arrow_drop_down University of Oulu Repository - JultikaArticle . 2020Data sources: University of Oulu Repository - JultikaEnergy TechnologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202000500&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Technology arrow_drop_down University of Oulu Repository - JultikaArticle . 2020Data sources: University of Oulu Repository - JultikaEnergy TechnologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202000500&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 FinlandPublisher:Wiley Funded by:AKA | Lead-free flexoelectric c..., EC | NextGEnergy, AKA | Lead-free flexoelectric c...AKA| Lead-free flexoelectric composites (LEAP) ,EC| NextGEnergy ,AKA| Lead-free flexoelectric composites (LEAP)Authors: Yang Bai; Heli Jantunen; Jari Juuti;pmid: 29877037
AbstractEnergy harvesting technology may be considered an ultimate solution to replace batteries and provide a long‐term power supply for wireless sensor networks. Looking back into its research history, individual energy harvesters for the conversion of single energy sources into electricity are developed first, followed by hybrid counterparts designed for use with multiple energy sources. Very recently, the concept of a truly multisource energy harvester built from only a single piece of material as the energy conversion component is proposed. This review, from the aspect of materials and device configurations, explains in detail a wide scope to give an overview of energy harvesting research. It covers single‐source devices including solar, thermal, kinetic and other types of energy harvesters, hybrid energy harvesting configurations for both single and multiple energy sources and single material, and multisource energy harvesters. It also includes the energy conversion principles of photovoltaic, electromagnetic, piezoelectric, triboelectric, electrostatic, electrostrictive, thermoelectric, pyroelectric, magnetostrictive, and dielectric devices. This is one of the most comprehensive reviews conducted to date, focusing on the entire energy harvesting research scene and providing a guide to seeking deeper and more specific research references and resources from every corner of the scientific community.
Advanced Materials arrow_drop_down University of Oulu Repository - JultikaArticle . 2018Data sources: University of Oulu Repository - JultikaAdvanced MaterialsArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adma.201707271&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 239 citations 239 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Advanced Materials arrow_drop_down University of Oulu Repository - JultikaArticle . 2018Data sources: University of Oulu Repository - JultikaAdvanced MaterialsArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adma.201707271&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 FinlandPublisher:Wiley Funded by:AKA | Towards adaptive nanoelec..., AKA | Lead-free flexoelectric c..., AKA | Lead-free flexoelectric c... +1 projectsAKA| Towards adaptive nanoelectronic devices by mechanical control of ferroelectric domains ,AKA| Lead-free flexoelectric composites (LEAP) ,AKA| Lead-free flexoelectric composites (LEAP) ,EC| NextGEnergyYang Bai; Gaurav Vats; Jan Seidel; Heli Jantunen; Jari Juuti;pmid: 30589464
AbstractPhoto‐ferroelectric single crystals and highly oriented thin‐films have been extensively researched recently, with increasing photovoltaic energy conversion efficiency (from 0.5% up to 8.1%) achieved. Rare attention has been paid to polycrystalline ceramics, potentially due to their negligible efficiency. However, ceramics offer simple and cost‐effective fabrication routes and stable performance compared to single crystals and thin‐films. Therefore, a significantly increased efficiency of photo‐ferroelectric ceramics contributes toward widened application areas for photo‐ferroelectrics, e.g., multisource energy harvesting. Here, all‐optical domain control under illumination, visible‐range light‐tunable photodiode/transistor phenomena and optoelectrically tunable photovoltaic properties are demonstrated, using a recently discovered photo‐ferroelectric ceramic (K0.49Na0.49Ba0.02)(Nb0.99Ni0.01)O2.995. For this monolithic material, tuning of the electric conductivity independent of the ferroelectricity is achieved, which previously could only be achieved in organic phase‐separate blends. Guided by these discoveries, a boost of five orders of magnitude in the photovoltaic output power and energy conversion efficiency is achieved via optical and electrical control of ferroelectric domains in an energy‐harvesting circuit. These results provide a potentially supplementary approach and knowledge for other photo‐ferroelectrics to further boost their efficiency for energy‐efficient circuitry designs and enable the development of a wide range of optoelectronic devices.
Advanced Materials arrow_drop_down University of Oulu Repository - JultikaArticle . 2018Data sources: University of Oulu Repository - JultikaAdvanced MaterialsArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adma.201803821&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 57 citations 57 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Advanced Materials arrow_drop_down University of Oulu Repository - JultikaArticle . 2018Data sources: University of Oulu Repository - JultikaAdvanced MaterialsArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adma.201803821&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 FinlandPublisher:Wiley Funded by:AKA | Towards adaptive nanoelec..., EC | SINNCE, AKA | Lead-free flexoelectric c... +2 projectsAKA| Towards adaptive nanoelectronic devices by mechanical control of ferroelectric domains ,EC| SINNCE ,AKA| Lead-free flexoelectric composites (LEAP) ,AKA| Lead-free flexoelectric composites (LEAP) ,EC| NextGEnergyYang Bai; Pavel Tofel; Jaakko Palosaari; Heli Jantunen; Jari Juuti;pmid: 28585344
An ABO3‐type perovskite solid‐solution, (K0.5Na0.5)NbO3 (KNN) doped with 2 mol% Ba(Ni0.5Nb0.5)O3−δ (BNNO) is reported. Such a composition yields a much narrower bandgap (≈1.6 eV) compared to the parental composition—pure KNN—and other widely used piezoelectric and pyroelectric materials (e.g., Pb(Zr,Ti)O3, BaTiO3). Meanwhile, it exhibits the same large piezoelectric coefficient as that of KNN (≈100 pC N−1) and a much larger pyroelectric coefficient (≈130 µC m−2 K−1) compared to the previously reported narrow‐bandgap material (KNbO3)1−x‐BNNOx. The unique combination of these excellent ferroelectric and optical properties opens the door to the development of multisource energy harvesting or multifunctional sensing devices for the simultaneous and efficient conversion of solar, thermal, and kinetic energies into electricity in a single material. Individual and comprehensive characterizations of the optical, ferroelectric, piezoelectric, pyroelectric, and photovoltaic properties are investigated with single and coexisting energy sources. No degrading interaction between ferroelectric and photovoltaic behaviors is observed. This composition may fundamentally change the working principles of state‐of‐the‐art hybrid energy harvesters and sensors, and thus significantly increases the unit‐volume energy conversion efficiency and reliability of energy harvesters in ambient environments.
Advanced Materials arrow_drop_down University of Oulu Repository - JultikaArticle . 2017Data sources: University of Oulu Repository - JultikaAdvanced MaterialsArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adma.201700767&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 120 citations 120 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Advanced Materials arrow_drop_down University of Oulu Repository - JultikaArticle . 2017Data sources: University of Oulu Repository - JultikaAdvanced MaterialsArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adma.201700767&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 FinlandPublisher:Elsevier BV Yang Bai; Pavel Tofel; Zdenek Hadas; Jan Smilek; Petr Losak; Pavel Skarvada; Robert Macku;Abstract The capability of using a linear kinetic energy harvester – A cantilever structured piezoelectric energy harvester – to harvest human motions in the real-life activities is investigated. The whole loop of the design, simulation, fabrication and test of the energy harvester is presented. With the smart wristband/watch sized energy harvester, a root mean square of the output power of 50 μW is obtained from the real-life hand-arm motion in human’s daily life. Such a power is enough to make some low power consumption sensors to be self-powered. This paper provides a good and reliable comparison to those with nonlinear structures. It also helps the designers to consider whether to choose a nonlinear structure or not in a particular energy harvester based on different application scenarios.
University of Oulu R... arrow_drop_down University of Oulu Repository - JultikaArticle . 2018Data sources: University of Oulu Repository - JultikaMechanical Systems and Signal ProcessingArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ymssp.2018.01.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 67 citations 67 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Oulu R... arrow_drop_down University of Oulu Repository - JultikaArticle . 2018Data sources: University of Oulu Repository - JultikaMechanical Systems and Signal ProcessingArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ymssp.2018.01.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Conference object , Article 2020 Italy, FinlandPublisher:IEEE Authors: Trigona, Carlo; Palosaari, Jaakko; Bai, Yang;handle: 20.500.11769/460493
In this paper, we present a nonlinear energy harvester that is based on a "soft-mode" nonlinearity and is able to work in presence of a truly random excitations. The proposed harvester is configured with a cantilever beam structure, and, at the tip is a cylindrical container filled with freely moving iron balls. The nonlinearity is implemented through the container, as a piecewise function. This structure, in presence of noise, can be assumed as a second order (mass-spring-damper) nonlinear system where the length of the spring changes as a function of external vibration. As will be demonstrated, this nonlinearity will improve the performance of the energy harvester under random excitation. In comparison, the conventional approach based on resonant oscillators is able to collect energy only around its mechanical natural frequency, while the solution pursued here will present a wide spectrum of response. Furthermore, the implemented nonlinearity here does not possess any barrier of potential or mechanical threshold. Because of this, it is able to work at weak signal levels and without mixture of periodic signals. A piezoelectric element has been used to convert the mechanical vibrations into an electrical signal. The system has been modeled and simulated. Experimental validations have been carried out, demonstrating the suitability of the proposed solution.
IRIS - Università de... arrow_drop_down University of Oulu Repository - JultikaArticle . 2020Data sources: University of Oulu Repository - Jultikahttps://doi.org/10.1109/i2mtc4...Conference object . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/i2mtc43012.2020.9128595&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert IRIS - Università de... arrow_drop_down University of Oulu Repository - JultikaArticle . 2020Data sources: University of Oulu Repository - Jultikahttps://doi.org/10.1109/i2mtc4...Conference object . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/i2mtc43012.2020.9128595&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Wiley Pavel Tofel; Pavel Tofel; Jaakko Palosaari; Jari Juuti; Yang Bai;Single‐source energy harvesters that convert solar, thermal, or kinetic energy into electricity for small‐scale smart electronic devices and wireless sensor networks have been under development for decades. When an individual energy source is insufficient for the required electricity generation, multi‐source energy harvesting is indicated. Current technology usually combines different individual harvesters to achieve the capability of harvesting multiple energy sources simultaneously. However, this increases the overall size of the multi‐source harvester, but in microelectronics miniaturization is a critical consideration. Herein, an advanced approach is demonstrated to solve this issue. A single‐material energy harvesting/sensing device is fabricated using a (K0.5Na0.5)NbO3‐Ba(Ni0.5Nb0.5)O3–Δ (KNBNNO) ceramic as the sole energy‐conversion component. This single‐material component is able simultaneously to harvest or sense solar (visible light), thermal (temperature fluctuation), and kinetic (vibration) energy sources by incorporating its photovoltaic, pyroelectric, and piezoelectric effects, respectively. The interactions between different energy conversion effects, e.g., the influence of dynamic behavior on the photovoltaic effect and alternating current–direct current (AC–DC) signal trade‐offs, are assessed and discussed. This research is expected to stimulate energy‐efficient design of electronic devices by integrating both harvesting and sensing functions in the same material/component.
Energy Technology arrow_drop_down Energy TechnologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202000461&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Technology arrow_drop_down Energy TechnologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202000461&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Finland, FinlandPublisher:Wiley Funded by:EC | UNIFYEC| UNIFYAuthors: Anandakrishnan, Sivagnana Sundaram; Yadav, Suhas; Tabeshfar, Mohadeseh; Balanov, Vasilii; +5 AuthorsAnandakrishnan, Sivagnana Sundaram; Yadav, Suhas; Tabeshfar, Mohadeseh; Balanov, Vasilii; Kaushalya, Tharaka; Nelo, Mikko; Peräntie, Jani; Juuti, Jari; Bai, Yang;AbstractPiezoelectric materials are widely used in electromechanical coupling components including actuators, kinetic sensors, and transducers, as well as in kinetic energy harvesters that convert mechanical energy into electricity and thus can power wireless sensing networks and the Internet of Things (IoT). Because the number of deployed energy harvesting powered systems is projected to explode, the supply of piezoelectric energy harvesters is also expected to be boosted. However, despite being able to produce green electricity from the ambient environment, high‐performance piezoelectrics (i.e., piezoelectric ceramics) are energy intensive in research and manufacturing. For instance, the design of new piezoceramics relies on experimental trials, which need high process temperatures and thus cause high consumption and waste of energy. Also, the dominant element in high‐performance piezoceramics is hazardous Pb, but substituting Pb with other nonhazardous elements may lead to a compromise of performance, extending the energy payback time and imposing a question of trade‐offs between energy and environmental benefits. Meanwhile, piezoceramics are not well recycled, raising even more issues in terms of energy saving and environmental protection. This paper discusses these issues and then proposes solutions and provides perspectives to the future development of different aspects of piezoceramic research and industry.
Global Challenges arrow_drop_down University of Oulu Repository - JultikaArticle . 2023Data sources: University of Oulu Repository - Jultikaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/gch2.202300061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Global Challenges arrow_drop_down University of Oulu Repository - JultikaArticle . 2023Data sources: University of Oulu Repository - Jultikaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/gch2.202300061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Spain, United Kingdom, Germany, United Kingdom, United Kingdom, Italy, United States, Italy, United Kingdom, Italy, United Kingdom, United Kingdom, Australia, United Kingdom, France, FinlandPublisher:IOP Publishing Funded by:EC | GrapheneCore3, EC | WiPLASH, DFG | GLECS - Graphene enabled ... +7 projectsEC| GrapheneCore3 ,EC| WiPLASH ,DFG| GLECS - Graphene enabled flexible high-frequency electronic circuits ,UKRI| Photocapacitors for Ambient Energy Applications ,UKRI| Optogenetics-inspired photoelectric memories based on flexible nanogap electrodes ,EC| 2D-EPL ,UKRI| KiriTEG - Innovative manufacturing approach to making flexible thermal energy harvesting devices ,MIUR ,DFG ,EC| GreEnergyVincenzo Pecunia; S Ravi P Silva; Jamie D Phillips; Elisa Artegiani; Alessandro Romeo; Hongjae Shim; Jongsung Park; Jin Hyeok Kim; Jae Sung Yun; Gregory C Welch; Bryon W Larson; Myles Creran; Audrey Laventure; Kezia Sasitharan; Natalie Flores-Diaz; Marina Freitag; Jie Xu; Thomas M Brown; Benxuan Li; Yiwen Wang; Zhe Li; Bo Hou; Behrang H Hamadani; Emmanuel Defay; Veronika Kovacova; Sebastjan Glinsek; Sohini Kar-Narayan; Yang Bai; Da Bin Kim; Yong Soo Cho; Agnė Žukauskaitė; Stephan Barth; Feng Ru Fan; Wenzhuo Wu; Pedro Costa; Javier del Campo; Senentxu Lanceros-Mendez; Hamideh Khanbareh; Zhong Lin Wang; Xiong Pu; Caofeng Pan; Renyun Zhang; Jing Xu; Xun Zhao; Yihao Zhou; Guorui Chen; Trinny Tat; Il Woo Ock; Jun Chen; Sontyana Adonijah Graham; Jae Su Yu; Ling-Zhi Huang; Dan-Dan Li; Ming-Guo Ma; Jikui Luo; Feng Jiang; Pooi See Lee; Bhaskar Dudem; Venkateswaran Vivekananthan; Mercouri G Kanatzidis; Hongyao Xie; Xiao-Lei Shi; Zhi-Gang Chen; Alexander Riss; Michael Parzer; Fabian Garmroudi; Ernst Bauer; Duncan Zavanelli; Madison K Brod; Muath Al Malki; G Jeffrey Snyder; Kirill Kovnir; Susan M Kauzlarich; Ctirad Uher; Jinle Lan; Yuan-Hua Lin; Luis Fonseca; Alex Morata; Marisol Martin-Gonzalez; Giovanni Pennelli; David Berthebaud; Takao Mori; Robert J Quinn; Jan-Willem G Bos; Christophe Candolfi; Patrick Gougeon; Philippe Gall; Bertrand Lenoir; Deepak Venkateshvaran; Bernd Kaestner; Yunshan Zhao; Gang Zhang; Yoshiyuki Nonoguchi; Bob C Schroeder; Emiliano Bilotti; Akanksha K Menon; Jeffrey J Urban; Oliver Fenwick; Ceyla Asker; A Alec Talin; Thomas D Anthopoulos; Tommaso Losi; Fabrizio Viola; Mario Caironi; Dimitra G Georgiadou; Li Ding; Lian-Mao Peng; Zhenxing Wang; Muh-Dey Wei; Renato Negra; Max C Lemme; Mahmoud Wagih; Steve Beeby; Taofeeq Ibn-Mohammed; K B Mustapha; A P Joshi;handle: 10261/349460 , 11562/1111772 , 11584/376343 , 10023/28295
AbstractAmbient energy harvesting has great potential to contribute to sustainable development and address growing environmental challenges. Converting waste energy from energy-intensive processes and systems (e.g. combustion engines and furnaces) is crucial to reducing their environmental impact and achieving net-zero emissions. Compact energy harvesters will also be key to powering the exponentially growing smart devices ecosystem that is part of the Internet of Things, thus enabling futuristic applications that can improve our quality of life (e.g. smart homes, smart cities, smart manufacturing, and smart healthcare). To achieve these goals, innovative materials are needed to efficiently convert ambient energy into electricity through various physical mechanisms, such as the photovoltaic effect, thermoelectricity, piezoelectricity, triboelectricity, and radiofrequency wireless power transfer. By bringing together the perspectives of experts in various types of energy harvesting materials, this Roadmap provides extensive insights into recent advances and present challenges in the field. Additionally, the Roadmap analyses the key performance metrics of these technologies in relation to their ultimate energy conversion limits. Building on these insights, the Roadmap outlines promising directions for future research to fully harness the potential of energy harvesting materials for green energy anytime, anywhere.
IRIS - Università de... arrow_drop_down IRIS - Università degli Studi di VeronaArticle . 2023License: CC 0Full-Text: https://iris.univr.it/bitstream/11562/1111772/2/Pecunia_2023_J._Phys._Mater._6_042501.pdfData sources: IRIS - Università degli Studi di Veronae-Prints SotonArticle . 2023License: CC BYFull-Text: https://eprints.soton.ac.uk/478217/1/Pecunia_et_al_2023_J._Phys._Mater._10.1088_2515_7639_acc550.pdfData sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/9bk579nbData sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2023License: CC BYFull-Text: https://hdl.handle.net/10023/28295Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Oulu Repository - JultikaArticle . 2023Data sources: University of Oulu Repository - JultikaThe University of Manchester - Institutional RepositoryArticle . 2023Data sources: The University of Manchester - Institutional RepositoryeScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaPublikationsserver der RWTH Aachen UniversityArticle . 2023Data sources: Publikationsserver der RWTH Aachen UniversitySt Andrews Research RepositoryArticle . 2023 . Peer-reviewedData sources: St Andrews Research RepositoryQueensland University of Technology: QUT ePrintsArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2515-7639/acc550&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 62 citations 62 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 57visibility views 57 download downloads 47 Powered bymore_vert IRIS - Università de... arrow_drop_down IRIS - Università degli Studi di VeronaArticle . 2023License: CC 0Full-Text: https://iris.univr.it/bitstream/11562/1111772/2/Pecunia_2023_J._Phys._Mater._6_042501.pdfData sources: IRIS - Università degli Studi di Veronae-Prints SotonArticle . 2023License: CC BYFull-Text: https://eprints.soton.ac.uk/478217/1/Pecunia_et_al_2023_J._Phys._Mater._10.1088_2515_7639_acc550.pdfData sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/9bk579nbData sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2023License: CC BYFull-Text: https://hdl.handle.net/10023/28295Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Oulu Repository - JultikaArticle . 2023Data sources: University of Oulu Repository - JultikaThe University of Manchester - Institutional RepositoryArticle . 2023Data sources: The University of Manchester - Institutional RepositoryeScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaPublikationsserver der RWTH Aachen UniversityArticle . 2023Data sources: Publikationsserver der RWTH Aachen UniversitySt Andrews Research RepositoryArticle . 2023 . Peer-reviewedData sources: St Andrews Research RepositoryQueensland University of Technology: QUT ePrintsArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2515-7639/acc550&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 FinlandPublisher:Wiley Funded by:AKA | Towards adaptive nanoelec...AKA| Towards adaptive nanoelectronic devices by mechanical control of ferroelectric domainsGaurav Vats; Jani Peräntie; Jari Juuti; Jan Seidel; Yang Bai;The concept of multisource energy harvesting (of light, kinetic, and thermal energy) using a single material has recently been proposed. Herein, the realization of this novel concept is discussed and insight into the electric field‐assisted modulation of photocurrent and pyroelectric current in a bandgap‐engineered ferroelectric KNBNNO ((K0.5Na0.5)NbO3‐2 mol% Ba(Ni0.5Nb0.5)O3−δ) is provided. Thereafter, direct current (DC) electrical modulation under the simultaneous inputs of light and thermal changes for photovoltaic and pyroelectric effects, respectively, is utilized to achieve several orders of increase in the output current density. This is attributed to a light‐assisted increase in the material's electrical conductivity and ferroelectric photovoltaic effect. The phenomena of electro–optic and thermo–electro–optic DC modulations are further used to propose two novel energy‐conversion cycles. The performance of both the proposed energy conversion cycles is compared with that of the Olsen cycle. The electro–optic and thermo–electro–optic cycles are found to harvest 7–10 times more energy than the Olsen cycle alone, respectively. Moreover, both energy‐conversion cycles offer broader flexibility and ease in operating conditions, thus paving a way toward the practical applications of multisource energy harvesting with a single material for enhanced energy‐conversion capability and device/system compactness.
Energy Technology arrow_drop_down University of Oulu Repository - JultikaArticle . 2020Data sources: University of Oulu Repository - JultikaEnergy TechnologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202000500&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Technology arrow_drop_down University of Oulu Repository - JultikaArticle . 2020Data sources: University of Oulu Repository - JultikaEnergy TechnologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202000500&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 FinlandPublisher:Wiley Funded by:AKA | Lead-free flexoelectric c..., EC | NextGEnergy, AKA | Lead-free flexoelectric c...AKA| Lead-free flexoelectric composites (LEAP) ,EC| NextGEnergy ,AKA| Lead-free flexoelectric composites (LEAP)Authors: Yang Bai; Heli Jantunen; Jari Juuti;pmid: 29877037
AbstractEnergy harvesting technology may be considered an ultimate solution to replace batteries and provide a long‐term power supply for wireless sensor networks. Looking back into its research history, individual energy harvesters for the conversion of single energy sources into electricity are developed first, followed by hybrid counterparts designed for use with multiple energy sources. Very recently, the concept of a truly multisource energy harvester built from only a single piece of material as the energy conversion component is proposed. This review, from the aspect of materials and device configurations, explains in detail a wide scope to give an overview of energy harvesting research. It covers single‐source devices including solar, thermal, kinetic and other types of energy harvesters, hybrid energy harvesting configurations for both single and multiple energy sources and single material, and multisource energy harvesters. It also includes the energy conversion principles of photovoltaic, electromagnetic, piezoelectric, triboelectric, electrostatic, electrostrictive, thermoelectric, pyroelectric, magnetostrictive, and dielectric devices. This is one of the most comprehensive reviews conducted to date, focusing on the entire energy harvesting research scene and providing a guide to seeking deeper and more specific research references and resources from every corner of the scientific community.
Advanced Materials arrow_drop_down University of Oulu Repository - JultikaArticle . 2018Data sources: University of Oulu Repository - JultikaAdvanced MaterialsArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adma.201707271&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 239 citations 239 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Advanced Materials arrow_drop_down University of Oulu Repository - JultikaArticle . 2018Data sources: University of Oulu Repository - JultikaAdvanced MaterialsArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adma.201707271&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 FinlandPublisher:Wiley Funded by:AKA | Towards adaptive nanoelec..., AKA | Lead-free flexoelectric c..., AKA | Lead-free flexoelectric c... +1 projectsAKA| Towards adaptive nanoelectronic devices by mechanical control of ferroelectric domains ,AKA| Lead-free flexoelectric composites (LEAP) ,AKA| Lead-free flexoelectric composites (LEAP) ,EC| NextGEnergyYang Bai; Gaurav Vats; Jan Seidel; Heli Jantunen; Jari Juuti;pmid: 30589464
AbstractPhoto‐ferroelectric single crystals and highly oriented thin‐films have been extensively researched recently, with increasing photovoltaic energy conversion efficiency (from 0.5% up to 8.1%) achieved. Rare attention has been paid to polycrystalline ceramics, potentially due to their negligible efficiency. However, ceramics offer simple and cost‐effective fabrication routes and stable performance compared to single crystals and thin‐films. Therefore, a significantly increased efficiency of photo‐ferroelectric ceramics contributes toward widened application areas for photo‐ferroelectrics, e.g., multisource energy harvesting. Here, all‐optical domain control under illumination, visible‐range light‐tunable photodiode/transistor phenomena and optoelectrically tunable photovoltaic properties are demonstrated, using a recently discovered photo‐ferroelectric ceramic (K0.49Na0.49Ba0.02)(Nb0.99Ni0.01)O2.995. For this monolithic material, tuning of the electric conductivity independent of the ferroelectricity is achieved, which previously could only be achieved in organic phase‐separate blends. Guided by these discoveries, a boost of five orders of magnitude in the photovoltaic output power and energy conversion efficiency is achieved via optical and electrical control of ferroelectric domains in an energy‐harvesting circuit. These results provide a potentially supplementary approach and knowledge for other photo‐ferroelectrics to further boost their efficiency for energy‐efficient circuitry designs and enable the development of a wide range of optoelectronic devices.
Advanced Materials arrow_drop_down University of Oulu Repository - JultikaArticle . 2018Data sources: University of Oulu Repository - JultikaAdvanced MaterialsArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adma.201803821&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 57 citations 57 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Advanced Materials arrow_drop_down University of Oulu Repository - JultikaArticle . 2018Data sources: University of Oulu Repository - JultikaAdvanced MaterialsArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adma.201803821&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 FinlandPublisher:Wiley Funded by:AKA | Towards adaptive nanoelec..., EC | SINNCE, AKA | Lead-free flexoelectric c... +2 projectsAKA| Towards adaptive nanoelectronic devices by mechanical control of ferroelectric domains ,EC| SINNCE ,AKA| Lead-free flexoelectric composites (LEAP) ,AKA| Lead-free flexoelectric composites (LEAP) ,EC| NextGEnergyYang Bai; Pavel Tofel; Jaakko Palosaari; Heli Jantunen; Jari Juuti;pmid: 28585344
An ABO3‐type perovskite solid‐solution, (K0.5Na0.5)NbO3 (KNN) doped with 2 mol% Ba(Ni0.5Nb0.5)O3−δ (BNNO) is reported. Such a composition yields a much narrower bandgap (≈1.6 eV) compared to the parental composition—pure KNN—and other widely used piezoelectric and pyroelectric materials (e.g., Pb(Zr,Ti)O3, BaTiO3). Meanwhile, it exhibits the same large piezoelectric coefficient as that of KNN (≈100 pC N−1) and a much larger pyroelectric coefficient (≈130 µC m−2 K−1) compared to the previously reported narrow‐bandgap material (KNbO3)1−x‐BNNOx. The unique combination of these excellent ferroelectric and optical properties opens the door to the development of multisource energy harvesting or multifunctional sensing devices for the simultaneous and efficient conversion of solar, thermal, and kinetic energies into electricity in a single material. Individual and comprehensive characterizations of the optical, ferroelectric, piezoelectric, pyroelectric, and photovoltaic properties are investigated with single and coexisting energy sources. No degrading interaction between ferroelectric and photovoltaic behaviors is observed. This composition may fundamentally change the working principles of state‐of‐the‐art hybrid energy harvesters and sensors, and thus significantly increases the unit‐volume energy conversion efficiency and reliability of energy harvesters in ambient environments.
Advanced Materials arrow_drop_down University of Oulu Repository - JultikaArticle . 2017Data sources: University of Oulu Repository - JultikaAdvanced MaterialsArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adma.201700767&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 120 citations 120 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Advanced Materials arrow_drop_down University of Oulu Repository - JultikaArticle . 2017Data sources: University of Oulu Repository - JultikaAdvanced MaterialsArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adma.201700767&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 FinlandPublisher:Elsevier BV Yang Bai; Pavel Tofel; Zdenek Hadas; Jan Smilek; Petr Losak; Pavel Skarvada; Robert Macku;Abstract The capability of using a linear kinetic energy harvester – A cantilever structured piezoelectric energy harvester – to harvest human motions in the real-life activities is investigated. The whole loop of the design, simulation, fabrication and test of the energy harvester is presented. With the smart wristband/watch sized energy harvester, a root mean square of the output power of 50 μW is obtained from the real-life hand-arm motion in human’s daily life. Such a power is enough to make some low power consumption sensors to be self-powered. This paper provides a good and reliable comparison to those with nonlinear structures. It also helps the designers to consider whether to choose a nonlinear structure or not in a particular energy harvester based on different application scenarios.
University of Oulu R... arrow_drop_down University of Oulu Repository - JultikaArticle . 2018Data sources: University of Oulu Repository - JultikaMechanical Systems and Signal ProcessingArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ymssp.2018.01.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 67 citations 67 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Oulu R... arrow_drop_down University of Oulu Repository - JultikaArticle . 2018Data sources: University of Oulu Repository - JultikaMechanical Systems and Signal ProcessingArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ymssp.2018.01.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu