- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 France, United KingdomPublisher:Elsevier BV Authors: Weller, Samuel; Johanning, L.; Davies, Peter; Banfield, S. J.;handle: 10871/17745
Synthetic mooring ropes have a proven track record of use in harsh operating conditions over the past two decades. As one of the main users of ropes for permanent mooring systems, the oil and gas industry has opted for these components because they possess performance characteristics and economies of scale which are in many respects superior to steel components. Given this accrued experience, it is unsurprising that several marine renewable energy (MRE) device developers have utilised synthetic ropes, motivated by the need to specify economical, reliable and durable mooring systems. Whilst these components are potentially an enabling technology for the MRE sector, this is a new field of application which can feature highly dynamic mooring tensions and consequently existing certification practices may not be directly applicable. Based on the expertise of the authors, this paper provides a state-of-the-art overview of synthetic ropes in the context of MRE mooring systems, including key information about aspects of specification (performance attributes, classification and testing) as well as application (installation, degradation, maintenance, inspection and decommissioning). It is the intention of this review to provide valuable insight for device developers who are considering using ropes in the specification of fit for purpose mooring systems.
Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2015License: CC BY NC NDFull-Text: http://hdl.handle.net/10871/17745Data sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2015Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2015.03.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 107 citations 107 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2015License: CC BY NC NDFull-Text: http://hdl.handle.net/10871/17745Data sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2015Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2015.03.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2013 FrancePublisher:Elsevier BV Peter Davies; Grégory Germain; Grégory Germain; Albert Deuff; Benoît Gaurier; Benoît Gaurier;The long term reliability of tidal turbines is critical if these structures are to be cost-effective. Optimized design requires a combination of material durability models and structural analyses which must be based on realistic loading conditions. This paper presents results from a series of flume tank measurements on strain gauged scaled turbine blades, aimed at studying these conditions. A detailed series of tests on a 3-blade horizontal axis turbine with 400 mm long blades is presented. The influence of both current and wave-current interactions on measured strains is studied. These tests show that wave-current interactions can cause large additional loading amplitudes compared to currents alone, which must be considered in the fatigue analysis of these systems.
ArchiMer - Instituti... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2013Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2013.02.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 89 citations 89 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert ArchiMer - Instituti... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2013Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2013.02.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2019Publisher:IEEE Authors: Martin Pieter Vlasblom; Peter Davies; Rigo Bosman; Jose Canedo;Tension fatigue lifetime of high modulus polyethylene, HMPE, fiber is governed by plastic deformation (creep) failure. Testing confirms that high creep resistant HMPE fiber types have longer tension fatigue life. The applicability of a damage summation rule was investigated for variable static load conditions on fibers and a variable dynamic load condition on a rope. The contribution of each of the varying load periods can be described by summation of permanent elongation. The result from these periods determines the final lifetime.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/oceans...Conference object . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/oceanse.2019.8867099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/oceans...Conference object . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/oceanse.2019.8867099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2022 FrancePublisher:Elsevier BV Authors: Quaranta, Emanuele; Davies, Peter;The hydropower sector is currently experiencing several technological developments. New technologies and sustainable practices are emerging to make hydropower more flexible and eco-friendly. Novel materials have also been recently developed to increase performance, durability, and reliability; however, no systematic discussions can be found in the literature. Therefore, in this paper, novel materials for hydropower applications are presented, and their performance, advantages, and limitations are discussed. For example, composites can reduce the weight of steel equipment by 50% to 80%, polymers and superhydrophobic materials can reduce head losses by 4% to 20%, and novel bearing materials can reduce bearing wear by 6%. These improvements determine higher efficiencies, longer life span, waste reduction, and maintenance needs, although the initial cost of some materials is not yet competitive with respect to the costs of traditional materials. The novel materials are described here based on the following categories: novel materials for turbines, dams and waterways, bearings, seals, and ocean hydropower.
Engineering arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2022Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eng.2021.06.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 60 citations 60 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Engineering arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2022Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eng.2021.06.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 FrancePublisher:Springer Science and Business Media LLC Authors: Peter Davies;Fibre reinforced composites are widely used in marine structures, from small boats to tidal turbines. However, there are some specific features of the marine environment, notably continuous contact with seawater and hydrostatic pressure loading, which require special attention during material selection and design. This paper first describes test procedures developed over the last 30 years to address these conditions in order to identify and validate lifetime prediction models. Surface vessels and underwater applications are discussed. Then, considerations for future applications are described, with particular emphasis on sustainability and environmental impact.
ArchiMer - Instituti... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2024Data sources: ArchiMer - Institutional Archive of IfremerApplied Composite MaterialsArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10443-024-10232-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert ArchiMer - Instituti... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2024Data sources: ArchiMer - Institutional Archive of IfremerApplied Composite MaterialsArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10443-024-10232-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2018 United Kingdom, FrancePublisher:Elsevier BV Funded by:EC | MARINET, EC | OPERAEC| MARINET ,EC| OPERAGordelier, T.; Parish, D.; Thies, P. R.; Weller, S.; Davies, Peter; Le Gac, Pierre-Yves; Johanning, L.;handle: 10871/32490
The growing marine renewable energy sector has led to a demand for increasingly compliant mooring systems. In response, several innovative mooring tethers have been proposed demonstrating potential customisation to the stiffness profile and reduced peak mooring loads. Many of these novel systems utilise materials in a unique application within the challenging marine environment and their long term durability remains to be proven.This paper presents a multifaceted investigation into the durability of a novel polyester mooring tether with an elastomeric core. Laboratory based functionality tests are repeated on tether assemblies following a 6 month sea deployment. Results show a 45% average increase in dynamic axial stiffness. This is supported by high tension laboratory based fatigue endurance tests showing a peak increase in dynamic axial stiffness of 42%. Sub-component material tests on the core elastomer support the assembly tests, separately demonstrating that certain aspects of tether operation lead to increased material sample stiffness. The average increase in material radial compressive stiffness is 22% and 15% as a result of marine ageing and repeated mechanical compression respectively; these are the first results of this type to be published.The performance durability characterisation of the tether establishes the mooring design envelope for long-term deployment. This characterisation is crucial to ensure reliable and effective integration of novel mooring systems into offshore engineering projects.
Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10871/32490Data sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2018Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.oceaneng.2018.02.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10871/32490Data sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2018Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.oceaneng.2018.02.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Conference object 2022Embargo end date: 31 Aug 2025 FrancePublisher:European Wave and Tidal Energy Conference Funded by:EC | RealTideEC| RealTideDavies, Peter; Dumergue, Nicolas; Arhant, Mael; Nicolas, Erwann; Paboeuf, Stephane; Mayorga, Pedro;Most tidal turbine blades are currently made from glass or carbon fibre reinforced epoxy composites. These represent a significant part of the turbine cost, but few data are available either to validate current safety factors or to propose alternative more environmentally-friendly materials. This study, performed within the EU H2020 RealTide project, aimed to provide these data. First, a detailed investigation of the static and fatigue behavior was performed at the coupon scale, including not only those materials currently used, but also alternative recyclable thermoplastic matrix composites and natural fibre reinforced materials. Tests were performed before and after seawater saturation, in order to quantify the change in design properties with water uptake. Then a first full scale 5 meter long composite blade was designed and tested to failure. A specific test frame was built, allowing loads up to 75 tons to be applied and simulating the applied moments corresponding to service loads. Static and cyclic loads were applied and extensive instrumentation was used to detect changes in behavior, inluding optical fibres implanted during manufacture, acoustic emission recording, and specific instrumentation developed within the project. The results have enabled numerical simulations to be verified, and this has provided confidence in the modelling tools. These were then employed in order to propose an improved design of a lower cost blade.
International Marine... arrow_drop_down International Marine Energy JournalArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefArchiMer - Institutional Archive of IfremerOther literature type . 2022Data sources: ArchiMer - Institutional Archive of Ifremerhttp://dx.doi.org/10.5281/zeno...Conference object . 2021Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.36688/imej.5.57-65&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 3visibility views 3 Powered bymore_vert International Marine... arrow_drop_down International Marine Energy JournalArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefArchiMer - Institutional Archive of IfremerOther literature type . 2022Data sources: ArchiMer - Institutional Archive of Ifremerhttp://dx.doi.org/10.5281/zeno...Conference object . 2021Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.36688/imej.5.57-65&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 France, United KingdomPublisher:MDPI AG Funded by:EC | MARINET2, EC | POWDERBLADEEC| MARINET2 ,EC| POWDERBLADEChristophe Floreani; Colin Robert; Parvez Alam; Peter Davies; Conchúr M. Ó Brádaigh;Powder epoxy composites have several advantages for the processing of large composite structures, including low exotherm, viscosity and material cost, as well as the ability to carry out separate melting and curing operations. This work studies the mode I and mixed-mode toughness, as well as the in-plane mechanical properties of unidirectional stitched glass and carbon fibre reinforced powder epoxy composites. The interlaminar fracture toughness is studied in pure mode I by performing Double Cantilever Beam tests and at 25% mode II, 50% mode II and 75% mode II by performing Mixed Mode Bending testing according to the ASTM D5528-13 test standard. The tensile and compressive properties are comparable to that of standard epoxy composites but both the mode I and mixed-mode toughness are shown to be significantly higher than that of other epoxy composites, even when comparing to toughened epoxies. The mixed-mode critical strain energy release rate as a function of the delamination mode ratio is also provided. This paper highlights the potential for powder epoxy composites in the manufacturing of structures where there is a risk of delamination.
Materials arrow_drop_down MaterialsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1944/14/9/2103/pdfData sources: Multidisciplinary Digital Publishing InstituteArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ma14092103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Materials arrow_drop_down MaterialsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1944/14/9/2103/pdfData sources: Multidisciplinary Digital Publishing InstituteArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ma14092103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 France, United KingdomPublisher:Elsevier BV Authors: Weller, Samuel; Johanning, L.; Davies, Peter; Banfield, S. J.;handle: 10871/17745
Synthetic mooring ropes have a proven track record of use in harsh operating conditions over the past two decades. As one of the main users of ropes for permanent mooring systems, the oil and gas industry has opted for these components because they possess performance characteristics and economies of scale which are in many respects superior to steel components. Given this accrued experience, it is unsurprising that several marine renewable energy (MRE) device developers have utilised synthetic ropes, motivated by the need to specify economical, reliable and durable mooring systems. Whilst these components are potentially an enabling technology for the MRE sector, this is a new field of application which can feature highly dynamic mooring tensions and consequently existing certification practices may not be directly applicable. Based on the expertise of the authors, this paper provides a state-of-the-art overview of synthetic ropes in the context of MRE mooring systems, including key information about aspects of specification (performance attributes, classification and testing) as well as application (installation, degradation, maintenance, inspection and decommissioning). It is the intention of this review to provide valuable insight for device developers who are considering using ropes in the specification of fit for purpose mooring systems.
Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2015License: CC BY NC NDFull-Text: http://hdl.handle.net/10871/17745Data sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2015Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2015.03.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 107 citations 107 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2015License: CC BY NC NDFull-Text: http://hdl.handle.net/10871/17745Data sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2015Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2015.03.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2013 FrancePublisher:Elsevier BV Peter Davies; Grégory Germain; Grégory Germain; Albert Deuff; Benoît Gaurier; Benoît Gaurier;The long term reliability of tidal turbines is critical if these structures are to be cost-effective. Optimized design requires a combination of material durability models and structural analyses which must be based on realistic loading conditions. This paper presents results from a series of flume tank measurements on strain gauged scaled turbine blades, aimed at studying these conditions. A detailed series of tests on a 3-blade horizontal axis turbine with 400 mm long blades is presented. The influence of both current and wave-current interactions on measured strains is studied. These tests show that wave-current interactions can cause large additional loading amplitudes compared to currents alone, which must be considered in the fatigue analysis of these systems.
ArchiMer - Instituti... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2013Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2013.02.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 89 citations 89 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert ArchiMer - Instituti... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2013Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2013.02.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2019Publisher:IEEE Authors: Martin Pieter Vlasblom; Peter Davies; Rigo Bosman; Jose Canedo;Tension fatigue lifetime of high modulus polyethylene, HMPE, fiber is governed by plastic deformation (creep) failure. Testing confirms that high creep resistant HMPE fiber types have longer tension fatigue life. The applicability of a damage summation rule was investigated for variable static load conditions on fibers and a variable dynamic load condition on a rope. The contribution of each of the varying load periods can be described by summation of permanent elongation. The result from these periods determines the final lifetime.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/oceans...Conference object . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/oceanse.2019.8867099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/oceans...Conference object . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/oceanse.2019.8867099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2022 FrancePublisher:Elsevier BV Authors: Quaranta, Emanuele; Davies, Peter;The hydropower sector is currently experiencing several technological developments. New technologies and sustainable practices are emerging to make hydropower more flexible and eco-friendly. Novel materials have also been recently developed to increase performance, durability, and reliability; however, no systematic discussions can be found in the literature. Therefore, in this paper, novel materials for hydropower applications are presented, and their performance, advantages, and limitations are discussed. For example, composites can reduce the weight of steel equipment by 50% to 80%, polymers and superhydrophobic materials can reduce head losses by 4% to 20%, and novel bearing materials can reduce bearing wear by 6%. These improvements determine higher efficiencies, longer life span, waste reduction, and maintenance needs, although the initial cost of some materials is not yet competitive with respect to the costs of traditional materials. The novel materials are described here based on the following categories: novel materials for turbines, dams and waterways, bearings, seals, and ocean hydropower.
Engineering arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2022Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eng.2021.06.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 60 citations 60 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Engineering arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2022Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eng.2021.06.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 FrancePublisher:Springer Science and Business Media LLC Authors: Peter Davies;Fibre reinforced composites are widely used in marine structures, from small boats to tidal turbines. However, there are some specific features of the marine environment, notably continuous contact with seawater and hydrostatic pressure loading, which require special attention during material selection and design. This paper first describes test procedures developed over the last 30 years to address these conditions in order to identify and validate lifetime prediction models. Surface vessels and underwater applications are discussed. Then, considerations for future applications are described, with particular emphasis on sustainability and environmental impact.
ArchiMer - Instituti... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2024Data sources: ArchiMer - Institutional Archive of IfremerApplied Composite MaterialsArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10443-024-10232-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert ArchiMer - Instituti... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2024Data sources: ArchiMer - Institutional Archive of IfremerApplied Composite MaterialsArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10443-024-10232-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2018 United Kingdom, FrancePublisher:Elsevier BV Funded by:EC | MARINET, EC | OPERAEC| MARINET ,EC| OPERAGordelier, T.; Parish, D.; Thies, P. R.; Weller, S.; Davies, Peter; Le Gac, Pierre-Yves; Johanning, L.;handle: 10871/32490
The growing marine renewable energy sector has led to a demand for increasingly compliant mooring systems. In response, several innovative mooring tethers have been proposed demonstrating potential customisation to the stiffness profile and reduced peak mooring loads. Many of these novel systems utilise materials in a unique application within the challenging marine environment and their long term durability remains to be proven.This paper presents a multifaceted investigation into the durability of a novel polyester mooring tether with an elastomeric core. Laboratory based functionality tests are repeated on tether assemblies following a 6 month sea deployment. Results show a 45% average increase in dynamic axial stiffness. This is supported by high tension laboratory based fatigue endurance tests showing a peak increase in dynamic axial stiffness of 42%. Sub-component material tests on the core elastomer support the assembly tests, separately demonstrating that certain aspects of tether operation lead to increased material sample stiffness. The average increase in material radial compressive stiffness is 22% and 15% as a result of marine ageing and repeated mechanical compression respectively; these are the first results of this type to be published.The performance durability characterisation of the tether establishes the mooring design envelope for long-term deployment. This characterisation is crucial to ensure reliable and effective integration of novel mooring systems into offshore engineering projects.
Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10871/32490Data sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2018Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.oceaneng.2018.02.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10871/32490Data sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2018Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.oceaneng.2018.02.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Conference object 2022Embargo end date: 31 Aug 2025 FrancePublisher:European Wave and Tidal Energy Conference Funded by:EC | RealTideEC| RealTideDavies, Peter; Dumergue, Nicolas; Arhant, Mael; Nicolas, Erwann; Paboeuf, Stephane; Mayorga, Pedro;Most tidal turbine blades are currently made from glass or carbon fibre reinforced epoxy composites. These represent a significant part of the turbine cost, but few data are available either to validate current safety factors or to propose alternative more environmentally-friendly materials. This study, performed within the EU H2020 RealTide project, aimed to provide these data. First, a detailed investigation of the static and fatigue behavior was performed at the coupon scale, including not only those materials currently used, but also alternative recyclable thermoplastic matrix composites and natural fibre reinforced materials. Tests were performed before and after seawater saturation, in order to quantify the change in design properties with water uptake. Then a first full scale 5 meter long composite blade was designed and tested to failure. A specific test frame was built, allowing loads up to 75 tons to be applied and simulating the applied moments corresponding to service loads. Static and cyclic loads were applied and extensive instrumentation was used to detect changes in behavior, inluding optical fibres implanted during manufacture, acoustic emission recording, and specific instrumentation developed within the project. The results have enabled numerical simulations to be verified, and this has provided confidence in the modelling tools. These were then employed in order to propose an improved design of a lower cost blade.
International Marine... arrow_drop_down International Marine Energy JournalArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefArchiMer - Institutional Archive of IfremerOther literature type . 2022Data sources: ArchiMer - Institutional Archive of Ifremerhttp://dx.doi.org/10.5281/zeno...Conference object . 2021Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.36688/imej.5.57-65&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 3visibility views 3 Powered bymore_vert International Marine... arrow_drop_down International Marine Energy JournalArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefArchiMer - Institutional Archive of IfremerOther literature type . 2022Data sources: ArchiMer - Institutional Archive of Ifremerhttp://dx.doi.org/10.5281/zeno...Conference object . 2021Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.36688/imej.5.57-65&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 France, United KingdomPublisher:MDPI AG Funded by:EC | MARINET2, EC | POWDERBLADEEC| MARINET2 ,EC| POWDERBLADEChristophe Floreani; Colin Robert; Parvez Alam; Peter Davies; Conchúr M. Ó Brádaigh;Powder epoxy composites have several advantages for the processing of large composite structures, including low exotherm, viscosity and material cost, as well as the ability to carry out separate melting and curing operations. This work studies the mode I and mixed-mode toughness, as well as the in-plane mechanical properties of unidirectional stitched glass and carbon fibre reinforced powder epoxy composites. The interlaminar fracture toughness is studied in pure mode I by performing Double Cantilever Beam tests and at 25% mode II, 50% mode II and 75% mode II by performing Mixed Mode Bending testing according to the ASTM D5528-13 test standard. The tensile and compressive properties are comparable to that of standard epoxy composites but both the mode I and mixed-mode toughness are shown to be significantly higher than that of other epoxy composites, even when comparing to toughened epoxies. The mixed-mode critical strain energy release rate as a function of the delamination mode ratio is also provided. This paper highlights the potential for powder epoxy composites in the manufacturing of structures where there is a risk of delamination.
Materials arrow_drop_down MaterialsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1944/14/9/2103/pdfData sources: Multidisciplinary Digital Publishing InstituteArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ma14092103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Materials arrow_drop_down MaterialsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1944/14/9/2103/pdfData sources: Multidisciplinary Digital Publishing InstituteArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ma14092103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu