- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2014 ItalyPublisher:Elsevier BV Authors: Lotito AM; De Sanctis M; Di Iaconi C; Bergna G;Textile effluents are characterised by high content of recalcitrant compounds and are often discharged (together with municipal wastewater to increase their treatability) into centralized wastewater treatment plants with a complex treatment scheme. This paper reports the results achieved adopting a granular sludge system (sequencing batch biofilter granular reactor - SBBGR) to treat mixed municipal-textile wastewater. Thanks to high average removals in SBBGR (82.1% chemical oxygen demand, 94.7% total suspended solids, 87.5% total Kjeldahl nitrogen, 77.1% surfactants), the Italian limits for discharge into a water receiver can be complied with the biological stage alone. The comparison with the performance of the centralized plant treating the same wastewater has showed that SBBGR system is able to produce an effluent of comparable quality with a simpler treatment scheme, a much lower hydraulic residence time (11 h against 30 h) and a lower sludge production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2014.01.055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu98 citations 98 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2014.01.055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2018 ItalyV Piergrossi; M De Sanctis; S Chimienti; G Sgaramella; C Di Iaconi;handle: 20.500.14243/410501
Civil buildings air conditioning systems comprise a massive source of energy consumption and greenhouse gas emissions. The experimental study we present is a full-scale demonstration of a "nearly zero energy facility" provided with a water-based air conditioning system and domestic hot water production unit, both supplied with thermal energy produced by a water sourced solar heat pump, whose hot and cold sources are partially fed by the leftover thermal bio-energy available in an innovative wastewater treatment system, whereas energy excess produced by solar heat pump is stored in phase change material units. Preliminary results showed that the innovative system, thanks to its particular features, allows wastewater heat extraction within the treatment process, and demonstrated its ability to exchange energy and, at the same time, to operate a thermal regulation of the treatment reactors, integrating the optimization of thermo-dependent biological processes with energy recovery systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::d283ff75d0cc227ec13bfd687b4ae7d6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::d283ff75d0cc227ec13bfd687b4ae7d6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 ItalyPublisher:Elsevier BV Authors: DI IACONI C; DE SANCTIS M; ROSSETTI S; RAMADORI R;This paper reports the results of an investigation aimed at evaluating the performance of an innovative technology (SBBGR system - Sequencing Batch Biofilter Granular Reactor), characterised by a low sludge production, for treating municipal wastewater at demonstrative scale. The results have shown that even at the maximum investigated organic load (i.e., 2.5 kg COD/m(3) d), the plant removed 80% of COD, total suspended solids and nitrogen content with relative residual concentrations lower than the Italian limits for discharge into soil. The process was characterised by a very low sludge production (i.e., 0.12-0.14 kg TSS/kg COD(removed)) ascribable to the high sludge age in the system (thetac >120 d). Molecular in situ detection methods and microscopy staining procedures were employed in combination with the traditional measurements (oxygen uptake rate and total protein content) to evaluate both the microbial activity and composition, and the structure of the biomass. A stable presence of active bacterial populations (mainly Proteobacteria) was found within compact and dense aggregates.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2009.12.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2009.12.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Italy, Spain, ItalyPublisher:Elsevier BV Funded by:MIURMIURMuñoz, Iván; Portillo, Francisco; Rosiek, Sabina; Batlles, Francisco J.; Martinez del Rio, Javier; Acasuso, Iñaki; Piergrossi, Valentina; De Sanctis, Marco; Chimienti, Silvia; Di Iaconi, Claudio;handle: 10835/17512 , 20.500.14243/405872
The integration of an off-grid solar-assisted heat pump (SHP) and a sequencing batch biofilter granular reactor (SBBGR) for thermal energy recovery from wastewater was assessed by means of a prospective life cycle assessment (LCA) and life cycle costing (LCC), by theoretically scaling up a pilot installation in Bari, Italy, to a full-scale unit designed for 5000 person-equivalents. The LCA and LCC included all activities in the life cycle of the SHP and wastewater treatment plant (WWTP), namely construction, operation and end-of-life. The thermal energy produced by the SHP was assessed as supplying heating and cooling for an air-conditioning system, displacing a conventional air-source heat pump powered by electricity from the grid. This integrated systemwas compared to a reference situation where wastewater is treated in a conventional WWTP applying activated sludge with no thermal energy recovery system, showing clear environmental benefits in all impact indicators, such as a 42% reduction in greenhouse-gas emissions and a cost reduction of 53%. Several sensitivity analyses confirmed these findings, with the exception of the price rebound effect, which showed that the lower cost of the integrated system could lead to overturning the environmental benefits. As a limitation of the study, the distribution of the supplied air-conditioning to meet a demand off-site theWWTP premises, such as in residential buildings or hotels, was not included. Therefore, our results constitute only a preliminary positive outcome that should be validated in a real-life application.
ZENODO arrow_drop_down Journal of Cleaner ProductionArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAriUAL - Repositorio Institucional de la Universidad de Almería (Spain)Article . 2024License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2018.12.074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert ZENODO arrow_drop_down Journal of Cleaner ProductionArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAriUAL - Repositorio Institucional de la Universidad de Almería (Spain)Article . 2024License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2018.12.074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 ItalyPublisher:MDPI AG Marco De Sanctis; Valerio Guido Altieri; Emanuele Barca; Luigi di Bitonto; Francesco Tedeschi; Claudio Di Iaconi;doi: 10.3390/en17246293
handle: 20.500.14243/524061
The organic fraction of municipal solid waste (OFMSW) is widely recognized as a possible substrate for anaerobic digestion processes. However, the heterogeneity of this matrix and the presence of slowly biodegradable compounds can slow down anaerobic digestion and reduce its performance. This study compares the effectiveness of different thermal pre-treatments in increasing OFMSW anaerobic digestibility. Thermal pre-treatments were compared with OFMSW shredding, considered as the minimum pre-treatment required in order to reduce particles size of the OFMSW. The pre-treatments were performed in autoclave (121 °C and 1.4 bar for 20 min) or in an ad hoc hydrolysis reactor designed for the experimental trial (140 °C and 7 bar for 30 min) with air or nitrogen as gas phase. The thermal pre-treatments affected methane yield (NmLCH4/gVS), depending on the pre-treatment strategy, with autoclaving allowing for an 80% increase with respect to the control run, and leading to a methane yield of 476 ± 194 NmLCH4/gVS. The pre-treatments in the hydrolysis reactor caused a loss of organic matter (due to its volatilization) reducing the organic loading rate of the digester. Nevertheless, the digester performance in terms of COD (chemical oxygen demand) and VSS (volatile suspended solid) removal showed limited differences among the pre-treatments applied and ranged on average 79–94%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17246293&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17246293&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Elsevier BV Authors: Barca Emanuele; De Sanctis Marco; Altieri Valerio Guido; Di Iaconi Claudio;handle: 20.500.14243/389276
Urban wastewater is a valuable source of clean energy available for both building conditioning and hot sanitary water production, thus reducing primary energy demand and greenhouse gas emissions. In the present study, the integration of a highly efficient solar-assisted fully off-the-grid water-source heat pump (SHP) with a sequencing batch biofilter granular reactor (SBBGR) is tested on a pilot scale for recovering and reusing thermal energy generated during the depuration process. The prototype was designed to simulate wastewater production (240 L/d), domestic hot water (DHW) (152 L/d at 40 °C), and space heating (20-25 °C) energy demand for a one-person equivalent. Three set temperatures for heat extraction from the SBBGR were tested: 20, 14, and 10 °C. Heat extraction had limited effects on the average SBBGR performances. The SBBGR ensured a removal efficiency close to 90% for total suspended solids (TSS), chemical oxygen demand (COD), and ammonia, whereas a decrease in total nitrogen (TN) removal efficiency, namely from 75% to 71%, was observed with the operating temperature decrease. Energy recovery data suggested that the energy extracted from the SBBGR might cover the energy demand for DHW production or space heating from April to October. Thus, the collected energy data was modeled with the following purposes: highlighting the key parameters for optimizing energy recovery, quantifying the share of recoverable energy derived the microbial metabolism, and supporting or rejecting the scalability of the results. The model outcomes confirmed that the temperature difference between the sewage and heat extraction set point temperatures was the key parameter for energy recovery and succeeded in estimating the contribution of microbial metabolisms (i.e. about 3.2 kWh/m3 × d). However, the estimation of the full-scale recoverable energy was partially biased by the impact of the environmental conditions on the pilot.
IRIS Cnr arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.113582&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.113582&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Elsevier BV De Sanctis M; Chimienti S; Pastore C; Piergrossi V; Di Iaconi C;handle: 20.500.14243/405873
Posidonia oceanica is the most abundant aquatic plant of the Mediterranean Sea where it plays great ecological importance. The accumulation of residues along the shore, however, creates a littering hardship for the territory due to their bad rotting smell and introduces an obstacle to the enjoyment of the beaches and tourist swimming. Posidonia oceanica residues may be valorized producing bioenergy by anaerobic digestion. Due to its high lignin content, however, a pretreatment step is required for enhance energy recovery. In the present study the effects of acid addition in the thermal hydrolysis step were evaluated in terms of energy balance, biogas production and solids reduction. The results obtained have shown that when thermal pretreatment was enhanced by adding hydrochloric acid (0.4% w/w), an improvement in methane production of 575% was obtained compared to thermal pretreatment only with specific biogas production as high as 0.241 ± 0.065 Nm per kgVS of wet Posidonia or 0.138 ± 0.056 Nm CH/kgVS. This result was ascribed to the defibration of lignocellulosic components operated by acidic thermal pretreatment which allowed the removal of 74%, 70% and 24% of cellulose, hemicellulose and lignin, respectively, during anaerobic digestion. The energy analysis carried out for treatment plants with capacity of 10 and 50 m/d has shown that acid addition in the thermal hydrolysis step allows the energy balance to turn from extremely negative (energy demand is 8 to 10 times greater than the one produced) to positive values, with process energy efficiencies ranging from 22 to 35% with regards to the size of the plant.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113457&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113457&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:Elsevier BV Funded by:MIURMIURAuthors: De Sanctis M; Altieri VG; Piergrossi V; Di Iaconi C;In the present study, the possibility of recovering both thermal energy and water for agricultural purposes from sewage is evaluated. A treatment plant, based on a sequencing batch biofilter granular reactor (SBBGR) followed by sand filtration and coupled with a solar wastewater source heat pump, was operated from September to November 2018 at a set-point temperature of 14 °C to verify the stability of heat recovery efficiency and the suitability of plant effluent to be reused for irrigation. Heat recovery did not influence the SBBGR treatment and disinfection efficiency, which removed about 90% of suspended solids, chemical and biochemical oxygen demand and ammonia, as well as 70% of total nitrogen, 3 log10 units of Escherichia coli and more than 1 log10 unit of Clostridium perfringens. Furthermore, after sand filtration, water quality complied with the standards for agricultural reuse currently in force in several countries. Energy extracted from SBBGR was mainly influenced by environmental conditions, affecting wastewater temperature, and also by wastewater composition, affecting the energy release due to bacterial metabolic activity for carbon and nitrogen removal. Notably, no evident deterioration of energy extraction efficiency from the SBBGR was observed, suggesting negligible fouling phenomena on the submerged thermal exchanger.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nbt.2019.12.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nbt.2019.12.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Springer Science and Business Media LLC Del Moro G; Barca E; de Sanctis M; Mascolo G; Di Iaconi C;The Artificial Neural Networks by Multi-objective Genetic Algorithms (ANN-MOGA) model has been applied to gross parameters data of a Sequencing Batch Biofilter Granular Reactor (SBBGR) with the aim of providing an effective tool for predicting the fluctuations coming from touristic pressure. Six independent multivariate models, which were able to predict the dynamics of raw chemical oxygen demand (COD), soluble chemical oxygen demand (CODsol), total suspended solid (TSS), total nitrogen (TN), ammoniacal nitrogen (N-NH4 (+)) and total phosphorus (Ptot), were developed. The ANN-MOGA software application has shown to be suitable for addressing the SBBGR reactor modelling. The R (2) found are very good, with values equal to 0.94, 0.92, 0.88, 0.88, 0.98 and 0.91 for COD, CODsol, N-NH4 (+), TN, Ptot and TSS, respectively. A comparison was made between SBBGR and traditional activated sludge treatment plant modelling. The results showed the better performance of the ANN-MOGA application with respect to a wide selection of scientific literature cases.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-015-5729-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-015-5729-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 ItalyPublisher:Elsevier BV Authors: DI IACONI C; DEL MORO G; DE SANCTIS M; ROSSETTI S;An innovative process based on ozone-enhanced biological degradation, carried out in an aerobic granular biomass system (SBBGR--Sequencing Batch Biofilter Granular Reactor), was tested at pilot scale for tannery wastewater treatment chosen as representative of industrial recalcitrant wastewater. The results have shown that the process was able to meet the current discharge limits when the biologically treated wastewater was recirculated through an adjacent reactor where a specific ozone dose of 120 mg O3/L(influent) was used. The benefits produced by using ozone were appreciable even visually since the final effluent of the process looked like tap water. In comparison with the conventional treatment, the proposed process was able to reduce the sludge production by 25-30 times and to save 60% of operating costs. Molecular in situ detection methods were employed in combination with the traditional measurements (oxygen uptake rate, total protein content, extracellular polymeric substances and hydrophobicity) to evaluate microbial activity and composition, and the structure of the biomass. A stable presence of active bacterial populations was observed in the biomass with the simultaneous occurrence of distinctive functional microbial groups involved in carbon, nitrogen and sulphate removal under different reaction environments established within the large microbial aggregates. The structure and activity of the biomass were not affected by the use of ozone.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2010.04.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2010.04.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2014 ItalyPublisher:Elsevier BV Authors: Lotito AM; De Sanctis M; Di Iaconi C; Bergna G;Textile effluents are characterised by high content of recalcitrant compounds and are often discharged (together with municipal wastewater to increase their treatability) into centralized wastewater treatment plants with a complex treatment scheme. This paper reports the results achieved adopting a granular sludge system (sequencing batch biofilter granular reactor - SBBGR) to treat mixed municipal-textile wastewater. Thanks to high average removals in SBBGR (82.1% chemical oxygen demand, 94.7% total suspended solids, 87.5% total Kjeldahl nitrogen, 77.1% surfactants), the Italian limits for discharge into a water receiver can be complied with the biological stage alone. The comparison with the performance of the centralized plant treating the same wastewater has showed that SBBGR system is able to produce an effluent of comparable quality with a simpler treatment scheme, a much lower hydraulic residence time (11 h against 30 h) and a lower sludge production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2014.01.055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu98 citations 98 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2014.01.055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2018 ItalyV Piergrossi; M De Sanctis; S Chimienti; G Sgaramella; C Di Iaconi;handle: 20.500.14243/410501
Civil buildings air conditioning systems comprise a massive source of energy consumption and greenhouse gas emissions. The experimental study we present is a full-scale demonstration of a "nearly zero energy facility" provided with a water-based air conditioning system and domestic hot water production unit, both supplied with thermal energy produced by a water sourced solar heat pump, whose hot and cold sources are partially fed by the leftover thermal bio-energy available in an innovative wastewater treatment system, whereas energy excess produced by solar heat pump is stored in phase change material units. Preliminary results showed that the innovative system, thanks to its particular features, allows wastewater heat extraction within the treatment process, and demonstrated its ability to exchange energy and, at the same time, to operate a thermal regulation of the treatment reactors, integrating the optimization of thermo-dependent biological processes with energy recovery systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::d283ff75d0cc227ec13bfd687b4ae7d6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::d283ff75d0cc227ec13bfd687b4ae7d6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 ItalyPublisher:Elsevier BV Authors: DI IACONI C; DE SANCTIS M; ROSSETTI S; RAMADORI R;This paper reports the results of an investigation aimed at evaluating the performance of an innovative technology (SBBGR system - Sequencing Batch Biofilter Granular Reactor), characterised by a low sludge production, for treating municipal wastewater at demonstrative scale. The results have shown that even at the maximum investigated organic load (i.e., 2.5 kg COD/m(3) d), the plant removed 80% of COD, total suspended solids and nitrogen content with relative residual concentrations lower than the Italian limits for discharge into soil. The process was characterised by a very low sludge production (i.e., 0.12-0.14 kg TSS/kg COD(removed)) ascribable to the high sludge age in the system (thetac >120 d). Molecular in situ detection methods and microscopy staining procedures were employed in combination with the traditional measurements (oxygen uptake rate and total protein content) to evaluate both the microbial activity and composition, and the structure of the biomass. A stable presence of active bacterial populations (mainly Proteobacteria) was found within compact and dense aggregates.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2009.12.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2009.12.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Italy, Spain, ItalyPublisher:Elsevier BV Funded by:MIURMIURMuñoz, Iván; Portillo, Francisco; Rosiek, Sabina; Batlles, Francisco J.; Martinez del Rio, Javier; Acasuso, Iñaki; Piergrossi, Valentina; De Sanctis, Marco; Chimienti, Silvia; Di Iaconi, Claudio;handle: 10835/17512 , 20.500.14243/405872
The integration of an off-grid solar-assisted heat pump (SHP) and a sequencing batch biofilter granular reactor (SBBGR) for thermal energy recovery from wastewater was assessed by means of a prospective life cycle assessment (LCA) and life cycle costing (LCC), by theoretically scaling up a pilot installation in Bari, Italy, to a full-scale unit designed for 5000 person-equivalents. The LCA and LCC included all activities in the life cycle of the SHP and wastewater treatment plant (WWTP), namely construction, operation and end-of-life. The thermal energy produced by the SHP was assessed as supplying heating and cooling for an air-conditioning system, displacing a conventional air-source heat pump powered by electricity from the grid. This integrated systemwas compared to a reference situation where wastewater is treated in a conventional WWTP applying activated sludge with no thermal energy recovery system, showing clear environmental benefits in all impact indicators, such as a 42% reduction in greenhouse-gas emissions and a cost reduction of 53%. Several sensitivity analyses confirmed these findings, with the exception of the price rebound effect, which showed that the lower cost of the integrated system could lead to overturning the environmental benefits. As a limitation of the study, the distribution of the supplied air-conditioning to meet a demand off-site theWWTP premises, such as in residential buildings or hotels, was not included. Therefore, our results constitute only a preliminary positive outcome that should be validated in a real-life application.
ZENODO arrow_drop_down Journal of Cleaner ProductionArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAriUAL - Repositorio Institucional de la Universidad de Almería (Spain)Article . 2024License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2018.12.074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert ZENODO arrow_drop_down Journal of Cleaner ProductionArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAriUAL - Repositorio Institucional de la Universidad de Almería (Spain)Article . 2024License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2018.12.074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 ItalyPublisher:MDPI AG Marco De Sanctis; Valerio Guido Altieri; Emanuele Barca; Luigi di Bitonto; Francesco Tedeschi; Claudio Di Iaconi;doi: 10.3390/en17246293
handle: 20.500.14243/524061
The organic fraction of municipal solid waste (OFMSW) is widely recognized as a possible substrate for anaerobic digestion processes. However, the heterogeneity of this matrix and the presence of slowly biodegradable compounds can slow down anaerobic digestion and reduce its performance. This study compares the effectiveness of different thermal pre-treatments in increasing OFMSW anaerobic digestibility. Thermal pre-treatments were compared with OFMSW shredding, considered as the minimum pre-treatment required in order to reduce particles size of the OFMSW. The pre-treatments were performed in autoclave (121 °C and 1.4 bar for 20 min) or in an ad hoc hydrolysis reactor designed for the experimental trial (140 °C and 7 bar for 30 min) with air or nitrogen as gas phase. The thermal pre-treatments affected methane yield (NmLCH4/gVS), depending on the pre-treatment strategy, with autoclaving allowing for an 80% increase with respect to the control run, and leading to a methane yield of 476 ± 194 NmLCH4/gVS. The pre-treatments in the hydrolysis reactor caused a loss of organic matter (due to its volatilization) reducing the organic loading rate of the digester. Nevertheless, the digester performance in terms of COD (chemical oxygen demand) and VSS (volatile suspended solid) removal showed limited differences among the pre-treatments applied and ranged on average 79–94%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17246293&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17246293&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Elsevier BV Authors: Barca Emanuele; De Sanctis Marco; Altieri Valerio Guido; Di Iaconi Claudio;handle: 20.500.14243/389276
Urban wastewater is a valuable source of clean energy available for both building conditioning and hot sanitary water production, thus reducing primary energy demand and greenhouse gas emissions. In the present study, the integration of a highly efficient solar-assisted fully off-the-grid water-source heat pump (SHP) with a sequencing batch biofilter granular reactor (SBBGR) is tested on a pilot scale for recovering and reusing thermal energy generated during the depuration process. The prototype was designed to simulate wastewater production (240 L/d), domestic hot water (DHW) (152 L/d at 40 °C), and space heating (20-25 °C) energy demand for a one-person equivalent. Three set temperatures for heat extraction from the SBBGR were tested: 20, 14, and 10 °C. Heat extraction had limited effects on the average SBBGR performances. The SBBGR ensured a removal efficiency close to 90% for total suspended solids (TSS), chemical oxygen demand (COD), and ammonia, whereas a decrease in total nitrogen (TN) removal efficiency, namely from 75% to 71%, was observed with the operating temperature decrease. Energy recovery data suggested that the energy extracted from the SBBGR might cover the energy demand for DHW production or space heating from April to October. Thus, the collected energy data was modeled with the following purposes: highlighting the key parameters for optimizing energy recovery, quantifying the share of recoverable energy derived the microbial metabolism, and supporting or rejecting the scalability of the results. The model outcomes confirmed that the temperature difference between the sewage and heat extraction set point temperatures was the key parameter for energy recovery and succeeded in estimating the contribution of microbial metabolisms (i.e. about 3.2 kWh/m3 × d). However, the estimation of the full-scale recoverable energy was partially biased by the impact of the environmental conditions on the pilot.
IRIS Cnr arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.113582&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.113582&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Elsevier BV De Sanctis M; Chimienti S; Pastore C; Piergrossi V; Di Iaconi C;handle: 20.500.14243/405873
Posidonia oceanica is the most abundant aquatic plant of the Mediterranean Sea where it plays great ecological importance. The accumulation of residues along the shore, however, creates a littering hardship for the territory due to their bad rotting smell and introduces an obstacle to the enjoyment of the beaches and tourist swimming. Posidonia oceanica residues may be valorized producing bioenergy by anaerobic digestion. Due to its high lignin content, however, a pretreatment step is required for enhance energy recovery. In the present study the effects of acid addition in the thermal hydrolysis step were evaluated in terms of energy balance, biogas production and solids reduction. The results obtained have shown that when thermal pretreatment was enhanced by adding hydrochloric acid (0.4% w/w), an improvement in methane production of 575% was obtained compared to thermal pretreatment only with specific biogas production as high as 0.241 ± 0.065 Nm per kgVS of wet Posidonia or 0.138 ± 0.056 Nm CH/kgVS. This result was ascribed to the defibration of lignocellulosic components operated by acidic thermal pretreatment which allowed the removal of 74%, 70% and 24% of cellulose, hemicellulose and lignin, respectively, during anaerobic digestion. The energy analysis carried out for treatment plants with capacity of 10 and 50 m/d has shown that acid addition in the thermal hydrolysis step allows the energy balance to turn from extremely negative (energy demand is 8 to 10 times greater than the one produced) to positive values, with process energy efficiencies ranging from 22 to 35% with regards to the size of the plant.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113457&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113457&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:Elsevier BV Funded by:MIURMIURAuthors: De Sanctis M; Altieri VG; Piergrossi V; Di Iaconi C;In the present study, the possibility of recovering both thermal energy and water for agricultural purposes from sewage is evaluated. A treatment plant, based on a sequencing batch biofilter granular reactor (SBBGR) followed by sand filtration and coupled with a solar wastewater source heat pump, was operated from September to November 2018 at a set-point temperature of 14 °C to verify the stability of heat recovery efficiency and the suitability of plant effluent to be reused for irrigation. Heat recovery did not influence the SBBGR treatment and disinfection efficiency, which removed about 90% of suspended solids, chemical and biochemical oxygen demand and ammonia, as well as 70% of total nitrogen, 3 log10 units of Escherichia coli and more than 1 log10 unit of Clostridium perfringens. Furthermore, after sand filtration, water quality complied with the standards for agricultural reuse currently in force in several countries. Energy extracted from SBBGR was mainly influenced by environmental conditions, affecting wastewater temperature, and also by wastewater composition, affecting the energy release due to bacterial metabolic activity for carbon and nitrogen removal. Notably, no evident deterioration of energy extraction efficiency from the SBBGR was observed, suggesting negligible fouling phenomena on the submerged thermal exchanger.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nbt.2019.12.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nbt.2019.12.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Springer Science and Business Media LLC Del Moro G; Barca E; de Sanctis M; Mascolo G; Di Iaconi C;The Artificial Neural Networks by Multi-objective Genetic Algorithms (ANN-MOGA) model has been applied to gross parameters data of a Sequencing Batch Biofilter Granular Reactor (SBBGR) with the aim of providing an effective tool for predicting the fluctuations coming from touristic pressure. Six independent multivariate models, which were able to predict the dynamics of raw chemical oxygen demand (COD), soluble chemical oxygen demand (CODsol), total suspended solid (TSS), total nitrogen (TN), ammoniacal nitrogen (N-NH4 (+)) and total phosphorus (Ptot), were developed. The ANN-MOGA software application has shown to be suitable for addressing the SBBGR reactor modelling. The R (2) found are very good, with values equal to 0.94, 0.92, 0.88, 0.88, 0.98 and 0.91 for COD, CODsol, N-NH4 (+), TN, Ptot and TSS, respectively. A comparison was made between SBBGR and traditional activated sludge treatment plant modelling. The results showed the better performance of the ANN-MOGA application with respect to a wide selection of scientific literature cases.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-015-5729-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-015-5729-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 ItalyPublisher:Elsevier BV Authors: DI IACONI C; DEL MORO G; DE SANCTIS M; ROSSETTI S;An innovative process based on ozone-enhanced biological degradation, carried out in an aerobic granular biomass system (SBBGR--Sequencing Batch Biofilter Granular Reactor), was tested at pilot scale for tannery wastewater treatment chosen as representative of industrial recalcitrant wastewater. The results have shown that the process was able to meet the current discharge limits when the biologically treated wastewater was recirculated through an adjacent reactor where a specific ozone dose of 120 mg O3/L(influent) was used. The benefits produced by using ozone were appreciable even visually since the final effluent of the process looked like tap water. In comparison with the conventional treatment, the proposed process was able to reduce the sludge production by 25-30 times and to save 60% of operating costs. Molecular in situ detection methods were employed in combination with the traditional measurements (oxygen uptake rate, total protein content, extracellular polymeric substances and hydrophobicity) to evaluate microbial activity and composition, and the structure of the biomass. A stable presence of active bacterial populations was observed in the biomass with the simultaneous occurrence of distinctive functional microbial groups involved in carbon, nitrogen and sulphate removal under different reaction environments established within the large microbial aggregates. The structure and activity of the biomass were not affected by the use of ozone.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2010.04.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2010.04.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu