- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Embargo end date: 01 Feb 2022 Italy, Switzerland, FrancePublisher:MDPI AG Carcassi, Olga Beatrice; Minotti, Pietro; Habert, Guillaume; Paoletti, Ingrid; Claude, Sophie; Pittau, Francesco;handle: 11311/1197679
This research explores the carbon removal of a novel bio-insulation composite, here called MycoBamboo, based on the combination of bamboo particles and mycelium as binder. First, an attributional life cycle assessment (LCA) was performed to define the carbon footprint of a European bamboo plantation and a bio-insulation composite, as well as its ability to remove CO2 along its lifecycle at a laboratory scale. Secondly, the Global Worming Potential (GWP) was estimated through a dynamic LCA with selected end-of-life and technical replacement scenarios. Finally, a building wall application was analyzed to measure the carbon saving potential of the MycoBamboo when compared with alternative insulation materials applied as an exterior thermal insulation composite system. The results demonstrate that despite the negative GWP values of the biogenic CO2, the final Net-GWP was positive. The technical replacement scenarios had an influence on the final Net-GWP values, and a longer storage period is preferred to more frequent insulation substitution. The type of energy source and the deactivation phase play important roles in the mitigation of climate change. Therefore, to make the MycoBamboo competitive as an insulation system at the industrial scale, it is fundamental to identify alternative low-energy deactivation modes and shift all energy-intensity activities during the production phase to renewable energy.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/3/1384/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14031384&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 39 citations 39 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/3/1384/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14031384&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Embargo end date: 19 Apr 2022 Switzerland, ItalyPublisher:American Chemical Society (ACS) Authors: Olga Beatrice Carcassi; Guillaume Habert; Laura Elisabetta Malighetti; Francesco Pittau;The climate crisis is urging us to act fast. Buildings are a key leverage point in reducing greenhouse gas (GHG) emissions, but the embodied emissions related to their construction often remain the hidden challenge of any ambitious policy. Therefore, in this paper, we explored material GHG neutralization where herbaceous biobased insulation materials with negative net-global warming potentials (GWPs) were used to compensate for building elements that necessarily release GHGs. Different material diets, as well as different building typologies, were modeled to assess the consequences in terms of biobased insulation requirements to reach climate neutrality. Our results show that climate-neutral construction can be built with sufficient energy performance to fulfill current standards and with building component thicknesses within a range of 1.05–0.58 m when timber- and bamboo-based construction is chosen. Concrete-based ones require insulation sizes that are too large and heavy to be supported by the dimensioned structures or accepted by urban regulations. Moreover, a time horizon of 20 years is more appropriate for assessing the contribution of material shifts to biobased materials in the transition period before 2050. This paper demonstrates that this is technically feasible and that climate neutrality in the construction sector just depends on the future that we choose. Environmental Science & Technology, 56 (8) ISSN:0013-936X ISSN:1520-5851
RE.PUBLIC@POLIMI Res... arrow_drop_down Environmental Science & TechnologyArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.1c05895&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 35 citations 35 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert RE.PUBLIC@POLIMI Res... arrow_drop_down Environmental Science & TechnologyArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.1c05895&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Embargo end date: 01 Feb 2022 Italy, Switzerland, FrancePublisher:MDPI AG Carcassi, Olga Beatrice; Minotti, Pietro; Habert, Guillaume; Paoletti, Ingrid; Claude, Sophie; Pittau, Francesco;handle: 11311/1197679
This research explores the carbon removal of a novel bio-insulation composite, here called MycoBamboo, based on the combination of bamboo particles and mycelium as binder. First, an attributional life cycle assessment (LCA) was performed to define the carbon footprint of a European bamboo plantation and a bio-insulation composite, as well as its ability to remove CO2 along its lifecycle at a laboratory scale. Secondly, the Global Worming Potential (GWP) was estimated through a dynamic LCA with selected end-of-life and technical replacement scenarios. Finally, a building wall application was analyzed to measure the carbon saving potential of the MycoBamboo when compared with alternative insulation materials applied as an exterior thermal insulation composite system. The results demonstrate that despite the negative GWP values of the biogenic CO2, the final Net-GWP was positive. The technical replacement scenarios had an influence on the final Net-GWP values, and a longer storage period is preferred to more frequent insulation substitution. The type of energy source and the deactivation phase play important roles in the mitigation of climate change. Therefore, to make the MycoBamboo competitive as an insulation system at the industrial scale, it is fundamental to identify alternative low-energy deactivation modes and shift all energy-intensity activities during the production phase to renewable energy.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/3/1384/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14031384&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 39 citations 39 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/3/1384/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14031384&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Embargo end date: 19 Apr 2022 Switzerland, ItalyPublisher:American Chemical Society (ACS) Authors: Olga Beatrice Carcassi; Guillaume Habert; Laura Elisabetta Malighetti; Francesco Pittau;The climate crisis is urging us to act fast. Buildings are a key leverage point in reducing greenhouse gas (GHG) emissions, but the embodied emissions related to their construction often remain the hidden challenge of any ambitious policy. Therefore, in this paper, we explored material GHG neutralization where herbaceous biobased insulation materials with negative net-global warming potentials (GWPs) were used to compensate for building elements that necessarily release GHGs. Different material diets, as well as different building typologies, were modeled to assess the consequences in terms of biobased insulation requirements to reach climate neutrality. Our results show that climate-neutral construction can be built with sufficient energy performance to fulfill current standards and with building component thicknesses within a range of 1.05–0.58 m when timber- and bamboo-based construction is chosen. Concrete-based ones require insulation sizes that are too large and heavy to be supported by the dimensioned structures or accepted by urban regulations. Moreover, a time horizon of 20 years is more appropriate for assessing the contribution of material shifts to biobased materials in the transition period before 2050. This paper demonstrates that this is technically feasible and that climate neutrality in the construction sector just depends on the future that we choose. Environmental Science & Technology, 56 (8) ISSN:0013-936X ISSN:1520-5851
RE.PUBLIC@POLIMI Res... arrow_drop_down Environmental Science & TechnologyArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.1c05895&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 35 citations 35 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert RE.PUBLIC@POLIMI Res... arrow_drop_down Environmental Science & TechnologyArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.1c05895&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu