- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 United States, GermanyPublisher:Springer Science and Business Media LLC Authors: Francois Ribalet; Chris T. Berthiaume; E. Virginia Armbrust; Gwenn M. M. Hennon; +8 AuthorsFrancois Ribalet; Chris T. Berthiaume; E. Virginia Armbrust; Gwenn M. M. Hennon; Jarred E. Swalwell; Camille Poirier; Camille Poirier; Angelicque E. White; Michael C. G. Carlson; Eric M. Shimabukuro; Annette M. Hynes; Sophie Clayton;AbstractSeaFlow is an underway flow cytometer that provides continuous shipboard observations of the abundance and optical properties of small phytoplankton (<5 μm in equivalent spherical diameter, ESD). Here we present data sets consisting of SeaFlow-based cell abundance, forward light scatter, and pigment fluorescence of individual cells, as well as derived estimates of ESD and cellular carbon content of picophytoplankton, which includes the cyanobacteria Prochlorococcus, Synechococcus and small-sized Crocosphaera (<5 μm ESD), and picophytoplankton and nanophytoplankton (2–5 μm ESD). Data were collected in surface waters (≈5 m depth) from 27 oceanographic cruises carried out in the Northeast Pacific Ocean between 2010 and 2018. Thirteen cruises provide high spatial resolution (≈1 km) measurements across 32,500 km of the Northeast Pacific Ocean and 14 near-monthly cruises beginning in 2015 provide seasonal distributions at the long-term sampling site (Station ALOHA) of the Hawaii Ocean Time-Series. These data sets expand our knowledge of the current spatial and temporal distributions of picophytoplankton in the surface ocean.
Scientific Data arrow_drop_down Old Dominion University: ODU Digital CommonsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-019-0292-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Scientific Data arrow_drop_down Old Dominion University: ODU Digital CommonsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-019-0292-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:American Association for the Advancement of Science (AAAS) Craig A. Carlson; Angelicque E. White; Roxanne A. Beinart; Ian Hewson; Pia H. Moisander; Jonathan P. Zehr; Kenneth S. Johnson; Joseph P. Montoya;pmid: 20185682
Oceanic Nitrogen Fixation Nitrogen fixation in the oceans is important in sustaining global marine productivity and balances carbon dioxide export to the deep ocean. It was previously believed that marine nitrogen fixation was due to a single genus of filamentous cyanobacteria, Trichodesmium . The recent discovery of unicellular open-ocean cyanobacteria has raised the question of how they contribute to global ocean nitrogen fixation and how they compare in distribution and activity to Trichodesmium . Using data collected from the southwest Pacific Ocean, Moisander et al. (p. 1512 , published online 25 February) show that the unicellular nitrogen-fixing cyanobacteria (UCYN-A and Crocosphaera watsonii ) have distinct ecophysiologies and distinct oceanic distributions from each other, and from Trichodesmium . These data can be incorporated into models to retune estimates of the global rates of oceanic nitrogen fixation and carbon sequestration.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1185468&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu376 citations 376 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1185468&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014 United StatesPublisher:Public Library of Science (PLoS) Authors: Gradoville, Mary R.; White, Angelicque E.; Letelier, Ricardo M.;We investigated the effects of elevated pCO2 on cultures of the unicellular N2-fixing cyanobacterium Crocosphaera watsonii WH8501. Using CO2-enriched air, cultures grown in batch mode under high light intensity were exposed to initial conditions approximating current atmospheric CO2 concentrations (∼ 400 ppm) as well as CO2 levels corresponding to low- and high-end predictions for the year 2100 (∼ 750 and 1000 ppm). Following acclimation to CO2 levels, the concentrations of particulate carbon (PC), particulate nitrogen (PN), and cells were measured over the diurnal cycle for a six-day period spanning exponential and early stationary growth phases. High rates of photosynthesis and respiration resulted in biologically induced pCO2 fluctuations in all treatments. Despite this observed pCO2 variability, and consistent with previous experiments conducted under stable pCO2 conditions, we observed that elevated mean pCO2 enhanced rates of PC production, PN production, and growth. During exponential growth phase, rates of PC and PN production increased by ∼ 1.2- and ∼ 1.5-fold in the mid- and high-CO2 treatments, respectively, when compared to the low-CO2 treatment. Elevated pCO2 also enhanced PC and PN production rates during early stationary growth phase. In all treatments, PC and PN cellular content displayed a strong diurnal rhythm, with particulate C:N molar ratios reaching a high of 22:1 in the light and a low of 5.5:1 in the dark. The pCO2 enhancement of metabolic rates persisted despite pCO2 variability, suggesting a consistent positive response of Crocosphaera to elevated and fluctuating pCO2 conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0110660&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0110660&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2013Publisher:PANGAEA Moisander, Pia H; Beinart, Roxanne A; Hewson, Ian; White, A E; Johnson, Kenneth S; Carlson, C A; Montoya, Joseph P; Zehr, Jonathan P; Lien, Vidar;B2FIND arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2013License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.818186&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert B2FIND arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2013License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.818186&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012 France, United States, Denmark, Spain, United States, United States, United Kingdom, United States, Germany, Spain, United KingdomPublisher:Copernicus GmbH Funded by:NSF | Quantification of Trichod..., NSF | COLLABORATIVE RESEARCH: N...NSF| Quantification of Trichodesmium spp. vertical and horizontal abundance patterns and nitrogen fixation in the western North Atlantic ,NSF| COLLABORATIVE RESEARCH: Nitrogen Fixation and its Coupling with Denitrification in the Eastern Tropical North PacificJonathan P. Zehr; Yuh-ling Lee Chen; Lasse Riemann; Kjärstin H Boström; Eric A. Webb; Julie LaRoche; Tracy A. Villareal; Douglas G. Capone; Satoshi Kitajima; Mar Benavides; Ilana Berman-Frank; Pia H. Moisander; Pia H. Moisander; Marta M. Varela; Ajit Subramaniam; John E. Dore; Laurence A. Anderson; Patrick Raimbault; Dennis J. McGillicuddy; Annette M. Hynes; Annette M. Hynes; Ken Furuya; Jingfeng Wu; Rebecca Langlois; Matthew J. Church; Eyal Rahav; Scott C. Doney; Kendra A. Turk-Kubo; Toby Tyrrell; Edward J. Carpenter; David M. Karl; Margaret R. Mulholland; Andrew P. Rees; Sophie Bonnet; Ricardo M. Letelier; K. M. Orcutt; Antonio Bode; Alex J. Poulton; Luisa I. Falcón; Daniela Böttjer; Rachel A. Foster; Takuhei Shiozaki; C. M. Moore; Emilio Marañón; Kjell Gundersen; Angelicque E. White; Joseph A. Needoba; Fernando Gómez; Ana Belén Méndez Fernández; Beatriz Mouriño-Carballido; Ya-Wei Luo;handle: 10508/8323 , 10261/316259
Abstract. Marine N2 fixing microorganisms, termed diazotrophs, are a key functional group in marine pelagic ecosystems. The biological fixation of dinitrogen (N2) to bioavailable nitrogen provides an important new source of nitrogen for pelagic marine ecosystems and influences primary productivity and organic matter export to the deep ocean. As one of a series of efforts to collect biomass and rates specific to different phytoplankton functional groups, we have constructed a database on diazotrophic organisms in the global pelagic upper ocean by compiling about 12 000 direct field measurements of cyanobacterial diazotroph abundances (based on microscopic cell counts or qPCR assays targeting the nifH genes) and N2 fixation rates. Biomass conversion factors are estimated based on cell sizes to convert abundance data to diazotrophic biomass. The database is limited spatially, lacking large regions of the ocean especially in the Indian Ocean. The data are approximately log-normal distributed, and large variances exist in most sub-databases with non-zero values differing 5 to 8 orders of magnitude. Lower mean N2 fixation rate was found in the North Atlantic Ocean than the Pacific Ocean. Reporting the geometric mean and the range of one geometric standard error below and above the geometric mean, the pelagic N2 fixation rate in the global ocean is estimated to be 62 (53–73) Tg N yr−1 and the pelagic diazotrophic biomass in the global ocean is estimated to be 4.7 (2.3–9.6) Tg C from cell counts and to 89 (40–200) Tg C from nifH-based abundances. Uncertainties related to biomass conversion factors can change the estimate of geometric mean pelagic diazotrophic biomass in the global ocean by about ±70%. This evolving database can be used to study spatial and temporal distributions and variations of marine N2 fixation, to validate geochemical estimates and to parameterize and validate biogeochemical models. The database is stored in PANGAEA (http://doi.pangaea.de/10.1594/PANGAEA.774851).
NERC Open Research A... arrow_drop_down Old Dominion University: ODU Digital CommonsArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2012License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essdd-...Article . 2012 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2012 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional Digital del IEOArticle . 2012License: CC BY NC NDData sources: Repositorio Institucional Digital del IEOCopenhagen University Research Information SystemArticle . 2012Data sources: Copenhagen University Research Information SystemINRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverUniversity of Copenhagen: ResearchArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essdd-5-47-2012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 327 citations 327 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 48visibility views 48 Powered bymore_vert NERC Open Research A... arrow_drop_down Old Dominion University: ODU Digital CommonsArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2012License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essdd-...Article . 2012 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2012 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional Digital del IEOArticle . 2012License: CC BY NC NDData sources: Repositorio Institucional Digital del IEOCopenhagen University Research Information SystemArticle . 2012Data sources: Copenhagen University Research Information SystemINRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverUniversity of Copenhagen: ResearchArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essdd-5-47-2012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Optica Publishing Group Funded by:NSF | Collaborative Research: M...NSF| Collaborative Research: Measuring Ocean Productivity from the Diurnal Change in Oxygen and CarbonFernanda Henderikx Freitas; Mathilde Dugenne; François Ribalet; Annette Hynes; Benedetto Barone; David M. Karl; Angelicque E. White;doi: 10.1364/ao.394123
pmid: 32749375
Cross-platform observing systems are requisite to capturing the temporal and spatial dynamics of particles in the ocean. We present simultaneous observations of bulk optical properties, including the particulate beam attenuation ( c p ) and backscattering ( b bp ) coefficients, and particle size distributions collected in the North Pacific Subtropical Gyre. Clear and coherent diel cycles are observed in all bulk and size-fractionated optical proxies for particle biomass. We show evidence linking diurnal increases in c p and b bp to daytime particle growth and division of cells, with particles < 7 µ m driving the daily cycle of particle production and loss within the mixed layer. Flow cytometry data reveal the nitrogen-fixing cyanobacterium Crocosphaera ( ∼ 4 − 7 µ m ) to be an important driver of c p at the time of sampling, whereas Prochlorococcus dynamics ( ∼ 0.5 µ m ) were essential to reproducing temporal variability in b bp . This study is a step towards improved characterization of the particle size range represented by in situ bulk optical properties and a better understanding of the mechanisms that drive variability in particle production in the oligotrophic open ocean.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1364/ao.394123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1364/ao.394123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Oxford University Press (OUP) Authors: Sacha N Coesel; Shiri Graff van Creveld; Mathilde Dugenne; Fernanda Henderikx-Freitas; +2 AuthorsSacha N Coesel; Shiri Graff van Creveld; Mathilde Dugenne; Fernanda Henderikx-Freitas; Angelicque E White; E Virginia Armbrust;Abstract Unicellular plankton form the foundation of the marine food web, driving carbon fixation and cycling essential biogeochemical elements in marine ecosystems. Carbon biomass, often measured as a bulk property, serves as a common “currency” for ecologists. The increasing availability of metatranscriptomic data presents an opportunity to add taxonomic and functional resolution to ecological models and yet, aligning transcript counts with carbon biomass estimates remains a challenge. Here, we combine 30 quantitative metatranscriptome samples with Imaging FlowCytobot-derived carbon biomass estimates and demonstrate a robust, proportional (log–log scale) relationship between transcript concentration and carbon biomass estimates across abundant protist taxa. Further, we show that dinoflagellates exhibit a transcript-to-biomass ratio ~ 6.4-fold higher than other protist groups, consistent with their known transcriptional divergence. These findings provide a means to address overrepresentation of dinoflagellate transcript levels in metatranscriptome data. Moreover, this study establishes an entrée for integrating metatranscriptomics into carbon biomass-based ecological models, enhancing the interpretability and applicability of transcriptomic data in ecosystem research and modeling.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/ismejo/wraf079&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/ismejo/wraf079&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset , Other dataset type 2013Publisher:PANGAEA Funded by:NSF | Quantification of Trichod..., NSF | COLLABORATIVE RESEARCH: N...NSF| Quantification of Trichodesmium spp. vertical and horizontal abundance patterns and nitrogen fixation in the western North Atlantic ,NSF| COLLABORATIVE RESEARCH: Nitrogen Fixation and its Coupling with Denitrification in the Eastern Tropical North PacificLuo, Yawei; Doney, Scott C; Anderson, L A; Benavides, Mar; Berman-Frank, I; Bode, Antonio; Bonnet, S; Boström, Kjärstin H; Böttjer, D; Capone, D G; Carpenter, E J; Chen, Yaw-Lin; Church, Matthew J; Dore, John E; Falcón, Luisa I; Fernández, A; Foster, R A; Furuya, Ken; Gomez, Fernando; Gundersen, Kjell; Hynes, Annette M; Karl, David Michael; Kitajima, Satoshi; Langlois, Rebecca; LaRoche, Julie; Letelier, Ricardo M; Marañón, Emilio; McGillicuddy Jr, Dennis J; Moisander, Pia H; Moore, C Mark; Mouriño-Carballido, Beatriz; Mulholland, Margaret R; Needoba, Joseph A; Orcutt, Karen M; Poulton, Alex J; Rahav, Eyal; Raimbault, Patrick; Rees, Andrew; Riemann, Lasse; Shiozaki, Takuhei; Subramaniam, Ajit; Tyrrell, Toby; Turk-Kubo, Kendra A; Varela, Manuel; Villareal, Tracy A; Webb, Eric A; White, Angelicque E; Wu, Jingfeng; Zehr, Jonathan P;The MAREDAT atlas covers 11 types of plankton, ranging in size from bacteria to jellyfish. Together, these plankton groups determine the health and productivity of the global ocean and play a vital role in the global carbon cycle. Working within a uniform and consistent spatial and depth grid (map) of the global ocean, the researchers compiled thousands and tens of thousands of data points to identify regions of plankton abundance and scarcity as well as areas of data abundance and scarcity. At many of the grid points, the MAREDAT team accomplished the difficult conversion from abundance (numbers of organisms) to biomass (carbon mass of organisms). The MAREDAT atlas provides an unprecedented global data set for ecological and biochemical analysis and modeling as well as a clear mandate for compiling additional existing data and for focusing future data gathering efforts on key groups in key areas of the ocean.The present data set presents depth integrated values of diazotrophs Gamma-A nifH genes abundance, computed from a collection of source data sets. Supplement to: Luo, Yawei; Doney, Scott C; Anderson, L A; Benavides, Mar; Berman-Frank, I; Bode, Antonio; Bonnet, S; Boström, Kjärstin H; Böttjer, D; Capone, D G; Carpenter, E J; Chen, Yaw-Lin; Church, Matthew J; Dore, John E; Falcón, Luisa I; Fernández, A; Foster, R A; Furuya, Ken; Gomez, Fernando; Gundersen, Kjell; Hynes, Annette M; Karl, David Michael; Kitajima, Satoshi; Langlois, Rebecca; LaRoche, Julie; Letelier, Ricardo M; Marañón, Emilio; McGillicuddy Jr, Dennis J; Moisander, Pia H; Moore, C Mark; Mouriño-Carballido, Beatriz; Mulholland, Margaret R; Needoba, Joseph A; Orcutt, Karen M; Poulton, Alex J; Rahav, Eyal; Raimbault, Patrick; Rees, Andrew; Riemann, Lasse; Shiozaki, Takuhei; Subramaniam, Ajit; Tyrrell, Toby; Turk-Kubo, Kendra A; Varela, Manuel; Villareal, Tracy A; Webb, Eric A; White, Angelicque E; Wu, Jingfeng; Zehr, Jonathan P (2012): Database of diazotrophs in global ocean: abundance, biomass and nitrogen fixation rates. Earth System Science Data, 4, 47-73
PANGAEA arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2013License: CC BYData sources: DatacitePANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2013License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.818208&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2013License: CC BYData sources: DatacitePANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2013License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.818208&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2013Publisher:PANGAEA Authors: White, A E;Richelia reported as heterocyst density, converted to cell density on 1:5 basis.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.816649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.816649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 United States, GermanyPublisher:Springer Science and Business Media LLC Authors: Francois Ribalet; Chris T. Berthiaume; E. Virginia Armbrust; Gwenn M. M. Hennon; +8 AuthorsFrancois Ribalet; Chris T. Berthiaume; E. Virginia Armbrust; Gwenn M. M. Hennon; Jarred E. Swalwell; Camille Poirier; Camille Poirier; Angelicque E. White; Michael C. G. Carlson; Eric M. Shimabukuro; Annette M. Hynes; Sophie Clayton;AbstractSeaFlow is an underway flow cytometer that provides continuous shipboard observations of the abundance and optical properties of small phytoplankton (<5 μm in equivalent spherical diameter, ESD). Here we present data sets consisting of SeaFlow-based cell abundance, forward light scatter, and pigment fluorescence of individual cells, as well as derived estimates of ESD and cellular carbon content of picophytoplankton, which includes the cyanobacteria Prochlorococcus, Synechococcus and small-sized Crocosphaera (<5 μm ESD), and picophytoplankton and nanophytoplankton (2–5 μm ESD). Data were collected in surface waters (≈5 m depth) from 27 oceanographic cruises carried out in the Northeast Pacific Ocean between 2010 and 2018. Thirteen cruises provide high spatial resolution (≈1 km) measurements across 32,500 km of the Northeast Pacific Ocean and 14 near-monthly cruises beginning in 2015 provide seasonal distributions at the long-term sampling site (Station ALOHA) of the Hawaii Ocean Time-Series. These data sets expand our knowledge of the current spatial and temporal distributions of picophytoplankton in the surface ocean.
Scientific Data arrow_drop_down Old Dominion University: ODU Digital CommonsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-019-0292-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Scientific Data arrow_drop_down Old Dominion University: ODU Digital CommonsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-019-0292-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:American Association for the Advancement of Science (AAAS) Craig A. Carlson; Angelicque E. White; Roxanne A. Beinart; Ian Hewson; Pia H. Moisander; Jonathan P. Zehr; Kenneth S. Johnson; Joseph P. Montoya;pmid: 20185682
Oceanic Nitrogen Fixation Nitrogen fixation in the oceans is important in sustaining global marine productivity and balances carbon dioxide export to the deep ocean. It was previously believed that marine nitrogen fixation was due to a single genus of filamentous cyanobacteria, Trichodesmium . The recent discovery of unicellular open-ocean cyanobacteria has raised the question of how they contribute to global ocean nitrogen fixation and how they compare in distribution and activity to Trichodesmium . Using data collected from the southwest Pacific Ocean, Moisander et al. (p. 1512 , published online 25 February) show that the unicellular nitrogen-fixing cyanobacteria (UCYN-A and Crocosphaera watsonii ) have distinct ecophysiologies and distinct oceanic distributions from each other, and from Trichodesmium . These data can be incorporated into models to retune estimates of the global rates of oceanic nitrogen fixation and carbon sequestration.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1185468&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu376 citations 376 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1185468&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014 United StatesPublisher:Public Library of Science (PLoS) Authors: Gradoville, Mary R.; White, Angelicque E.; Letelier, Ricardo M.;We investigated the effects of elevated pCO2 on cultures of the unicellular N2-fixing cyanobacterium Crocosphaera watsonii WH8501. Using CO2-enriched air, cultures grown in batch mode under high light intensity were exposed to initial conditions approximating current atmospheric CO2 concentrations (∼ 400 ppm) as well as CO2 levels corresponding to low- and high-end predictions for the year 2100 (∼ 750 and 1000 ppm). Following acclimation to CO2 levels, the concentrations of particulate carbon (PC), particulate nitrogen (PN), and cells were measured over the diurnal cycle for a six-day period spanning exponential and early stationary growth phases. High rates of photosynthesis and respiration resulted in biologically induced pCO2 fluctuations in all treatments. Despite this observed pCO2 variability, and consistent with previous experiments conducted under stable pCO2 conditions, we observed that elevated mean pCO2 enhanced rates of PC production, PN production, and growth. During exponential growth phase, rates of PC and PN production increased by ∼ 1.2- and ∼ 1.5-fold in the mid- and high-CO2 treatments, respectively, when compared to the low-CO2 treatment. Elevated pCO2 also enhanced PC and PN production rates during early stationary growth phase. In all treatments, PC and PN cellular content displayed a strong diurnal rhythm, with particulate C:N molar ratios reaching a high of 22:1 in the light and a low of 5.5:1 in the dark. The pCO2 enhancement of metabolic rates persisted despite pCO2 variability, suggesting a consistent positive response of Crocosphaera to elevated and fluctuating pCO2 conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0110660&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0110660&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2013Publisher:PANGAEA Moisander, Pia H; Beinart, Roxanne A; Hewson, Ian; White, A E; Johnson, Kenneth S; Carlson, C A; Montoya, Joseph P; Zehr, Jonathan P; Lien, Vidar;B2FIND arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2013License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.818186&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert B2FIND arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2013License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.818186&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012 France, United States, Denmark, Spain, United States, United States, United Kingdom, United States, Germany, Spain, United KingdomPublisher:Copernicus GmbH Funded by:NSF | Quantification of Trichod..., NSF | COLLABORATIVE RESEARCH: N...NSF| Quantification of Trichodesmium spp. vertical and horizontal abundance patterns and nitrogen fixation in the western North Atlantic ,NSF| COLLABORATIVE RESEARCH: Nitrogen Fixation and its Coupling with Denitrification in the Eastern Tropical North PacificJonathan P. Zehr; Yuh-ling Lee Chen; Lasse Riemann; Kjärstin H Boström; Eric A. Webb; Julie LaRoche; Tracy A. Villareal; Douglas G. Capone; Satoshi Kitajima; Mar Benavides; Ilana Berman-Frank; Pia H. Moisander; Pia H. Moisander; Marta M. Varela; Ajit Subramaniam; John E. Dore; Laurence A. Anderson; Patrick Raimbault; Dennis J. McGillicuddy; Annette M. Hynes; Annette M. Hynes; Ken Furuya; Jingfeng Wu; Rebecca Langlois; Matthew J. Church; Eyal Rahav; Scott C. Doney; Kendra A. Turk-Kubo; Toby Tyrrell; Edward J. Carpenter; David M. Karl; Margaret R. Mulholland; Andrew P. Rees; Sophie Bonnet; Ricardo M. Letelier; K. M. Orcutt; Antonio Bode; Alex J. Poulton; Luisa I. Falcón; Daniela Böttjer; Rachel A. Foster; Takuhei Shiozaki; C. M. Moore; Emilio Marañón; Kjell Gundersen; Angelicque E. White; Joseph A. Needoba; Fernando Gómez; Ana Belén Méndez Fernández; Beatriz Mouriño-Carballido; Ya-Wei Luo;handle: 10508/8323 , 10261/316259
Abstract. Marine N2 fixing microorganisms, termed diazotrophs, are a key functional group in marine pelagic ecosystems. The biological fixation of dinitrogen (N2) to bioavailable nitrogen provides an important new source of nitrogen for pelagic marine ecosystems and influences primary productivity and organic matter export to the deep ocean. As one of a series of efforts to collect biomass and rates specific to different phytoplankton functional groups, we have constructed a database on diazotrophic organisms in the global pelagic upper ocean by compiling about 12 000 direct field measurements of cyanobacterial diazotroph abundances (based on microscopic cell counts or qPCR assays targeting the nifH genes) and N2 fixation rates. Biomass conversion factors are estimated based on cell sizes to convert abundance data to diazotrophic biomass. The database is limited spatially, lacking large regions of the ocean especially in the Indian Ocean. The data are approximately log-normal distributed, and large variances exist in most sub-databases with non-zero values differing 5 to 8 orders of magnitude. Lower mean N2 fixation rate was found in the North Atlantic Ocean than the Pacific Ocean. Reporting the geometric mean and the range of one geometric standard error below and above the geometric mean, the pelagic N2 fixation rate in the global ocean is estimated to be 62 (53–73) Tg N yr−1 and the pelagic diazotrophic biomass in the global ocean is estimated to be 4.7 (2.3–9.6) Tg C from cell counts and to 89 (40–200) Tg C from nifH-based abundances. Uncertainties related to biomass conversion factors can change the estimate of geometric mean pelagic diazotrophic biomass in the global ocean by about ±70%. This evolving database can be used to study spatial and temporal distributions and variations of marine N2 fixation, to validate geochemical estimates and to parameterize and validate biogeochemical models. The database is stored in PANGAEA (http://doi.pangaea.de/10.1594/PANGAEA.774851).
NERC Open Research A... arrow_drop_down Old Dominion University: ODU Digital CommonsArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2012License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essdd-...Article . 2012 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2012 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional Digital del IEOArticle . 2012License: CC BY NC NDData sources: Repositorio Institucional Digital del IEOCopenhagen University Research Information SystemArticle . 2012Data sources: Copenhagen University Research Information SystemINRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverUniversity of Copenhagen: ResearchArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essdd-5-47-2012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 327 citations 327 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 48visibility views 48 Powered bymore_vert NERC Open Research A... arrow_drop_down Old Dominion University: ODU Digital CommonsArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2012License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essdd-...Article . 2012 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2012 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional Digital del IEOArticle . 2012License: CC BY NC NDData sources: Repositorio Institucional Digital del IEOCopenhagen University Research Information SystemArticle . 2012Data sources: Copenhagen University Research Information SystemINRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverUniversity of Copenhagen: ResearchArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essdd-5-47-2012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Optica Publishing Group Funded by:NSF | Collaborative Research: M...NSF| Collaborative Research: Measuring Ocean Productivity from the Diurnal Change in Oxygen and CarbonFernanda Henderikx Freitas; Mathilde Dugenne; François Ribalet; Annette Hynes; Benedetto Barone; David M. Karl; Angelicque E. White;doi: 10.1364/ao.394123
pmid: 32749375
Cross-platform observing systems are requisite to capturing the temporal and spatial dynamics of particles in the ocean. We present simultaneous observations of bulk optical properties, including the particulate beam attenuation ( c p ) and backscattering ( b bp ) coefficients, and particle size distributions collected in the North Pacific Subtropical Gyre. Clear and coherent diel cycles are observed in all bulk and size-fractionated optical proxies for particle biomass. We show evidence linking diurnal increases in c p and b bp to daytime particle growth and division of cells, with particles < 7 µ m driving the daily cycle of particle production and loss within the mixed layer. Flow cytometry data reveal the nitrogen-fixing cyanobacterium Crocosphaera ( ∼ 4 − 7 µ m ) to be an important driver of c p at the time of sampling, whereas Prochlorococcus dynamics ( ∼ 0.5 µ m ) were essential to reproducing temporal variability in b bp . This study is a step towards improved characterization of the particle size range represented by in situ bulk optical properties and a better understanding of the mechanisms that drive variability in particle production in the oligotrophic open ocean.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1364/ao.394123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1364/ao.394123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Oxford University Press (OUP) Authors: Sacha N Coesel; Shiri Graff van Creveld; Mathilde Dugenne; Fernanda Henderikx-Freitas; +2 AuthorsSacha N Coesel; Shiri Graff van Creveld; Mathilde Dugenne; Fernanda Henderikx-Freitas; Angelicque E White; E Virginia Armbrust;Abstract Unicellular plankton form the foundation of the marine food web, driving carbon fixation and cycling essential biogeochemical elements in marine ecosystems. Carbon biomass, often measured as a bulk property, serves as a common “currency” for ecologists. The increasing availability of metatranscriptomic data presents an opportunity to add taxonomic and functional resolution to ecological models and yet, aligning transcript counts with carbon biomass estimates remains a challenge. Here, we combine 30 quantitative metatranscriptome samples with Imaging FlowCytobot-derived carbon biomass estimates and demonstrate a robust, proportional (log–log scale) relationship between transcript concentration and carbon biomass estimates across abundant protist taxa. Further, we show that dinoflagellates exhibit a transcript-to-biomass ratio ~ 6.4-fold higher than other protist groups, consistent with their known transcriptional divergence. These findings provide a means to address overrepresentation of dinoflagellate transcript levels in metatranscriptome data. Moreover, this study establishes an entrée for integrating metatranscriptomics into carbon biomass-based ecological models, enhancing the interpretability and applicability of transcriptomic data in ecosystem research and modeling.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/ismejo/wraf079&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/ismejo/wraf079&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset , Other dataset type 2013Publisher:PANGAEA Funded by:NSF | Quantification of Trichod..., NSF | COLLABORATIVE RESEARCH: N...NSF| Quantification of Trichodesmium spp. vertical and horizontal abundance patterns and nitrogen fixation in the western North Atlantic ,NSF| COLLABORATIVE RESEARCH: Nitrogen Fixation and its Coupling with Denitrification in the Eastern Tropical North PacificLuo, Yawei; Doney, Scott C; Anderson, L A; Benavides, Mar; Berman-Frank, I; Bode, Antonio; Bonnet, S; Boström, Kjärstin H; Böttjer, D; Capone, D G; Carpenter, E J; Chen, Yaw-Lin; Church, Matthew J; Dore, John E; Falcón, Luisa I; Fernández, A; Foster, R A; Furuya, Ken; Gomez, Fernando; Gundersen, Kjell; Hynes, Annette M; Karl, David Michael; Kitajima, Satoshi; Langlois, Rebecca; LaRoche, Julie; Letelier, Ricardo M; Marañón, Emilio; McGillicuddy Jr, Dennis J; Moisander, Pia H; Moore, C Mark; Mouriño-Carballido, Beatriz; Mulholland, Margaret R; Needoba, Joseph A; Orcutt, Karen M; Poulton, Alex J; Rahav, Eyal; Raimbault, Patrick; Rees, Andrew; Riemann, Lasse; Shiozaki, Takuhei; Subramaniam, Ajit; Tyrrell, Toby; Turk-Kubo, Kendra A; Varela, Manuel; Villareal, Tracy A; Webb, Eric A; White, Angelicque E; Wu, Jingfeng; Zehr, Jonathan P;The MAREDAT atlas covers 11 types of plankton, ranging in size from bacteria to jellyfish. Together, these plankton groups determine the health and productivity of the global ocean and play a vital role in the global carbon cycle. Working within a uniform and consistent spatial and depth grid (map) of the global ocean, the researchers compiled thousands and tens of thousands of data points to identify regions of plankton abundance and scarcity as well as areas of data abundance and scarcity. At many of the grid points, the MAREDAT team accomplished the difficult conversion from abundance (numbers of organisms) to biomass (carbon mass of organisms). The MAREDAT atlas provides an unprecedented global data set for ecological and biochemical analysis and modeling as well as a clear mandate for compiling additional existing data and for focusing future data gathering efforts on key groups in key areas of the ocean.The present data set presents depth integrated values of diazotrophs Gamma-A nifH genes abundance, computed from a collection of source data sets. Supplement to: Luo, Yawei; Doney, Scott C; Anderson, L A; Benavides, Mar; Berman-Frank, I; Bode, Antonio; Bonnet, S; Boström, Kjärstin H; Böttjer, D; Capone, D G; Carpenter, E J; Chen, Yaw-Lin; Church, Matthew J; Dore, John E; Falcón, Luisa I; Fernández, A; Foster, R A; Furuya, Ken; Gomez, Fernando; Gundersen, Kjell; Hynes, Annette M; Karl, David Michael; Kitajima, Satoshi; Langlois, Rebecca; LaRoche, Julie; Letelier, Ricardo M; Marañón, Emilio; McGillicuddy Jr, Dennis J; Moisander, Pia H; Moore, C Mark; Mouriño-Carballido, Beatriz; Mulholland, Margaret R; Needoba, Joseph A; Orcutt, Karen M; Poulton, Alex J; Rahav, Eyal; Raimbault, Patrick; Rees, Andrew; Riemann, Lasse; Shiozaki, Takuhei; Subramaniam, Ajit; Tyrrell, Toby; Turk-Kubo, Kendra A; Varela, Manuel; Villareal, Tracy A; Webb, Eric A; White, Angelicque E; Wu, Jingfeng; Zehr, Jonathan P (2012): Database of diazotrophs in global ocean: abundance, biomass and nitrogen fixation rates. Earth System Science Data, 4, 47-73
PANGAEA arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2013License: CC BYData sources: DatacitePANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2013License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.818208&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2013License: CC BYData sources: DatacitePANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2013License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.818208&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2013Publisher:PANGAEA Authors: White, A E;Richelia reported as heterocyst density, converted to cell density on 1:5 basis.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.816649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.816649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu