- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Eliseu Monteiro; Margarida Gonçalves; Octávio Alves; Catarina Nobre; Luís Durão; Paulo Brito;Abstract The growing production of non-recyclable urban wastes generates environmental problems that impose new alternatives for their energetic valorisation. Nonetheless, some of these wastes do not have adequate properties to be directly used in waste-to-energy technologies, thus requiring adequate pre-treatments to improve their fuel properties. This work aimed to evaluate dry and hydrothermal carbonisation (DC and HTC) as technologies to convert solid recovered fuel (SRF) from construction and municipal solid wastes to biochars or hydrochars with improved fuel quality. The operational parameters evaluated were temperature, mass ratio of SRF:water, and incorporation of a liquid additive (used cooking oil, UCO). The chars were characterised for chemical composition, calorific value, TGA profiles and surface functional groups. The chemical oxygen demand (COD), concentration of total phenols, pH, conductivity and the main components in process waters were determined. Results showed an improvement of fuel characteristics in terms of hydrophobicity and calorific value, enabling the use of chars for waste-to-energy technologies. HTC produced hydrochars with better fuel characteristics, presenting calorific values of 28–33 MJ/kg db, and lower average ash and chlorine contents (2.8 wt% db and 3.1 wt% db, respectively). The addition of UCO improved these fuel characteristics. However, the generation of an effluent that needs further decontamination and the lower amount of moisture present in SRF possibly made DC more attractive in terms of energy and costs requirements. A treatment at 350 °C during 30 min was recommended for a good compromise among process costs and char properties.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Eliseu Monteiro; Margarida Gonçalves; Octávio Alves; Catarina Nobre; Luís Durão; Paulo Brito;Abstract The growing production of non-recyclable urban wastes generates environmental problems that impose new alternatives for their energetic valorisation. Nonetheless, some of these wastes do not have adequate properties to be directly used in waste-to-energy technologies, thus requiring adequate pre-treatments to improve their fuel properties. This work aimed to evaluate dry and hydrothermal carbonisation (DC and HTC) as technologies to convert solid recovered fuel (SRF) from construction and municipal solid wastes to biochars or hydrochars with improved fuel quality. The operational parameters evaluated were temperature, mass ratio of SRF:water, and incorporation of a liquid additive (used cooking oil, UCO). The chars were characterised for chemical composition, calorific value, TGA profiles and surface functional groups. The chemical oxygen demand (COD), concentration of total phenols, pH, conductivity and the main components in process waters were determined. Results showed an improvement of fuel characteristics in terms of hydrophobicity and calorific value, enabling the use of chars for waste-to-energy technologies. HTC produced hydrochars with better fuel characteristics, presenting calorific values of 28–33 MJ/kg db, and lower average ash and chlorine contents (2.8 wt% db and 3.1 wt% db, respectively). The addition of UCO improved these fuel characteristics. However, the generation of an effluent that needs further decontamination and the lower amount of moisture present in SRF possibly made DC more attractive in terms of energy and costs requirements. A treatment at 350 °C during 30 min was recommended for a good compromise among process costs and char properties.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 PortugalPublisher:Elsevier BV Authors: Viegas, Catarina; Gouveia, Luisa; Gonçalves, Maria Margarida;pmid: 33609932
The use of microalgae to remediate raw effluent from brown crab aquaculture was evaluated by performing batch mode growth tests using separately the microalgae Chlorella vulgaris (Cv), Scenedesmus obliquus (Sc), Isochrysis galbana (Ig), Nannocloropsis salina (Ns), and Spirulina major (Sp). Removal efficiencies in batch growth were 100% for total nitrogen and total phosphorus for all microalgae. Chemical oxygen demand (COD) remediations were all above 72%. Biomass productivity varied from 20.9 mg L-1 day-1 (N. salina) to 146.4 mg L-1 day-1 (C. vulgaris). The two best performing algae were C. vulgaris and S. obliquus and they were tested in semi-continuous growth, reaching productivities of 879.8 mg L-1 day-1 and 811.7 mg L-1 day-1, respectively. The bioremediation of the effluent was tested with a transfer system consisting of three independent containers and compared with the use of a single container. The single container had the same capacity and received weekly the same volume of effluent as the three containers together. The remediation capacity of the 3 containers was much higher than the single one. The supplementation with NaNO3 was tested to improve the nutrient removal microalgae' capacity, with positive results. The removal efficiencies were 100% for total nitrogen and total phosphorus and higher than 96% for COD. The obtained C. vulgaris and S. obliquus biomass were composed of 31 and 35% proteins, 6 and 8% lipids, 39 and 30% carbohydrates, respectively. The composition of these biomass suggest that it can be used as novel and sustainable ingredients in aquaculture feeds. The algal biomass of Cv and Sc were used as biostimulants in the germination of wheat and watercress, and very promising results were attained, with increases in the germination index for Cv and Sc of 175% and 48% in watercress and 84% and 98% in wheat, respectively. The biomasses of Cv and Sc were also subjected to a torrefaction process with 72.5 ± 1.7% char yields. The obtained biochars were tested as biostimulants for germination seeds (wheat and watercress) and as bio-adsorbent of dye solutions.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2021.112187&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 104 citations 104 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 17visibility views 17 download downloads 10 Powered bymore_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2021.112187&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 PortugalPublisher:Elsevier BV Authors: Viegas, Catarina; Gouveia, Luisa; Gonçalves, Maria Margarida;pmid: 33609932
The use of microalgae to remediate raw effluent from brown crab aquaculture was evaluated by performing batch mode growth tests using separately the microalgae Chlorella vulgaris (Cv), Scenedesmus obliquus (Sc), Isochrysis galbana (Ig), Nannocloropsis salina (Ns), and Spirulina major (Sp). Removal efficiencies in batch growth were 100% for total nitrogen and total phosphorus for all microalgae. Chemical oxygen demand (COD) remediations were all above 72%. Biomass productivity varied from 20.9 mg L-1 day-1 (N. salina) to 146.4 mg L-1 day-1 (C. vulgaris). The two best performing algae were C. vulgaris and S. obliquus and they were tested in semi-continuous growth, reaching productivities of 879.8 mg L-1 day-1 and 811.7 mg L-1 day-1, respectively. The bioremediation of the effluent was tested with a transfer system consisting of three independent containers and compared with the use of a single container. The single container had the same capacity and received weekly the same volume of effluent as the three containers together. The remediation capacity of the 3 containers was much higher than the single one. The supplementation with NaNO3 was tested to improve the nutrient removal microalgae' capacity, with positive results. The removal efficiencies were 100% for total nitrogen and total phosphorus and higher than 96% for COD. The obtained C. vulgaris and S. obliquus biomass were composed of 31 and 35% proteins, 6 and 8% lipids, 39 and 30% carbohydrates, respectively. The composition of these biomass suggest that it can be used as novel and sustainable ingredients in aquaculture feeds. The algal biomass of Cv and Sc were used as biostimulants in the germination of wheat and watercress, and very promising results were attained, with increases in the germination index for Cv and Sc of 175% and 48% in watercress and 84% and 98% in wheat, respectively. The biomasses of Cv and Sc were also subjected to a torrefaction process with 72.5 ± 1.7% char yields. The obtained biochars were tested as biostimulants for germination seeds (wheat and watercress) and as bio-adsorbent of dye solutions.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2021.112187&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 104 citations 104 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 17visibility views 17 download downloads 10 Powered bymore_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2021.112187&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 PortugalPublisher:MDPI AG Lelis Gonzaga Fraga; João Silva; José Carlos Teixeira; Manuel E. C. Ferreira; Senhorinha F. Teixeira; Cândida Vilarinho; Maria Margarida Gonçalves;doi: 10.3390/en15145253
handle: 1822/80314
Studying the thermal decomposition of wood pellets is an important subject in order to understand the behavior of wood pellets during the combustion process. In fact, wood pellets have become an important fuel used in boiler combustion. The objective of this study is to investigate the mass loss and elemental analysis of pine wood pellets at various times and temperatures. Commercial pellets with a diameter of 6 mm were used. The experiment was conducted in the laboratory of the Engineering University of Minho. The pellets were burned in a small reactor of 1.36 kW with a maximum temperature range of 1150 °C. The data were observed at different temperatures: 264, 351, 444, 541, 650, and 734 °C, and at time intervals of 30, 60, 120, 180, 240, 300, 600, 900, 1200, and 3600 s. The results of the experiment revealed that the reaction rate increases with the temperature, and the higher the combustion temperature applied, the higher the mass loss of all substances observed. The remaining mass, as fixed carbon and ash or unburned substances, is about 3%. The residence time and temperature influence the species concentration of wood pellets.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/14/5253/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversidade do Minho: RepositoriUMArticle . 2022License: CC BYData sources: Universidade do Minho: RepositoriUMUniversidade do Minho: RepositoriUMOther literature type . 2022License: CC BYData sources: Universidade do Minho: RepositoriUMadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15145253&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 2visibility views 2 download downloads 1 Powered bymore_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/14/5253/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversidade do Minho: RepositoriUMArticle . 2022License: CC BYData sources: Universidade do Minho: RepositoriUMUniversidade do Minho: RepositoriUMOther literature type . 2022License: CC BYData sources: Universidade do Minho: RepositoriUMadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15145253&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 PortugalPublisher:MDPI AG Lelis Gonzaga Fraga; João Silva; José Carlos Teixeira; Manuel E. C. Ferreira; Senhorinha F. Teixeira; Cândida Vilarinho; Maria Margarida Gonçalves;doi: 10.3390/en15145253
handle: 1822/80314
Studying the thermal decomposition of wood pellets is an important subject in order to understand the behavior of wood pellets during the combustion process. In fact, wood pellets have become an important fuel used in boiler combustion. The objective of this study is to investigate the mass loss and elemental analysis of pine wood pellets at various times and temperatures. Commercial pellets with a diameter of 6 mm were used. The experiment was conducted in the laboratory of the Engineering University of Minho. The pellets were burned in a small reactor of 1.36 kW with a maximum temperature range of 1150 °C. The data were observed at different temperatures: 264, 351, 444, 541, 650, and 734 °C, and at time intervals of 30, 60, 120, 180, 240, 300, 600, 900, 1200, and 3600 s. The results of the experiment revealed that the reaction rate increases with the temperature, and the higher the combustion temperature applied, the higher the mass loss of all substances observed. The remaining mass, as fixed carbon and ash or unburned substances, is about 3%. The residence time and temperature influence the species concentration of wood pellets.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/14/5253/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversidade do Minho: RepositoriUMArticle . 2022License: CC BYData sources: Universidade do Minho: RepositoriUMUniversidade do Minho: RepositoriUMOther literature type . 2022License: CC BYData sources: Universidade do Minho: RepositoriUMadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15145253&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 2visibility views 2 download downloads 1 Powered bymore_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/14/5253/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversidade do Minho: RepositoriUMArticle . 2022License: CC BYData sources: Universidade do Minho: RepositoriUMUniversidade do Minho: RepositoriUMOther literature type . 2022License: CC BYData sources: Universidade do Minho: RepositoriUMadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15145253&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 PortugalPublisher:Elsevier BV Funded by:FCT | SFRH/BD/43354/2008FCT| SFRH/BD/43354/2008Bernardo, Maria; Mendes, S.; Lapa, Nuno; Gonçalves, Maria Margarida; Mendes, Benilde; Pinto, Filomena; Lopes, Helena;pmid: 24905691
The main objective of this study was to assess the environmental risk of chars derived from the pyrolysis of mixtures of pine, plastics, and scrap tires, by studying their leaching potential and ecotoxicity. Relationships between chemical composition and ecotoxicity were established to identify contaminants responsible for toxicity. Since metallic contaminants were the focus of the present study, an EDTA washing step was applied to the chars to selectively remove metals that can be responsible for the observed toxicity. The results indicated that the introduction of biomass to the pyrolysis feedstock enhanced the acidity of chars and promote the mobilisation of inorganic compounds. Chars resulting from the pyrolysis of blends of pine and plastics did not produce ecotoxic eluates. A relationship between zinc concentrations in eluates and their ecotoxicity was found for chars obtained from mixtures with tires. A significant reduction in ecotoxicity was found when the chars were treated with EDTA, which was due to a significant reduction in zinc in chars after EDTA washing.
Ecotoxicology and En... arrow_drop_down Ecotoxicology and Environmental SafetyArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecoenv.2014.05.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Ecotoxicology and En... arrow_drop_down Ecotoxicology and Environmental SafetyArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecoenv.2014.05.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 PortugalPublisher:Elsevier BV Funded by:FCT | SFRH/BD/43354/2008FCT| SFRH/BD/43354/2008Bernardo, Maria; Mendes, S.; Lapa, Nuno; Gonçalves, Maria Margarida; Mendes, Benilde; Pinto, Filomena; Lopes, Helena;pmid: 24905691
The main objective of this study was to assess the environmental risk of chars derived from the pyrolysis of mixtures of pine, plastics, and scrap tires, by studying their leaching potential and ecotoxicity. Relationships between chemical composition and ecotoxicity were established to identify contaminants responsible for toxicity. Since metallic contaminants were the focus of the present study, an EDTA washing step was applied to the chars to selectively remove metals that can be responsible for the observed toxicity. The results indicated that the introduction of biomass to the pyrolysis feedstock enhanced the acidity of chars and promote the mobilisation of inorganic compounds. Chars resulting from the pyrolysis of blends of pine and plastics did not produce ecotoxic eluates. A relationship between zinc concentrations in eluates and their ecotoxicity was found for chars obtained from mixtures with tires. A significant reduction in ecotoxicity was found when the chars were treated with EDTA, which was due to a significant reduction in zinc in chars after EDTA washing.
Ecotoxicology and En... arrow_drop_down Ecotoxicology and Environmental SafetyArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecoenv.2014.05.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Ecotoxicology and En... arrow_drop_down Ecotoxicology and Environmental SafetyArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecoenv.2014.05.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Santa Margarida Santos; Margarida Gonçalves; Paulo Brito; Catarina Nobre;doi: 10.3390/waste2030013
The production of heterogeneous solid waste, such as municipal solid waste (MSW), construction and demolition waste (CDW), and industrial solid waste (ISW), has increased dramatically in recent decades, and its management is one of today’s biggest concerns. Using waste as a resource to produce value-added materials such as char is one of the most promising strategies for successful and sustainable waste management. Virtually any type of waste, through various thermochemical technologies, including torrefaction, pyrolysis, hydrothermal carbonization, and gasification, can produce char with potential material and energy applications. Pyrolysis is the most widespread technology, and there are more studies on producing and applying waste-derived char using this technology. The properties of waste-derived char seem to be influenced by the conversion technology and conditions, as well as by the composition of the source waste. A literature search indicated that the properties of waste-derived char are highly variable with the composition of the raw material, with carbon content in the range 8–77%, a higher heating value of 2.5–28.4 MJ/kg and a specific surface area of 0.7–12 m2/g. Depending on the properties of char derived from waste, there are greater or minor difficulties in applying it, with ash content, heavy metals, and polycyclic aromatic hydrocarbon (PAH) concentrations being some of its limiting properties. Therefore, this review attempts to compile relevant knowledge on the production of waste-derived char, focusing on heterogeneous solid waste, applied technologies, and practical application routes in the real world to create a supply chain, marketing, and use of waste-derived char. Some challenges and prospects for waste-derived char are also highlighted in this study.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/waste2030013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/waste2030013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Santa Margarida Santos; Margarida Gonçalves; Paulo Brito; Catarina Nobre;doi: 10.3390/waste2030013
The production of heterogeneous solid waste, such as municipal solid waste (MSW), construction and demolition waste (CDW), and industrial solid waste (ISW), has increased dramatically in recent decades, and its management is one of today’s biggest concerns. Using waste as a resource to produce value-added materials such as char is one of the most promising strategies for successful and sustainable waste management. Virtually any type of waste, through various thermochemical technologies, including torrefaction, pyrolysis, hydrothermal carbonization, and gasification, can produce char with potential material and energy applications. Pyrolysis is the most widespread technology, and there are more studies on producing and applying waste-derived char using this technology. The properties of waste-derived char seem to be influenced by the conversion technology and conditions, as well as by the composition of the source waste. A literature search indicated that the properties of waste-derived char are highly variable with the composition of the raw material, with carbon content in the range 8–77%, a higher heating value of 2.5–28.4 MJ/kg and a specific surface area of 0.7–12 m2/g. Depending on the properties of char derived from waste, there are greater or minor difficulties in applying it, with ash content, heavy metals, and polycyclic aromatic hydrocarbon (PAH) concentrations being some of its limiting properties. Therefore, this review attempts to compile relevant knowledge on the production of waste-derived char, focusing on heterogeneous solid waste, applied technologies, and practical application routes in the real world to create a supply chain, marketing, and use of waste-derived char. Some challenges and prospects for waste-derived char are also highlighted in this study.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/waste2030013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/waste2030013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other ORP type 2024 PortugalPublisher:MDPI AG Robert Mădălin Chivu; Jorge Martins; Florin Popescu; Margarida Gonçalves; Krisztina Uzuneanu; Michael Frătița; Francisco P. Brito;doi: 10.3390/en17143528
handle: 10362/178759
This research evaluates the feasibility of using eucalyptus oil blended with conventional diesel fuel in diesel engines. Eucalyptus globulus is one of the main tree species cultivated for paper pulp in western European countries such as Portugal, and eucalyptus oil is one of the byproducts that so far has not been sufficiently evaluated as a biofuel. This study assesses the impact of using this additive on engine performance parameters and emissions as a means to contribute to reducing fossil fuel consumption and pollutant and greenhouse gas (GHG) emissions. The analysis revealed that the addition of eucalyptus oil had a positive effect on torque, a critical performance parameter, with biofuel blends showing consistent torque increases at lower engine speeds. However, torque tended to decrease towards the higher range of engine speed for eucalyptus oil–diesel blends. Several blends showed lower brake specific fuel consumption compared to regular diesel at high engine loads and low engine speeds. Brake thermal efficiency did not vary substantially at lower engine speeds and loads but decreased at higher speeds and loads. Pollutant emissions, particularly unburned hydrocarbons and nitrogen oxides, were influenced by fuel composition, with biofuel blends showing both increases and decreases compared to diesel. It is noteworthy that eucalyptus oil blends exhibited up to a 60% reduction in smoke opacity under specific operating conditions at low speed and high load for 10% incorporation (10EU90D), suggesting that in addition to the already positive effects of cutting down fossil CO2 emissions in proportion to the substitution of fossil diesel with nearly carbon-neutral eucalyptus oil, more environmental benefits may be expected from the incorporation of this product. Although the present economic viability of using eucalyptus oil as a biofuel is still not guaranteed, the present study seems to reinforce its technical viability. Future prospects for the improvement of oil yield through biotechnology, the economic interest of this product for several countries, and the updating and upscaling industrial processes may allow the viability of this biofuel to remain a possibility in the future
Energies arrow_drop_down Repositório da Universidade Nova de LisboaArticle . 2024Data sources: Repositório da Universidade Nova de LisboaRepositório da Universidade Nova de LisboaOther ORP type . 2024Data sources: Repositório da Universidade Nova de Lisboaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17143528&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down Repositório da Universidade Nova de LisboaArticle . 2024Data sources: Repositório da Universidade Nova de LisboaRepositório da Universidade Nova de LisboaOther ORP type . 2024Data sources: Repositório da Universidade Nova de Lisboaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17143528&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other ORP type 2024 PortugalPublisher:MDPI AG Robert Mădălin Chivu; Jorge Martins; Florin Popescu; Margarida Gonçalves; Krisztina Uzuneanu; Michael Frătița; Francisco P. Brito;doi: 10.3390/en17143528
handle: 10362/178759
This research evaluates the feasibility of using eucalyptus oil blended with conventional diesel fuel in diesel engines. Eucalyptus globulus is one of the main tree species cultivated for paper pulp in western European countries such as Portugal, and eucalyptus oil is one of the byproducts that so far has not been sufficiently evaluated as a biofuel. This study assesses the impact of using this additive on engine performance parameters and emissions as a means to contribute to reducing fossil fuel consumption and pollutant and greenhouse gas (GHG) emissions. The analysis revealed that the addition of eucalyptus oil had a positive effect on torque, a critical performance parameter, with biofuel blends showing consistent torque increases at lower engine speeds. However, torque tended to decrease towards the higher range of engine speed for eucalyptus oil–diesel blends. Several blends showed lower brake specific fuel consumption compared to regular diesel at high engine loads and low engine speeds. Brake thermal efficiency did not vary substantially at lower engine speeds and loads but decreased at higher speeds and loads. Pollutant emissions, particularly unburned hydrocarbons and nitrogen oxides, were influenced by fuel composition, with biofuel blends showing both increases and decreases compared to diesel. It is noteworthy that eucalyptus oil blends exhibited up to a 60% reduction in smoke opacity under specific operating conditions at low speed and high load for 10% incorporation (10EU90D), suggesting that in addition to the already positive effects of cutting down fossil CO2 emissions in proportion to the substitution of fossil diesel with nearly carbon-neutral eucalyptus oil, more environmental benefits may be expected from the incorporation of this product. Although the present economic viability of using eucalyptus oil as a biofuel is still not guaranteed, the present study seems to reinforce its technical viability. Future prospects for the improvement of oil yield through biotechnology, the economic interest of this product for several countries, and the updating and upscaling industrial processes may allow the viability of this biofuel to remain a possibility in the future
Energies arrow_drop_down Repositório da Universidade Nova de LisboaArticle . 2024Data sources: Repositório da Universidade Nova de LisboaRepositório da Universidade Nova de LisboaOther ORP type . 2024Data sources: Repositório da Universidade Nova de Lisboaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17143528&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down Repositório da Universidade Nova de LisboaArticle . 2024Data sources: Repositório da Universidade Nova de LisboaRepositório da Universidade Nova de LisboaOther ORP type . 2024Data sources: Repositório da Universidade Nova de Lisboaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17143528&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Funded by:FCT | CEF, FCT | MEtRICs, FCT | MEtRICs +1 projectsFCT| CEF ,FCT| MEtRICs ,FCT| MEtRICs ,FCT| SFRH/BD/133300/2017Umut Şen; Catarina Viegas; Maria Paula Duarte; Elisabete Muchagato Maurício; Catarina Nobre; Ricardo Correia; Helena Pereira; Margarida Gonçalves;Waste-grade cork samples of Quercus cerris were subjected to maceration extraction using 7 different solvents, including pure water (I), pure acetone (II), 75% aqueous ethanol (III), 75% aqueous methanol (IV), 75% aqueous acetone (V), 50% aqueous acetone (VI), and 25% aqueous acetone (VII). The extract yields, extract compositions, as well as antioxidant and antimicrobial activities of the extracts were analyzed. The results showed that maceration extraction was highly efficient, particularly with binary solvents resulting in up to 6% extract yield and up to 488 mg GAE/g extract total phenolic content. The extracts exhibited a variable antioxidant activity determined by DPPH and FRAP methods as well as antimicrobial activity against gram-positive bacteria and fungus determined by agar diffusion test. The CIELAB color parameters of extracts were correlated with maceration time, and the correlation was highest with pure water extracts. The FT-IR spectra of acetone-extracted cork revealed six key markers of phenolic compounds with the presence of peaks at approximately 2920 cm−1, 2850 cm−1, 1609 cm−1, 1517 cm−1, 1277 cm−1, and 1114 cm−1. The overall results suggest that the maceration of waste cork in binary solvents and pure acetone are green alternatives to conventional Soxhlet extraction for the production of polar extracts.
Environments arrow_drop_down EnvironmentsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2076-3298/10/8/142/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/environments10080142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Environments arrow_drop_down EnvironmentsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2076-3298/10/8/142/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/environments10080142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Funded by:FCT | CEF, FCT | MEtRICs, FCT | MEtRICs +1 projectsFCT| CEF ,FCT| MEtRICs ,FCT| MEtRICs ,FCT| SFRH/BD/133300/2017Umut Şen; Catarina Viegas; Maria Paula Duarte; Elisabete Muchagato Maurício; Catarina Nobre; Ricardo Correia; Helena Pereira; Margarida Gonçalves;Waste-grade cork samples of Quercus cerris were subjected to maceration extraction using 7 different solvents, including pure water (I), pure acetone (II), 75% aqueous ethanol (III), 75% aqueous methanol (IV), 75% aqueous acetone (V), 50% aqueous acetone (VI), and 25% aqueous acetone (VII). The extract yields, extract compositions, as well as antioxidant and antimicrobial activities of the extracts were analyzed. The results showed that maceration extraction was highly efficient, particularly with binary solvents resulting in up to 6% extract yield and up to 488 mg GAE/g extract total phenolic content. The extracts exhibited a variable antioxidant activity determined by DPPH and FRAP methods as well as antimicrobial activity against gram-positive bacteria and fungus determined by agar diffusion test. The CIELAB color parameters of extracts were correlated with maceration time, and the correlation was highest with pure water extracts. The FT-IR spectra of acetone-extracted cork revealed six key markers of phenolic compounds with the presence of peaks at approximately 2920 cm−1, 2850 cm−1, 1609 cm−1, 1517 cm−1, 1277 cm−1, and 1114 cm−1. The overall results suggest that the maceration of waste cork in binary solvents and pure acetone are green alternatives to conventional Soxhlet extraction for the production of polar extracts.
Environments arrow_drop_down EnvironmentsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2076-3298/10/8/142/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/environments10080142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Environments arrow_drop_down EnvironmentsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2076-3298/10/8/142/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/environments10080142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Roberta Mota-Panizio; Ana Assis; Luís Carmo-Calado; Catarina Nobre; Andrei Longo; José Silveira; Maria Margarida Goncalves; Paulo Brito;doi: 10.3390/c9020049
Waste insulation electrical cables (WIEC) currently do not have an added value, due to their physical–chemical characteristics. Carbonization is known to enhance feedstock properties, particularly fuel and material properties; as such, this article aimed to study the production and activation of biochars using WIEC and lignocellulosic biomass wastes as feedstock. Biochars were produced in a ceramic kiln with an average capacity of 15 kg at different temperatures, namely 300, 350 and 400 °C. After production, the biochars were further submitted to a washing process with water heated to 95 °C ± 5 °C and to an activation process with 2 N KOH. All biochars (after production, washing and activation) were characterized regarding an elemental analysis, thermogravimetric analysis, heating value, chlorine removal, ash content, apparent density and surface area. The main results showed that the increase in carbonization temperature from 300 to 400 °C caused the produced biochars to present a lower amount of oxygen and volatile matter, increased heating value, greater chlorine removal and increased ash content. Furthermore, the activation process increased the surface area of biochars as the production temperature increased. Overall, the carbonization of WIEC mixed with lignocellulosic wastes showed potential in enhancing these waste physical and chemical properties, with prospects to yield added-value products that activates biochar.
C arrow_drop_down COther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2311-5629/9/2/49/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/c9020049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert C arrow_drop_down COther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2311-5629/9/2/49/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/c9020049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Roberta Mota-Panizio; Ana Assis; Luís Carmo-Calado; Catarina Nobre; Andrei Longo; José Silveira; Maria Margarida Goncalves; Paulo Brito;doi: 10.3390/c9020049
Waste insulation electrical cables (WIEC) currently do not have an added value, due to their physical–chemical characteristics. Carbonization is known to enhance feedstock properties, particularly fuel and material properties; as such, this article aimed to study the production and activation of biochars using WIEC and lignocellulosic biomass wastes as feedstock. Biochars were produced in a ceramic kiln with an average capacity of 15 kg at different temperatures, namely 300, 350 and 400 °C. After production, the biochars were further submitted to a washing process with water heated to 95 °C ± 5 °C and to an activation process with 2 N KOH. All biochars (after production, washing and activation) were characterized regarding an elemental analysis, thermogravimetric analysis, heating value, chlorine removal, ash content, apparent density and surface area. The main results showed that the increase in carbonization temperature from 300 to 400 °C caused the produced biochars to present a lower amount of oxygen and volatile matter, increased heating value, greater chlorine removal and increased ash content. Furthermore, the activation process increased the surface area of biochars as the production temperature increased. Overall, the carbonization of WIEC mixed with lignocellulosic wastes showed potential in enhancing these waste physical and chemical properties, with prospects to yield added-value products that activates biochar.
C arrow_drop_down COther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2311-5629/9/2/49/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/c9020049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert C arrow_drop_down COther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2311-5629/9/2/49/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/c9020049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 PortugalPublisher:MDPI AG Robert Mădălin Chivu; Jorge Martins; Florin Popescu; Krisztina Uzuneanu; Ion V. Ion; Margarida Goncalves; Teodor-Cezar Codău; Elena Onofrei; Francisco P. Brito;doi: 10.3390/en16135150
handle: 1822/86976
The need for reducing fossil fuel consumption and greenhouse gas (GHG) emissions in internal combustion engines has raised the opportunity for the use of renewable energy sources. For the progressive replacement of fossil fuels like diesel, those derived from the sustainable management of forest resources may be a good option. In Portugal, pine trees (pinus pinaster) are among the most widely cultivated tree species. Turpentine can be extracted from their sap without harming the tree. Turpentine is known to be a good fuel with a lower viscosity than regular diesel but with a comparable caloric value, boiling point and ignition characteristics, although it is not widely used as a compression ignition fuel. Moreover, recent research has highlighted the possibility of substantially increasing the turpentine yield through biotechnology, bringing it closer to economic viability. The present study investigates the performance, pollutant emissions and fuel consumption of a 1.6 L four-cylinder direct-injection diesel engine operating with several blends of commercial diesel fuel and turpentine obtained from pine trees. The aim of this study was to assess whether it would be possible to maintain or even improve the performance, fuel consumption and GHG and pollutant emissions (HC, NOx, CO and PM) of the engine with the partial incorporation of this biofuel. Turpentine blends of up to 30% in substitution of regular diesel fuel were tested. The main novelties of the present work are related to (i) the careful testing of a still-insufficiently studied fuel that could gain economical attractiveness with the recent developments in yield improvement through biotechnology and (ii) the tests conducted under fixed engine load positions typical of road and highway conditions. The addition of this biofuel only slightly impacted the engine performance parameters. However, a slightly positive effect was observed in terms of torque, with an increase of up to 7.9% at low load for the 15T85D mixture and 6.8% at high load being observed. Power registered an increase of 9% for the 15T85D mixture at low speed and an increase of 5% for the 30T70D mixture at high speed when compared to the reference fuel (commercial diesel fuel). While the efficiency and fossil GHG emissions were improved with the incorporation of turpentine, it had a mixed effect on polluting emissions such as unburned hydrocarbons (HC) and smoke (PM) and a negative effect on nitrogen oxides (NOx). NOx emissions increased by 30% for high loads and 20% for low loads, mainly as an indirect effect of the improvement in the engine performance and not so much as a consequence of the marginally higher oxygen content of turpentine relative to commercial diesel fuel.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/13/5150/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversidade do Minho: RepositoriUMArticle . 2023License: CC BYData sources: Universidade do Minho: RepositoriUMUniversidade do Minho: RepositoriUMOther literature type . 2023License: CC BYData sources: Universidade do Minho: RepositoriUMadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16135150&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 9visibility views 9 Powered bymore_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/13/5150/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversidade do Minho: RepositoriUMArticle . 2023License: CC BYData sources: Universidade do Minho: RepositoriUMUniversidade do Minho: RepositoriUMOther literature type . 2023License: CC BYData sources: Universidade do Minho: RepositoriUMadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16135150&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 PortugalPublisher:MDPI AG Robert Mădălin Chivu; Jorge Martins; Florin Popescu; Krisztina Uzuneanu; Ion V. Ion; Margarida Goncalves; Teodor-Cezar Codău; Elena Onofrei; Francisco P. Brito;doi: 10.3390/en16135150
handle: 1822/86976
The need for reducing fossil fuel consumption and greenhouse gas (GHG) emissions in internal combustion engines has raised the opportunity for the use of renewable energy sources. For the progressive replacement of fossil fuels like diesel, those derived from the sustainable management of forest resources may be a good option. In Portugal, pine trees (pinus pinaster) are among the most widely cultivated tree species. Turpentine can be extracted from their sap without harming the tree. Turpentine is known to be a good fuel with a lower viscosity than regular diesel but with a comparable caloric value, boiling point and ignition characteristics, although it is not widely used as a compression ignition fuel. Moreover, recent research has highlighted the possibility of substantially increasing the turpentine yield through biotechnology, bringing it closer to economic viability. The present study investigates the performance, pollutant emissions and fuel consumption of a 1.6 L four-cylinder direct-injection diesel engine operating with several blends of commercial diesel fuel and turpentine obtained from pine trees. The aim of this study was to assess whether it would be possible to maintain or even improve the performance, fuel consumption and GHG and pollutant emissions (HC, NOx, CO and PM) of the engine with the partial incorporation of this biofuel. Turpentine blends of up to 30% in substitution of regular diesel fuel were tested. The main novelties of the present work are related to (i) the careful testing of a still-insufficiently studied fuel that could gain economical attractiveness with the recent developments in yield improvement through biotechnology and (ii) the tests conducted under fixed engine load positions typical of road and highway conditions. The addition of this biofuel only slightly impacted the engine performance parameters. However, a slightly positive effect was observed in terms of torque, with an increase of up to 7.9% at low load for the 15T85D mixture and 6.8% at high load being observed. Power registered an increase of 9% for the 15T85D mixture at low speed and an increase of 5% for the 30T70D mixture at high speed when compared to the reference fuel (commercial diesel fuel). While the efficiency and fossil GHG emissions were improved with the incorporation of turpentine, it had a mixed effect on polluting emissions such as unburned hydrocarbons (HC) and smoke (PM) and a negative effect on nitrogen oxides (NOx). NOx emissions increased by 30% for high loads and 20% for low loads, mainly as an indirect effect of the improvement in the engine performance and not so much as a consequence of the marginally higher oxygen content of turpentine relative to commercial diesel fuel.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/13/5150/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversidade do Minho: RepositoriUMArticle . 2023License: CC BYData sources: Universidade do Minho: RepositoriUMUniversidade do Minho: RepositoriUMOther literature type . 2023License: CC BYData sources: Universidade do Minho: RepositoriUMadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16135150&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 9visibility views 9 Powered bymore_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/13/5150/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversidade do Minho: RepositoriUMArticle . 2023License: CC BYData sources: Universidade do Minho: RepositoriUMUniversidade do Minho: RepositoriUMOther literature type . 2023License: CC BYData sources: Universidade do Minho: RepositoriUMadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16135150&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 Portugal, BrazilPublisher:MDPI AG Authors: Roberta Mota-Panizio; Manuel Jesús Hermoso-Orzáez; Luís Carmo-Calado; Victor Arruda Ferraz de Campos; +3 AuthorsRoberta Mota-Panizio; Manuel Jesús Hermoso-Orzáez; Luís Carmo-Calado; Victor Arruda Ferraz de Campos; José Luz Silveira; Maria Margarida Gonçalves; Paulo Brito;doi: 10.3390/app10228253
handle: 11449/206854
The recovery of noble metals from electrical wires and cables results in waste materials such as polyvinyl chloride (PVC) and polyethylene (PE), that is, waste insulation electrical cables (WIEC), which have been processed by gasification for energy recovery. This study focused on the effect of blending the ratio of WIEC on the gasification feedstock composition and the lower heating value (LHV) of produced syngas, through controlled tests and tests under different loads on the generator. The controlled gasification experiments were carried out at blending ratios between pine biomass and WIEC of 90:10, 80:20, and 70:30 and with pine biomass only (100%). For the loads gasification, the experiments were carried out at a blending ratio of 80:20. The controlled experimental results presented that the highest hydrogen content, approximated 17.7 vol.%, was observed at a blending ratio of 70:30 between pine biomass and WIEC and the highest LHV of syngas was observed at a blending ratio of 90:10, with 5.7 MJ/Nm3. For the load gasification experiments, the results showed that the highest hydrogen content was obtained with a load of 15 kW in the generator, approximately 18.48 vol.% of hydrogen content, and the highest LHV of synthesis gas was observed during the 5 kW test, with 5.22 MJ/Nm3. Overall, the new processing of waste insulation electrical cables using a downdraft gasification reactor demonstrates great promise for high quality syngas production.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2076-3417/10/22/8253/pdfData sources: Multidisciplinary Digital Publishing InstituteRepositório da Universidade Nova de LisboaArticle . 2020Data sources: Repositório da Universidade Nova de LisboaUniversidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app10228253&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2076-3417/10/22/8253/pdfData sources: Multidisciplinary Digital Publishing InstituteRepositório da Universidade Nova de LisboaArticle . 2020Data sources: Repositório da Universidade Nova de LisboaUniversidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app10228253&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 Portugal, BrazilPublisher:MDPI AG Authors: Roberta Mota-Panizio; Manuel Jesús Hermoso-Orzáez; Luís Carmo-Calado; Victor Arruda Ferraz de Campos; +3 AuthorsRoberta Mota-Panizio; Manuel Jesús Hermoso-Orzáez; Luís Carmo-Calado; Victor Arruda Ferraz de Campos; José Luz Silveira; Maria Margarida Gonçalves; Paulo Brito;doi: 10.3390/app10228253
handle: 11449/206854
The recovery of noble metals from electrical wires and cables results in waste materials such as polyvinyl chloride (PVC) and polyethylene (PE), that is, waste insulation electrical cables (WIEC), which have been processed by gasification for energy recovery. This study focused on the effect of blending the ratio of WIEC on the gasification feedstock composition and the lower heating value (LHV) of produced syngas, through controlled tests and tests under different loads on the generator. The controlled gasification experiments were carried out at blending ratios between pine biomass and WIEC of 90:10, 80:20, and 70:30 and with pine biomass only (100%). For the loads gasification, the experiments were carried out at a blending ratio of 80:20. The controlled experimental results presented that the highest hydrogen content, approximated 17.7 vol.%, was observed at a blending ratio of 70:30 between pine biomass and WIEC and the highest LHV of syngas was observed at a blending ratio of 90:10, with 5.7 MJ/Nm3. For the load gasification experiments, the results showed that the highest hydrogen content was obtained with a load of 15 kW in the generator, approximately 18.48 vol.% of hydrogen content, and the highest LHV of synthesis gas was observed during the 5 kW test, with 5.22 MJ/Nm3. Overall, the new processing of waste insulation electrical cables using a downdraft gasification reactor demonstrates great promise for high quality syngas production.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2076-3417/10/22/8253/pdfData sources: Multidisciplinary Digital Publishing InstituteRepositório da Universidade Nova de LisboaArticle . 2020Data sources: Repositório da Universidade Nova de LisboaUniversidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app10228253&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2076-3417/10/22/8253/pdfData sources: Multidisciplinary Digital Publishing InstituteRepositório da Universidade Nova de LisboaArticle . 2020Data sources: Repositório da Universidade Nova de LisboaUniversidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app10228253&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Eliseu Monteiro; Margarida Gonçalves; Octávio Alves; Catarina Nobre; Luís Durão; Paulo Brito;Abstract The growing production of non-recyclable urban wastes generates environmental problems that impose new alternatives for their energetic valorisation. Nonetheless, some of these wastes do not have adequate properties to be directly used in waste-to-energy technologies, thus requiring adequate pre-treatments to improve their fuel properties. This work aimed to evaluate dry and hydrothermal carbonisation (DC and HTC) as technologies to convert solid recovered fuel (SRF) from construction and municipal solid wastes to biochars or hydrochars with improved fuel quality. The operational parameters evaluated were temperature, mass ratio of SRF:water, and incorporation of a liquid additive (used cooking oil, UCO). The chars were characterised for chemical composition, calorific value, TGA profiles and surface functional groups. The chemical oxygen demand (COD), concentration of total phenols, pH, conductivity and the main components in process waters were determined. Results showed an improvement of fuel characteristics in terms of hydrophobicity and calorific value, enabling the use of chars for waste-to-energy technologies. HTC produced hydrochars with better fuel characteristics, presenting calorific values of 28–33 MJ/kg db, and lower average ash and chlorine contents (2.8 wt% db and 3.1 wt% db, respectively). The addition of UCO improved these fuel characteristics. However, the generation of an effluent that needs further decontamination and the lower amount of moisture present in SRF possibly made DC more attractive in terms of energy and costs requirements. A treatment at 350 °C during 30 min was recommended for a good compromise among process costs and char properties.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Eliseu Monteiro; Margarida Gonçalves; Octávio Alves; Catarina Nobre; Luís Durão; Paulo Brito;Abstract The growing production of non-recyclable urban wastes generates environmental problems that impose new alternatives for their energetic valorisation. Nonetheless, some of these wastes do not have adequate properties to be directly used in waste-to-energy technologies, thus requiring adequate pre-treatments to improve their fuel properties. This work aimed to evaluate dry and hydrothermal carbonisation (DC and HTC) as technologies to convert solid recovered fuel (SRF) from construction and municipal solid wastes to biochars or hydrochars with improved fuel quality. The operational parameters evaluated were temperature, mass ratio of SRF:water, and incorporation of a liquid additive (used cooking oil, UCO). The chars were characterised for chemical composition, calorific value, TGA profiles and surface functional groups. The chemical oxygen demand (COD), concentration of total phenols, pH, conductivity and the main components in process waters were determined. Results showed an improvement of fuel characteristics in terms of hydrophobicity and calorific value, enabling the use of chars for waste-to-energy technologies. HTC produced hydrochars with better fuel characteristics, presenting calorific values of 28–33 MJ/kg db, and lower average ash and chlorine contents (2.8 wt% db and 3.1 wt% db, respectively). The addition of UCO improved these fuel characteristics. However, the generation of an effluent that needs further decontamination and the lower amount of moisture present in SRF possibly made DC more attractive in terms of energy and costs requirements. A treatment at 350 °C during 30 min was recommended for a good compromise among process costs and char properties.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 PortugalPublisher:Elsevier BV Authors: Viegas, Catarina; Gouveia, Luisa; Gonçalves, Maria Margarida;pmid: 33609932
The use of microalgae to remediate raw effluent from brown crab aquaculture was evaluated by performing batch mode growth tests using separately the microalgae Chlorella vulgaris (Cv), Scenedesmus obliquus (Sc), Isochrysis galbana (Ig), Nannocloropsis salina (Ns), and Spirulina major (Sp). Removal efficiencies in batch growth were 100% for total nitrogen and total phosphorus for all microalgae. Chemical oxygen demand (COD) remediations were all above 72%. Biomass productivity varied from 20.9 mg L-1 day-1 (N. salina) to 146.4 mg L-1 day-1 (C. vulgaris). The two best performing algae were C. vulgaris and S. obliquus and they were tested in semi-continuous growth, reaching productivities of 879.8 mg L-1 day-1 and 811.7 mg L-1 day-1, respectively. The bioremediation of the effluent was tested with a transfer system consisting of three independent containers and compared with the use of a single container. The single container had the same capacity and received weekly the same volume of effluent as the three containers together. The remediation capacity of the 3 containers was much higher than the single one. The supplementation with NaNO3 was tested to improve the nutrient removal microalgae' capacity, with positive results. The removal efficiencies were 100% for total nitrogen and total phosphorus and higher than 96% for COD. The obtained C. vulgaris and S. obliquus biomass were composed of 31 and 35% proteins, 6 and 8% lipids, 39 and 30% carbohydrates, respectively. The composition of these biomass suggest that it can be used as novel and sustainable ingredients in aquaculture feeds. The algal biomass of Cv and Sc were used as biostimulants in the germination of wheat and watercress, and very promising results were attained, with increases in the germination index for Cv and Sc of 175% and 48% in watercress and 84% and 98% in wheat, respectively. The biomasses of Cv and Sc were also subjected to a torrefaction process with 72.5 ± 1.7% char yields. The obtained biochars were tested as biostimulants for germination seeds (wheat and watercress) and as bio-adsorbent of dye solutions.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2021.112187&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 104 citations 104 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 17visibility views 17 download downloads 10 Powered bymore_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2021.112187&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 PortugalPublisher:Elsevier BV Authors: Viegas, Catarina; Gouveia, Luisa; Gonçalves, Maria Margarida;pmid: 33609932
The use of microalgae to remediate raw effluent from brown crab aquaculture was evaluated by performing batch mode growth tests using separately the microalgae Chlorella vulgaris (Cv), Scenedesmus obliquus (Sc), Isochrysis galbana (Ig), Nannocloropsis salina (Ns), and Spirulina major (Sp). Removal efficiencies in batch growth were 100% for total nitrogen and total phosphorus for all microalgae. Chemical oxygen demand (COD) remediations were all above 72%. Biomass productivity varied from 20.9 mg L-1 day-1 (N. salina) to 146.4 mg L-1 day-1 (C. vulgaris). The two best performing algae were C. vulgaris and S. obliquus and they were tested in semi-continuous growth, reaching productivities of 879.8 mg L-1 day-1 and 811.7 mg L-1 day-1, respectively. The bioremediation of the effluent was tested with a transfer system consisting of three independent containers and compared with the use of a single container. The single container had the same capacity and received weekly the same volume of effluent as the three containers together. The remediation capacity of the 3 containers was much higher than the single one. The supplementation with NaNO3 was tested to improve the nutrient removal microalgae' capacity, with positive results. The removal efficiencies were 100% for total nitrogen and total phosphorus and higher than 96% for COD. The obtained C. vulgaris and S. obliquus biomass were composed of 31 and 35% proteins, 6 and 8% lipids, 39 and 30% carbohydrates, respectively. The composition of these biomass suggest that it can be used as novel and sustainable ingredients in aquaculture feeds. The algal biomass of Cv and Sc were used as biostimulants in the germination of wheat and watercress, and very promising results were attained, with increases in the germination index for Cv and Sc of 175% and 48% in watercress and 84% and 98% in wheat, respectively. The biomasses of Cv and Sc were also subjected to a torrefaction process with 72.5 ± 1.7% char yields. The obtained biochars were tested as biostimulants for germination seeds (wheat and watercress) and as bio-adsorbent of dye solutions.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2021.112187&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 104 citations 104 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 17visibility views 17 download downloads 10 Powered bymore_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2021.112187&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 PortugalPublisher:MDPI AG Lelis Gonzaga Fraga; João Silva; José Carlos Teixeira; Manuel E. C. Ferreira; Senhorinha F. Teixeira; Cândida Vilarinho; Maria Margarida Gonçalves;doi: 10.3390/en15145253
handle: 1822/80314
Studying the thermal decomposition of wood pellets is an important subject in order to understand the behavior of wood pellets during the combustion process. In fact, wood pellets have become an important fuel used in boiler combustion. The objective of this study is to investigate the mass loss and elemental analysis of pine wood pellets at various times and temperatures. Commercial pellets with a diameter of 6 mm were used. The experiment was conducted in the laboratory of the Engineering University of Minho. The pellets were burned in a small reactor of 1.36 kW with a maximum temperature range of 1150 °C. The data were observed at different temperatures: 264, 351, 444, 541, 650, and 734 °C, and at time intervals of 30, 60, 120, 180, 240, 300, 600, 900, 1200, and 3600 s. The results of the experiment revealed that the reaction rate increases with the temperature, and the higher the combustion temperature applied, the higher the mass loss of all substances observed. The remaining mass, as fixed carbon and ash or unburned substances, is about 3%. The residence time and temperature influence the species concentration of wood pellets.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/14/5253/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversidade do Minho: RepositoriUMArticle . 2022License: CC BYData sources: Universidade do Minho: RepositoriUMUniversidade do Minho: RepositoriUMOther literature type . 2022License: CC BYData sources: Universidade do Minho: RepositoriUMadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15145253&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 2visibility views 2 download downloads 1 Powered bymore_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/14/5253/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversidade do Minho: RepositoriUMArticle . 2022License: CC BYData sources: Universidade do Minho: RepositoriUMUniversidade do Minho: RepositoriUMOther literature type . 2022License: CC BYData sources: Universidade do Minho: RepositoriUMadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15145253&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 PortugalPublisher:MDPI AG Lelis Gonzaga Fraga; João Silva; José Carlos Teixeira; Manuel E. C. Ferreira; Senhorinha F. Teixeira; Cândida Vilarinho; Maria Margarida Gonçalves;doi: 10.3390/en15145253
handle: 1822/80314
Studying the thermal decomposition of wood pellets is an important subject in order to understand the behavior of wood pellets during the combustion process. In fact, wood pellets have become an important fuel used in boiler combustion. The objective of this study is to investigate the mass loss and elemental analysis of pine wood pellets at various times and temperatures. Commercial pellets with a diameter of 6 mm were used. The experiment was conducted in the laboratory of the Engineering University of Minho. The pellets were burned in a small reactor of 1.36 kW with a maximum temperature range of 1150 °C. The data were observed at different temperatures: 264, 351, 444, 541, 650, and 734 °C, and at time intervals of 30, 60, 120, 180, 240, 300, 600, 900, 1200, and 3600 s. The results of the experiment revealed that the reaction rate increases with the temperature, and the higher the combustion temperature applied, the higher the mass loss of all substances observed. The remaining mass, as fixed carbon and ash or unburned substances, is about 3%. The residence time and temperature influence the species concentration of wood pellets.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/14/5253/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversidade do Minho: RepositoriUMArticle . 2022License: CC BYData sources: Universidade do Minho: RepositoriUMUniversidade do Minho: RepositoriUMOther literature type . 2022License: CC BYData sources: Universidade do Minho: RepositoriUMadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15145253&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 2visibility views 2 download downloads 1 Powered bymore_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/14/5253/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversidade do Minho: RepositoriUMArticle . 2022License: CC BYData sources: Universidade do Minho: RepositoriUMUniversidade do Minho: RepositoriUMOther literature type . 2022License: CC BYData sources: Universidade do Minho: RepositoriUMadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15145253&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 PortugalPublisher:Elsevier BV Funded by:FCT | SFRH/BD/43354/2008FCT| SFRH/BD/43354/2008Bernardo, Maria; Mendes, S.; Lapa, Nuno; Gonçalves, Maria Margarida; Mendes, Benilde; Pinto, Filomena; Lopes, Helena;pmid: 24905691
The main objective of this study was to assess the environmental risk of chars derived from the pyrolysis of mixtures of pine, plastics, and scrap tires, by studying their leaching potential and ecotoxicity. Relationships between chemical composition and ecotoxicity were established to identify contaminants responsible for toxicity. Since metallic contaminants were the focus of the present study, an EDTA washing step was applied to the chars to selectively remove metals that can be responsible for the observed toxicity. The results indicated that the introduction of biomass to the pyrolysis feedstock enhanced the acidity of chars and promote the mobilisation of inorganic compounds. Chars resulting from the pyrolysis of blends of pine and plastics did not produce ecotoxic eluates. A relationship between zinc concentrations in eluates and their ecotoxicity was found for chars obtained from mixtures with tires. A significant reduction in ecotoxicity was found when the chars were treated with EDTA, which was due to a significant reduction in zinc in chars after EDTA washing.
Ecotoxicology and En... arrow_drop_down Ecotoxicology and Environmental SafetyArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecoenv.2014.05.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Ecotoxicology and En... arrow_drop_down Ecotoxicology and Environmental SafetyArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecoenv.2014.05.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 PortugalPublisher:Elsevier BV Funded by:FCT | SFRH/BD/43354/2008FCT| SFRH/BD/43354/2008Bernardo, Maria; Mendes, S.; Lapa, Nuno; Gonçalves, Maria Margarida; Mendes, Benilde; Pinto, Filomena; Lopes, Helena;pmid: 24905691
The main objective of this study was to assess the environmental risk of chars derived from the pyrolysis of mixtures of pine, plastics, and scrap tires, by studying their leaching potential and ecotoxicity. Relationships between chemical composition and ecotoxicity were established to identify contaminants responsible for toxicity. Since metallic contaminants were the focus of the present study, an EDTA washing step was applied to the chars to selectively remove metals that can be responsible for the observed toxicity. The results indicated that the introduction of biomass to the pyrolysis feedstock enhanced the acidity of chars and promote the mobilisation of inorganic compounds. Chars resulting from the pyrolysis of blends of pine and plastics did not produce ecotoxic eluates. A relationship between zinc concentrations in eluates and their ecotoxicity was found for chars obtained from mixtures with tires. A significant reduction in ecotoxicity was found when the chars were treated with EDTA, which was due to a significant reduction in zinc in chars after EDTA washing.
Ecotoxicology and En... arrow_drop_down Ecotoxicology and Environmental SafetyArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecoenv.2014.05.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Ecotoxicology and En... arrow_drop_down Ecotoxicology and Environmental SafetyArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecoenv.2014.05.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Santa Margarida Santos; Margarida Gonçalves; Paulo Brito; Catarina Nobre;doi: 10.3390/waste2030013
The production of heterogeneous solid waste, such as municipal solid waste (MSW), construction and demolition waste (CDW), and industrial solid waste (ISW), has increased dramatically in recent decades, and its management is one of today’s biggest concerns. Using waste as a resource to produce value-added materials such as char is one of the most promising strategies for successful and sustainable waste management. Virtually any type of waste, through various thermochemical technologies, including torrefaction, pyrolysis, hydrothermal carbonization, and gasification, can produce char with potential material and energy applications. Pyrolysis is the most widespread technology, and there are more studies on producing and applying waste-derived char using this technology. The properties of waste-derived char seem to be influenced by the conversion technology and conditions, as well as by the composition of the source waste. A literature search indicated that the properties of waste-derived char are highly variable with the composition of the raw material, with carbon content in the range 8–77%, a higher heating value of 2.5–28.4 MJ/kg and a specific surface area of 0.7–12 m2/g. Depending on the properties of char derived from waste, there are greater or minor difficulties in applying it, with ash content, heavy metals, and polycyclic aromatic hydrocarbon (PAH) concentrations being some of its limiting properties. Therefore, this review attempts to compile relevant knowledge on the production of waste-derived char, focusing on heterogeneous solid waste, applied technologies, and practical application routes in the real world to create a supply chain, marketing, and use of waste-derived char. Some challenges and prospects for waste-derived char are also highlighted in this study.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/waste2030013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/waste2030013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Santa Margarida Santos; Margarida Gonçalves; Paulo Brito; Catarina Nobre;doi: 10.3390/waste2030013
The production of heterogeneous solid waste, such as municipal solid waste (MSW), construction and demolition waste (CDW), and industrial solid waste (ISW), has increased dramatically in recent decades, and its management is one of today’s biggest concerns. Using waste as a resource to produce value-added materials such as char is one of the most promising strategies for successful and sustainable waste management. Virtually any type of waste, through various thermochemical technologies, including torrefaction, pyrolysis, hydrothermal carbonization, and gasification, can produce char with potential material and energy applications. Pyrolysis is the most widespread technology, and there are more studies on producing and applying waste-derived char using this technology. The properties of waste-derived char seem to be influenced by the conversion technology and conditions, as well as by the composition of the source waste. A literature search indicated that the properties of waste-derived char are highly variable with the composition of the raw material, with carbon content in the range 8–77%, a higher heating value of 2.5–28.4 MJ/kg and a specific surface area of 0.7–12 m2/g. Depending on the properties of char derived from waste, there are greater or minor difficulties in applying it, with ash content, heavy metals, and polycyclic aromatic hydrocarbon (PAH) concentrations being some of its limiting properties. Therefore, this review attempts to compile relevant knowledge on the production of waste-derived char, focusing on heterogeneous solid waste, applied technologies, and practical application routes in the real world to create a supply chain, marketing, and use of waste-derived char. Some challenges and prospects for waste-derived char are also highlighted in this study.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/waste2030013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/waste2030013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other ORP type 2024 PortugalPublisher:MDPI AG Robert Mădălin Chivu; Jorge Martins; Florin Popescu; Margarida Gonçalves; Krisztina Uzuneanu; Michael Frătița; Francisco P. Brito;doi: 10.3390/en17143528
handle: 10362/178759
This research evaluates the feasibility of using eucalyptus oil blended with conventional diesel fuel in diesel engines. Eucalyptus globulus is one of the main tree species cultivated for paper pulp in western European countries such as Portugal, and eucalyptus oil is one of the byproducts that so far has not been sufficiently evaluated as a biofuel. This study assesses the impact of using this additive on engine performance parameters and emissions as a means to contribute to reducing fossil fuel consumption and pollutant and greenhouse gas (GHG) emissions. The analysis revealed that the addition of eucalyptus oil had a positive effect on torque, a critical performance parameter, with biofuel blends showing consistent torque increases at lower engine speeds. However, torque tended to decrease towards the higher range of engine speed for eucalyptus oil–diesel blends. Several blends showed lower brake specific fuel consumption compared to regular diesel at high engine loads and low engine speeds. Brake thermal efficiency did not vary substantially at lower engine speeds and loads but decreased at higher speeds and loads. Pollutant emissions, particularly unburned hydrocarbons and nitrogen oxides, were influenced by fuel composition, with biofuel blends showing both increases and decreases compared to diesel. It is noteworthy that eucalyptus oil blends exhibited up to a 60% reduction in smoke opacity under specific operating conditions at low speed and high load for 10% incorporation (10EU90D), suggesting that in addition to the already positive effects of cutting down fossil CO2 emissions in proportion to the substitution of fossil diesel with nearly carbon-neutral eucalyptus oil, more environmental benefits may be expected from the incorporation of this product. Although the present economic viability of using eucalyptus oil as a biofuel is still not guaranteed, the present study seems to reinforce its technical viability. Future prospects for the improvement of oil yield through biotechnology, the economic interest of this product for several countries, and the updating and upscaling industrial processes may allow the viability of this biofuel to remain a possibility in the future
Energies arrow_drop_down Repositório da Universidade Nova de LisboaArticle . 2024Data sources: Repositório da Universidade Nova de LisboaRepositório da Universidade Nova de LisboaOther ORP type . 2024Data sources: Repositório da Universidade Nova de Lisboaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17143528&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down Repositório da Universidade Nova de LisboaArticle . 2024Data sources: Repositório da Universidade Nova de LisboaRepositório da Universidade Nova de LisboaOther ORP type . 2024Data sources: Repositório da Universidade Nova de Lisboaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17143528&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other ORP type 2024 PortugalPublisher:MDPI AG Robert Mădălin Chivu; Jorge Martins; Florin Popescu; Margarida Gonçalves; Krisztina Uzuneanu; Michael Frătița; Francisco P. Brito;doi: 10.3390/en17143528
handle: 10362/178759
This research evaluates the feasibility of using eucalyptus oil blended with conventional diesel fuel in diesel engines. Eucalyptus globulus is one of the main tree species cultivated for paper pulp in western European countries such as Portugal, and eucalyptus oil is one of the byproducts that so far has not been sufficiently evaluated as a biofuel. This study assesses the impact of using this additive on engine performance parameters and emissions as a means to contribute to reducing fossil fuel consumption and pollutant and greenhouse gas (GHG) emissions. The analysis revealed that the addition of eucalyptus oil had a positive effect on torque, a critical performance parameter, with biofuel blends showing consistent torque increases at lower engine speeds. However, torque tended to decrease towards the higher range of engine speed for eucalyptus oil–diesel blends. Several blends showed lower brake specific fuel consumption compared to regular diesel at high engine loads and low engine speeds. Brake thermal efficiency did not vary substantially at lower engine speeds and loads but decreased at higher speeds and loads. Pollutant emissions, particularly unburned hydrocarbons and nitrogen oxides, were influenced by fuel composition, with biofuel blends showing both increases and decreases compared to diesel. It is noteworthy that eucalyptus oil blends exhibited up to a 60% reduction in smoke opacity under specific operating conditions at low speed and high load for 10% incorporation (10EU90D), suggesting that in addition to the already positive effects of cutting down fossil CO2 emissions in proportion to the substitution of fossil diesel with nearly carbon-neutral eucalyptus oil, more environmental benefits may be expected from the incorporation of this product. Although the present economic viability of using eucalyptus oil as a biofuel is still not guaranteed, the present study seems to reinforce its technical viability. Future prospects for the improvement of oil yield through biotechnology, the economic interest of this product for several countries, and the updating and upscaling industrial processes may allow the viability of this biofuel to remain a possibility in the future
Energies arrow_drop_down Repositório da Universidade Nova de LisboaArticle . 2024Data sources: Repositório da Universidade Nova de LisboaRepositório da Universidade Nova de LisboaOther ORP type . 2024Data sources: Repositório da Universidade Nova de Lisboaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17143528&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down Repositório da Universidade Nova de LisboaArticle . 2024Data sources: Repositório da Universidade Nova de LisboaRepositório da Universidade Nova de LisboaOther ORP type . 2024Data sources: Repositório da Universidade Nova de Lisboaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17143528&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Funded by:FCT | CEF, FCT | MEtRICs, FCT | MEtRICs +1 projectsFCT| CEF ,FCT| MEtRICs ,FCT| MEtRICs ,FCT| SFRH/BD/133300/2017Umut Şen; Catarina Viegas; Maria Paula Duarte; Elisabete Muchagato Maurício; Catarina Nobre; Ricardo Correia; Helena Pereira; Margarida Gonçalves;Waste-grade cork samples of Quercus cerris were subjected to maceration extraction using 7 different solvents, including pure water (I), pure acetone (II), 75% aqueous ethanol (III), 75% aqueous methanol (IV), 75% aqueous acetone (V), 50% aqueous acetone (VI), and 25% aqueous acetone (VII). The extract yields, extract compositions, as well as antioxidant and antimicrobial activities of the extracts were analyzed. The results showed that maceration extraction was highly efficient, particularly with binary solvents resulting in up to 6% extract yield and up to 488 mg GAE/g extract total phenolic content. The extracts exhibited a variable antioxidant activity determined by DPPH and FRAP methods as well as antimicrobial activity against gram-positive bacteria and fungus determined by agar diffusion test. The CIELAB color parameters of extracts were correlated with maceration time, and the correlation was highest with pure water extracts. The FT-IR spectra of acetone-extracted cork revealed six key markers of phenolic compounds with the presence of peaks at approximately 2920 cm−1, 2850 cm−1, 1609 cm−1, 1517 cm−1, 1277 cm−1, and 1114 cm−1. The overall results suggest that the maceration of waste cork in binary solvents and pure acetone are green alternatives to conventional Soxhlet extraction for the production of polar extracts.
Environments arrow_drop_down EnvironmentsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2076-3298/10/8/142/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/environments10080142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Environments arrow_drop_down EnvironmentsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2076-3298/10/8/142/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/environments10080142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Funded by:FCT | CEF, FCT | MEtRICs, FCT | MEtRICs +1 projectsFCT| CEF ,FCT| MEtRICs ,FCT| MEtRICs ,FCT| SFRH/BD/133300/2017Umut Şen; Catarina Viegas; Maria Paula Duarte; Elisabete Muchagato Maurício; Catarina Nobre; Ricardo Correia; Helena Pereira; Margarida Gonçalves;Waste-grade cork samples of Quercus cerris were subjected to maceration extraction using 7 different solvents, including pure water (I), pure acetone (II), 75% aqueous ethanol (III), 75% aqueous methanol (IV), 75% aqueous acetone (V), 50% aqueous acetone (VI), and 25% aqueous acetone (VII). The extract yields, extract compositions, as well as antioxidant and antimicrobial activities of the extracts were analyzed. The results showed that maceration extraction was highly efficient, particularly with binary solvents resulting in up to 6% extract yield and up to 488 mg GAE/g extract total phenolic content. The extracts exhibited a variable antioxidant activity determined by DPPH and FRAP methods as well as antimicrobial activity against gram-positive bacteria and fungus determined by agar diffusion test. The CIELAB color parameters of extracts were correlated with maceration time, and the correlation was highest with pure water extracts. The FT-IR spectra of acetone-extracted cork revealed six key markers of phenolic compounds with the presence of peaks at approximately 2920 cm−1, 2850 cm−1, 1609 cm−1, 1517 cm−1, 1277 cm−1, and 1114 cm−1. The overall results suggest that the maceration of waste cork in binary solvents and pure acetone are green alternatives to conventional Soxhlet extraction for the production of polar extracts.
Environments arrow_drop_down EnvironmentsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2076-3298/10/8/142/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/environments10080142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Environments arrow_drop_down EnvironmentsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2076-3298/10/8/142/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/environments10080142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Roberta Mota-Panizio; Ana Assis; Luís Carmo-Calado; Catarina Nobre; Andrei Longo; José Silveira; Maria Margarida Goncalves; Paulo Brito;doi: 10.3390/c9020049
Waste insulation electrical cables (WIEC) currently do not have an added value, due to their physical–chemical characteristics. Carbonization is known to enhance feedstock properties, particularly fuel and material properties; as such, this article aimed to study the production and activation of biochars using WIEC and lignocellulosic biomass wastes as feedstock. Biochars were produced in a ceramic kiln with an average capacity of 15 kg at different temperatures, namely 300, 350 and 400 °C. After production, the biochars were further submitted to a washing process with water heated to 95 °C ± 5 °C and to an activation process with 2 N KOH. All biochars (after production, washing and activation) were characterized regarding an elemental analysis, thermogravimetric analysis, heating value, chlorine removal, ash content, apparent density and surface area. The main results showed that the increase in carbonization temperature from 300 to 400 °C caused the produced biochars to present a lower amount of oxygen and volatile matter, increased heating value, greater chlorine removal and increased ash content. Furthermore, the activation process increased the surface area of biochars as the production temperature increased. Overall, the carbonization of WIEC mixed with lignocellulosic wastes showed potential in enhancing these waste physical and chemical properties, with prospects to yield added-value products that activates biochar.
C arrow_drop_down COther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2311-5629/9/2/49/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/c9020049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert C arrow_drop_down COther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2311-5629/9/2/49/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/c9020049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Roberta Mota-Panizio; Ana Assis; Luís Carmo-Calado; Catarina Nobre; Andrei Longo; José Silveira; Maria Margarida Goncalves; Paulo Brito;doi: 10.3390/c9020049
Waste insulation electrical cables (WIEC) currently do not have an added value, due to their physical–chemical characteristics. Carbonization is known to enhance feedstock properties, particularly fuel and material properties; as such, this article aimed to study the production and activation of biochars using WIEC and lignocellulosic biomass wastes as feedstock. Biochars were produced in a ceramic kiln with an average capacity of 15 kg at different temperatures, namely 300, 350 and 400 °C. After production, the biochars were further submitted to a washing process with water heated to 95 °C ± 5 °C and to an activation process with 2 N KOH. All biochars (after production, washing and activation) were characterized regarding an elemental analysis, thermogravimetric analysis, heating value, chlorine removal, ash content, apparent density and surface area. The main results showed that the increase in carbonization temperature from 300 to 400 °C caused the produced biochars to present a lower amount of oxygen and volatile matter, increased heating value, greater chlorine removal and increased ash content. Furthermore, the activation process increased the surface area of biochars as the production temperature increased. Overall, the carbonization of WIEC mixed with lignocellulosic wastes showed potential in enhancing these waste physical and chemical properties, with prospects to yield added-value products that activates biochar.
C arrow_drop_down COther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2311-5629/9/2/49/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/c9020049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert C arrow_drop_down COther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2311-5629/9/2/49/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/c9020049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 PortugalPublisher:MDPI AG Robert Mădălin Chivu; Jorge Martins; Florin Popescu; Krisztina Uzuneanu; Ion V. Ion; Margarida Goncalves; Teodor-Cezar Codău; Elena Onofrei; Francisco P. Brito;doi: 10.3390/en16135150
handle: 1822/86976
The need for reducing fossil fuel consumption and greenhouse gas (GHG) emissions in internal combustion engines has raised the opportunity for the use of renewable energy sources. For the progressive replacement of fossil fuels like diesel, those derived from the sustainable management of forest resources may be a good option. In Portugal, pine trees (pinus pinaster) are among the most widely cultivated tree species. Turpentine can be extracted from their sap without harming the tree. Turpentine is known to be a good fuel with a lower viscosity than regular diesel but with a comparable caloric value, boiling point and ignition characteristics, although it is not widely used as a compression ignition fuel. Moreover, recent research has highlighted the possibility of substantially increasing the turpentine yield through biotechnology, bringing it closer to economic viability. The present study investigates the performance, pollutant emissions and fuel consumption of a 1.6 L four-cylinder direct-injection diesel engine operating with several blends of commercial diesel fuel and turpentine obtained from pine trees. The aim of this study was to assess whether it would be possible to maintain or even improve the performance, fuel consumption and GHG and pollutant emissions (HC, NOx, CO and PM) of the engine with the partial incorporation of this biofuel. Turpentine blends of up to 30% in substitution of regular diesel fuel were tested. The main novelties of the present work are related to (i) the careful testing of a still-insufficiently studied fuel that could gain economical attractiveness with the recent developments in yield improvement through biotechnology and (ii) the tests conducted under fixed engine load positions typical of road and highway conditions. The addition of this biofuel only slightly impacted the engine performance parameters. However, a slightly positive effect was observed in terms of torque, with an increase of up to 7.9% at low load for the 15T85D mixture and 6.8% at high load being observed. Power registered an increase of 9% for the 15T85D mixture at low speed and an increase of 5% for the 30T70D mixture at high speed when compared to the reference fuel (commercial diesel fuel). While the efficiency and fossil GHG emissions were improved with the incorporation of turpentine, it had a mixed effect on polluting emissions such as unburned hydrocarbons (HC) and smoke (PM) and a negative effect on nitrogen oxides (NOx). NOx emissions increased by 30% for high loads and 20% for low loads, mainly as an indirect effect of the improvement in the engine performance and not so much as a consequence of the marginally higher oxygen content of turpentine relative to commercial diesel fuel.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/13/5150/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversidade do Minho: RepositoriUMArticle . 2023License: CC BYData sources: Universidade do Minho: RepositoriUMUniversidade do Minho: RepositoriUMOther literature type . 2023License: CC BYData sources: Universidade do Minho: RepositoriUMadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16135150&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 9visibility views 9 Powered bymore_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/13/5150/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversidade do Minho: RepositoriUMArticle . 2023License: CC BYData sources: Universidade do Minho: RepositoriUMUniversidade do Minho: RepositoriUMOther literature type . 2023License: CC BYData sources: Universidade do Minho: RepositoriUMadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16135150&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 PortugalPublisher:MDPI AG Robert Mădălin Chivu; Jorge Martins; Florin Popescu; Krisztina Uzuneanu; Ion V. Ion; Margarida Goncalves; Teodor-Cezar Codău; Elena Onofrei; Francisco P. Brito;doi: 10.3390/en16135150
handle: 1822/86976
The need for reducing fossil fuel consumption and greenhouse gas (GHG) emissions in internal combustion engines has raised the opportunity for the use of renewable energy sources. For the progressive replacement of fossil fuels like diesel, those derived from the sustainable management of forest resources may be a good option. In Portugal, pine trees (pinus pinaster) are among the most widely cultivated tree species. Turpentine can be extracted from their sap without harming the tree. Turpentine is known to be a good fuel with a lower viscosity than regular diesel but with a comparable caloric value, boiling point and ignition characteristics, although it is not widely used as a compression ignition fuel. Moreover, recent research has highlighted the possibility of substantially increasing the turpentine yield through biotechnology, bringing it closer to economic viability. The present study investigates the performance, pollutant emissions and fuel consumption of a 1.6 L four-cylinder direct-injection diesel engine operating with several blends of commercial diesel fuel and turpentine obtained from pine trees. The aim of this study was to assess whether it would be possible to maintain or even improve the performance, fuel consumption and GHG and pollutant emissions (HC, NOx, CO and PM) of the engine with the partial incorporation of this biofuel. Turpentine blends of up to 30% in substitution of regular diesel fuel were tested. The main novelties of the present work are related to (i) the careful testing of a still-insufficiently studied fuel that could gain economical attractiveness with the recent developments in yield improvement through biotechnology and (ii) the tests conducted under fixed engine load positions typical of road and highway conditions. The addition of this biofuel only slightly impacted the engine performance parameters. However, a slightly positive effect was observed in terms of torque, with an increase of up to 7.9% at low load for the 15T85D mixture and 6.8% at high load being observed. Power registered an increase of 9% for the 15T85D mixture at low speed and an increase of 5% for the 30T70D mixture at high speed when compared to the reference fuel (commercial diesel fuel). While the efficiency and fossil GHG emissions were improved with the incorporation of turpentine, it had a mixed effect on polluting emissions such as unburned hydrocarbons (HC) and smoke (PM) and a negative effect on nitrogen oxides (NOx). NOx emissions increased by 30% for high loads and 20% for low loads, mainly as an indirect effect of the improvement in the engine performance and not so much as a consequence of the marginally higher oxygen content of turpentine relative to commercial diesel fuel.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/13/5150/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversidade do Minho: RepositoriUMArticle . 2023License: CC BYData sources: Universidade do Minho: RepositoriUMUniversidade do Minho: RepositoriUMOther literature type . 2023License: CC BYData sources: Universidade do Minho: RepositoriUMadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16135150&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 9visibility views 9 Powered bymore_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/13/5150/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversidade do Minho: RepositoriUMArticle . 2023License: CC BYData sources: Universidade do Minho: RepositoriUMUniversidade do Minho: RepositoriUMOther literature type . 2023License: CC BYData sources: Universidade do Minho: RepositoriUMadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16135150&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 Portugal, BrazilPublisher:MDPI AG Authors: Roberta Mota-Panizio; Manuel Jesús Hermoso-Orzáez; Luís Carmo-Calado; Victor Arruda Ferraz de Campos; +3 AuthorsRoberta Mota-Panizio; Manuel Jesús Hermoso-Orzáez; Luís Carmo-Calado; Victor Arruda Ferraz de Campos; José Luz Silveira; Maria Margarida Gonçalves; Paulo Brito;doi: 10.3390/app10228253
handle: 11449/206854
The recovery of noble metals from electrical wires and cables results in waste materials such as polyvinyl chloride (PVC) and polyethylene (PE), that is, waste insulation electrical cables (WIEC), which have been processed by gasification for energy recovery. This study focused on the effect of blending the ratio of WIEC on the gasification feedstock composition and the lower heating value (LHV) of produced syngas, through controlled tests and tests under different loads on the generator. The controlled gasification experiments were carried out at blending ratios between pine biomass and WIEC of 90:10, 80:20, and 70:30 and with pine biomass only (100%). For the loads gasification, the experiments were carried out at a blending ratio of 80:20. The controlled experimental results presented that the highest hydrogen content, approximated 17.7 vol.%, was observed at a blending ratio of 70:30 between pine biomass and WIEC and the highest LHV of syngas was observed at a blending ratio of 90:10, with 5.7 MJ/Nm3. For the load gasification experiments, the results showed that the highest hydrogen content was obtained with a load of 15 kW in the generator, approximately 18.48 vol.% of hydrogen content, and the highest LHV of synthesis gas was observed during the 5 kW test, with 5.22 MJ/Nm3. Overall, the new processing of waste insulation electrical cables using a downdraft gasification reactor demonstrates great promise for high quality syngas production.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2076-3417/10/22/8253/pdfData sources: Multidisciplinary Digital Publishing InstituteRepositório da Universidade Nova de LisboaArticle . 2020Data sources: Repositório da Universidade Nova de LisboaUniversidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app10228253&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2076-3417/10/22/8253/pdfData sources: Multidisciplinary Digital Publishing InstituteRepositório da Universidade Nova de LisboaArticle . 2020Data sources: Repositório da Universidade Nova de LisboaUniversidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app10228253&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 Portugal, BrazilPublisher:MDPI AG Authors: Roberta Mota-Panizio; Manuel Jesús Hermoso-Orzáez; Luís Carmo-Calado; Victor Arruda Ferraz de Campos; +3 AuthorsRoberta Mota-Panizio; Manuel Jesús Hermoso-Orzáez; Luís Carmo-Calado; Victor Arruda Ferraz de Campos; José Luz Silveira; Maria Margarida Gonçalves; Paulo Brito;doi: 10.3390/app10228253
handle: 11449/206854
The recovery of noble metals from electrical wires and cables results in waste materials such as polyvinyl chloride (PVC) and polyethylene (PE), that is, waste insulation electrical cables (WIEC), which have been processed by gasification for energy recovery. This study focused on the effect of blending the ratio of WIEC on the gasification feedstock composition and the lower heating value (LHV) of produced syngas, through controlled tests and tests under different loads on the generator. The controlled gasification experiments were carried out at blending ratios between pine biomass and WIEC of 90:10, 80:20, and 70:30 and with pine biomass only (100%). For the loads gasification, the experiments were carried out at a blending ratio of 80:20. The controlled experimental results presented that the highest hydrogen content, approximated 17.7 vol.%, was observed at a blending ratio of 70:30 between pine biomass and WIEC and the highest LHV of syngas was observed at a blending ratio of 90:10, with 5.7 MJ/Nm3. For the load gasification experiments, the results showed that the highest hydrogen content was obtained with a load of 15 kW in the generator, approximately 18.48 vol.% of hydrogen content, and the highest LHV of synthesis gas was observed during the 5 kW test, with 5.22 MJ/Nm3. Overall, the new processing of waste insulation electrical cables using a downdraft gasification reactor demonstrates great promise for high quality syngas production.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2076-3417/10/22/8253/pdfData sources: Multidisciplinary Digital Publishing InstituteRepositório da Universidade Nova de LisboaArticle . 2020Data sources: Repositório da Universidade Nova de LisboaUniversidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app10228253&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2076-3417/10/22/8253/pdfData sources: Multidisciplinary Digital Publishing InstituteRepositório da Universidade Nova de LisboaArticle . 2020Data sources: Repositório da Universidade Nova de LisboaUniversidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app10228253&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu