- home
- Advanced Search
- Energy Research
- Open Access
- Energy Research
- Open Access
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Publisher:Wiley Cho Fai Jonathan Lau; Martin A. Green; Yong Li; Junwei Shi; Wanli Ma; Meng Zhang; Shi Tang; Shujuan Huang; Anita Ho-Baillie; Anita Ho-Baillie; Yin Yao; Da Seul Lee; Chwenhaw Liao; Yongyoon Cho; Jianghui Zheng; Jianyu Yuan; Jueming Bing;AbstractImproving the quality of perovskite poly‐crystalline film is essential for the performance of associated solar cells approaching their theoretical limit efficiency. Pinholes, unwanted defects, and nonperovskite phase can be easily generated during film formation, hampering device performance and stability. Here, a simple method is introduced to prepare perovskite film with excellent optoelectronic property by using acetic acid (Ac) as an antisolvent to control perovskite crystallization. Results from a variety of characterizations suggest that the small amount of Ac not only reduces the perovskite film roughness and residual PbI2 but also generates a passivation effect from the electron‐rich carbonyl group (CO) in Ac. The best devices produce a PCE of 22.0% for Cs0.05FA0.80MA0.15Pb(I0.85Br0.15)3 and 23.0% for Cs0.05FA0.90MA0.05Pb(I0.95Br0.05)3 on 0.159 cm2 with negligible hysteresis. This further improves device stability producing a cell that maintained 96% of its initial efficiency after 2400 h storage in ambient environment (with controlled relative humidity (RH) <30%) without any encapsulation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/advs.201903368&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 98 citations 98 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/advs.201903368&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 AustraliaPublisher:Elsevier BV Chao Chen; Jianghui Zheng; Jianghui Zheng; Jincheol Kim; Meng Zhang; Anita Ho-Baillie; Cho Fai Jonathan Lau; Qingshan Ma; Martin A. Green; Shujuan Huang; Xiaofan Deng;handle: 1959.4/unsworks_52232
A spin-coating-free fabrication sequence has been developed for the fabrication of highly efficient organic-inorganic halide perovskite solar cells (PSCs). A novel blow-drying method is demonstrated to be successful in depositing high quality mesoporous TiO2 (mp-TiO2), methylammonium lead halide (CH3NH3PbI3) perovskite and spiro-MeOTAD layers. When combined with compact TiO2 (c-TiO2) deposited by spray pyrolysis which is also a spin-coating-free process, a stabilized power conversion efficiency exceeding 17% can be achieved for the glass/FTO/c-TiO2/mp-TiO2/ CH3NH3PbI3/spiro-MeOTAD/Au device. This is the highest efficiency for PSCs fabricated without the use of spin-coating to our knowledge. This method provides a pathway towards a scalable process for fabricating high-performance, large area and reproducible PSCs.
UNSWorks arrow_drop_down UNSWorksArticle . 2017License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_52232Data sources: Bielefeld Academic Search Engine (BASE)Solar Energy Materials and Solar CellsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2017.04.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 75 citations 75 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert UNSWorks arrow_drop_down UNSWorksArticle . 2017License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_52232Data sources: Bielefeld Academic Search Engine (BASE)Solar Energy Materials and Solar CellsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2017.04.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 AustraliaPublisher:Royal Society of Chemistry (RSC) Zheng, J; Lau, CFJ; Mehrvarz, H; Ma, FJ; Jiang, Y; Deng, X; Soeriyadi, A; Kim, J; Zhang, M; Hu, L; Cui, X; Lee, DS; Bing, J; Cho, Y; Chen, C; Green, MA; Huang, S; Ho-Baillie, AWY; Jiang, Jessica Yajie;doi: 10.1039/c8ee00689j
handle: 1959.4/unsworks_52247
A simple and scalable interface-layer free monolithic perovskite/silicon tandem has been demonstrated achieving over 20% efficiency on a large area.
UNSWorks arrow_drop_down UNSWorksArticle . 2018License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_52247Data sources: Bielefeld Academic Search Engine (BASE)Energy & Environmental ScienceArticle . 2018 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8ee00689j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 195 citations 195 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert UNSWorks arrow_drop_down UNSWorksArticle . 2018License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_52247Data sources: Bielefeld Academic Search Engine (BASE)Energy & Environmental ScienceArticle . 2018 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8ee00689j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Publisher:Wiley Cho Fai Jonathan Lau; Martin A. Green; Yong Li; Junwei Shi; Wanli Ma; Meng Zhang; Shi Tang; Shujuan Huang; Anita Ho-Baillie; Anita Ho-Baillie; Yin Yao; Da Seul Lee; Chwenhaw Liao; Yongyoon Cho; Jianghui Zheng; Jianyu Yuan; Jueming Bing;AbstractImproving the quality of perovskite poly‐crystalline film is essential for the performance of associated solar cells approaching their theoretical limit efficiency. Pinholes, unwanted defects, and nonperovskite phase can be easily generated during film formation, hampering device performance and stability. Here, a simple method is introduced to prepare perovskite film with excellent optoelectronic property by using acetic acid (Ac) as an antisolvent to control perovskite crystallization. Results from a variety of characterizations suggest that the small amount of Ac not only reduces the perovskite film roughness and residual PbI2 but also generates a passivation effect from the electron‐rich carbonyl group (CO) in Ac. The best devices produce a PCE of 22.0% for Cs0.05FA0.80MA0.15Pb(I0.85Br0.15)3 and 23.0% for Cs0.05FA0.90MA0.05Pb(I0.95Br0.05)3 on 0.159 cm2 with negligible hysteresis. This further improves device stability producing a cell that maintained 96% of its initial efficiency after 2400 h storage in ambient environment (with controlled relative humidity (RH) <30%) without any encapsulation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/advs.201903368&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 98 citations 98 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/advs.201903368&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 AustraliaPublisher:Elsevier BV Chao Chen; Jianghui Zheng; Jianghui Zheng; Jincheol Kim; Meng Zhang; Anita Ho-Baillie; Cho Fai Jonathan Lau; Qingshan Ma; Martin A. Green; Shujuan Huang; Xiaofan Deng;handle: 1959.4/unsworks_52232
A spin-coating-free fabrication sequence has been developed for the fabrication of highly efficient organic-inorganic halide perovskite solar cells (PSCs). A novel blow-drying method is demonstrated to be successful in depositing high quality mesoporous TiO2 (mp-TiO2), methylammonium lead halide (CH3NH3PbI3) perovskite and spiro-MeOTAD layers. When combined with compact TiO2 (c-TiO2) deposited by spray pyrolysis which is also a spin-coating-free process, a stabilized power conversion efficiency exceeding 17% can be achieved for the glass/FTO/c-TiO2/mp-TiO2/ CH3NH3PbI3/spiro-MeOTAD/Au device. This is the highest efficiency for PSCs fabricated without the use of spin-coating to our knowledge. This method provides a pathway towards a scalable process for fabricating high-performance, large area and reproducible PSCs.
UNSWorks arrow_drop_down UNSWorksArticle . 2017License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_52232Data sources: Bielefeld Academic Search Engine (BASE)Solar Energy Materials and Solar CellsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2017.04.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 75 citations 75 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert UNSWorks arrow_drop_down UNSWorksArticle . 2017License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_52232Data sources: Bielefeld Academic Search Engine (BASE)Solar Energy Materials and Solar CellsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2017.04.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 AustraliaPublisher:Royal Society of Chemistry (RSC) Zheng, J; Lau, CFJ; Mehrvarz, H; Ma, FJ; Jiang, Y; Deng, X; Soeriyadi, A; Kim, J; Zhang, M; Hu, L; Cui, X; Lee, DS; Bing, J; Cho, Y; Chen, C; Green, MA; Huang, S; Ho-Baillie, AWY; Jiang, Jessica Yajie;doi: 10.1039/c8ee00689j
handle: 1959.4/unsworks_52247
A simple and scalable interface-layer free monolithic perovskite/silicon tandem has been demonstrated achieving over 20% efficiency on a large area.
UNSWorks arrow_drop_down UNSWorksArticle . 2018License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_52247Data sources: Bielefeld Academic Search Engine (BASE)Energy & Environmental ScienceArticle . 2018 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8ee00689j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 195 citations 195 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert UNSWorks arrow_drop_down UNSWorksArticle . 2018License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_52247Data sources: Bielefeld Academic Search Engine (BASE)Energy & Environmental ScienceArticle . 2018 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8ee00689j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu