Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • Funder
  • SDG [Beta]
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
5 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Nicole Schaffer; Luke Copland; Christian Zdanowicz; Regine Hock;

    AbstractGlaciers of Baffin Island and nearby islands of Arctic Canada have experienced rapid mass losses over recent decades. However, projections of loss rates into the 21st century have so far been limited by the availability of model calibration and validation data. In this study, we model the surface mass balance of the largest ice cap on Baffin Island, Penny Ice Cap, since 1959, using an enhanced temperature index model calibrated with in situ data from 2006–2014. Subsequently, we project changes to 2099 based on the RCP4.5 climate scenario. Since the mid-1990s, the surface mass balance over Penny Ice Cap has become increasingly negative, particularly after 2005. Using volume–area scaling to account for glacier retreat, peak net mass loss is projected to occur between ~2040 and 2080, and the ice cap is expected to lose 22% (377.4 Gt or 60 m w.e.) of its 2014 ice mass by 2099, contributing 1.0 mm to sea level rise. Our 2015–2099 projections are approximately nine times more sensitive to changes in temperature than precipitation, with an absolute cumulative difference of 566 Gt (90 m w.e.) between +2 and −2°C scenarios, and 63 Gt (10 m w.e.) between +20% and −20% precipitation scenarios.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Annals of Glaciologyarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Annals of Glaciology
    Article . 2023 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    DOAJ
    Article
    Data sources: DOAJ
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    gold
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Annals of Glaciologyarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Annals of Glaciology
      Article . 2023 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      DOAJ
      Article
      Data sources: DOAJ
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Nicole Schaffer; Luke Copland; Christian Zdanowicz; Regine Hock;

    AbstractGlaciers of Baffin Island and nearby islands of Arctic Canada have experienced rapid mass losses over recent decades. However, projections of loss rates into the 21st century have so far been limited by the availability of model calibration and validation data. In this study, we model the surface mass balance of the largest ice cap on Baffin Island, Penny Ice Cap, since 1959, using an enhanced temperature index model calibrated with in situ data from 2006–2014. Subsequently, we project changes to 2099 based on the RCP4.5 climate scenario. Since the mid-1990s, the surface mass balance over Penny Ice Cap has become increasingly negative, particularly after 2005. Using volume–area scaling to account for glacier retreat, peak net mass loss is projected to occur between ~2040 and 2080, and the ice cap is expected to lose 22% (377.4 Gt or 60 m w.e.) of its 2014 ice mass by 2099, contributing 1.0 mm to sea level rise. Our 2015–2099 projections are approximately nine times more sensitive to changes in temperature than precipitation, with an absolute cumulative difference of 566 Gt (90 m w.e.) between +2 and −2°C scenarios, and 63 Gt (10 m w.e.) between +20% and −20% precipitation scenarios.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Annals of Glaciologyarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Annals of Glaciology
    Article . 2023 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    DOAJ
    Article
    Data sources: DOAJ
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    gold
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Annals of Glaciologyarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Annals of Glaciology
      Article . 2023 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      DOAJ
      Article
      Data sources: DOAJ
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Zdanowicz, Christian; Fisher, David; Bourgeois, Jocelyne; Demuth, Mike; +9 Authors

    A major achievement in research supported by the Kluane Lake Research Station was the recovery, in 2001 – 02, of a suite of cores from the icefields of the central St. Elias Mountains, Yukon, by teams of researchers from Canada, the United States, and Japan. This project led to the development of parallel, long (103 – 104 year) ice-core records of climate and atmospheric change over an altitudinal range of more than 2 km, from the Eclipse Icefield (3017 m) to the ice-covered plateau of Mt. Logan (5340 m). These efforts built on earlier work recovering single ice cores in this region. Comparison of these records has allowed for variations in climate and atmospheric composition to be linked with changes in the vertical structure and dynamics of the North Pacific atmosphere, providing a unique perspective on these changes over the Holocene. Owing to their privileged location, cores from the St. Elias Icefields also contain a remarkably detailed record of aerosols from various sources around or across the North Pacific. In this paper we review major scientific findings from the study of St. Elias Mountain ice cores, focusing on five main themes: (1) The record of stable water isotopes (δ18O, δD), which has unique characteristics that differ from those of Greenland, other Arctic ice cores, and even among sites in the St. Elias; (2) the snow accumulation history; (3) the record of pollen, biomass burning aerosol, and desert dust deposition; (4) the record of long-range air pollutant deposition (sulphate and lead); and (5) the record of paleo-volcanism. Our discussion draws on studies published since 2000, but based on older ice cores from the St. Elias Mountains obtained in 1980 and 1996.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ARCTICarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ARCTIC
    Article
    Data sources: UnpayWall
    ARCTIC
    Article . 2014 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    18
    citations18
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ARCTICarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ARCTIC
      Article
      Data sources: UnpayWall
      ARCTIC
      Article . 2014 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Zdanowicz, Christian; Fisher, David; Bourgeois, Jocelyne; Demuth, Mike; +9 Authors

    A major achievement in research supported by the Kluane Lake Research Station was the recovery, in 2001 – 02, of a suite of cores from the icefields of the central St. Elias Mountains, Yukon, by teams of researchers from Canada, the United States, and Japan. This project led to the development of parallel, long (103 – 104 year) ice-core records of climate and atmospheric change over an altitudinal range of more than 2 km, from the Eclipse Icefield (3017 m) to the ice-covered plateau of Mt. Logan (5340 m). These efforts built on earlier work recovering single ice cores in this region. Comparison of these records has allowed for variations in climate and atmospheric composition to be linked with changes in the vertical structure and dynamics of the North Pacific atmosphere, providing a unique perspective on these changes over the Holocene. Owing to their privileged location, cores from the St. Elias Icefields also contain a remarkably detailed record of aerosols from various sources around or across the North Pacific. In this paper we review major scientific findings from the study of St. Elias Mountain ice cores, focusing on five main themes: (1) The record of stable water isotopes (δ18O, δD), which has unique characteristics that differ from those of Greenland, other Arctic ice cores, and even among sites in the St. Elias; (2) the snow accumulation history; (3) the record of pollen, biomass burning aerosol, and desert dust deposition; (4) the record of long-range air pollutant deposition (sulphate and lead); and (5) the record of paleo-volcanism. Our discussion draws on studies published since 2000, but based on older ice cores from the St. Elias Mountains obtained in 1980 and 1996.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ARCTICarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ARCTIC
    Article
    Data sources: UnpayWall
    ARCTIC
    Article . 2014 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    18
    citations18
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ARCTICarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ARCTIC
      Article
      Data sources: UnpayWall
      ARCTIC
      Article . 2014 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Osterberg, E.; Mayewski, Paul Andrew; Kreutz, Karl J.; Fisher, D.; +7 Authors

    A high‐resolution, 8000 year‐long ice core record from the Mt. Logan summit plateau (5300 m asl) reveals the initiation of trans‐Pacific lead (Pb) pollution by ca. 1730, and a >10‐fold increase in Pb concentration (1981–1998 mean = 68.9 ng/l) above natural background (5.6 ng/l) attributed to rising anthropogenic Pb emissions from Asia. The largest rise in North Pacific Pb pollution from 1970–1998 (end of record) is contemporaneous with a decrease in Eurasian and North American Pb pollution as documented in ice core records from Greenland, Devon Island, and the European Alps. The distinct Pb pollution history in the North Pacific is interpreted to result from the later industrialization and less stringent abatement measures in Asia compared to North America and Eurasia. The Mt. Logan record shows evidence for both a rising Pb emissions signal from Asia and a trans‐Pacific transport efficiency signal related to the strength of the Aleutian Low.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geophysical Research...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Geophysical Research Letters
    Article . 2008 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    94
    citations94
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geophysical Research...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Geophysical Research Letters
      Article . 2008 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Osterberg, E.; Mayewski, Paul Andrew; Kreutz, Karl J.; Fisher, D.; +7 Authors

    A high‐resolution, 8000 year‐long ice core record from the Mt. Logan summit plateau (5300 m asl) reveals the initiation of trans‐Pacific lead (Pb) pollution by ca. 1730, and a >10‐fold increase in Pb concentration (1981–1998 mean = 68.9 ng/l) above natural background (5.6 ng/l) attributed to rising anthropogenic Pb emissions from Asia. The largest rise in North Pacific Pb pollution from 1970–1998 (end of record) is contemporaneous with a decrease in Eurasian and North American Pb pollution as documented in ice core records from Greenland, Devon Island, and the European Alps. The distinct Pb pollution history in the North Pacific is interpreted to result from the later industrialization and less stringent abatement measures in Asia compared to North America and Eurasia. The Mt. Logan record shows evidence for both a rising Pb emissions signal from Asia and a trans‐Pacific transport efficiency signal related to the strength of the Aleutian Low.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geophysical Research...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Geophysical Research Letters
    Article . 2008 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    94
    citations94
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geophysical Research...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Geophysical Research Letters
      Article . 2008 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Christian Zdanowicz; Erich C. Osterberg; S. A. Beal; David A. Fisher;

    Past emissions of the toxic metal mercury (Hg) persist in the global environment, yet these emissions remain poorly constrained by existing data. Ice cores are high-resolution archives of atmospheric deposition that may provide crucial insight into past atmospheric Hg levels during recent and historical time. Here we present a record of total Hg (HgT) in an ice core from the pristine summit plateau (5340 m asl) of Mount Logan, Yukon, Canada, representing atmospheric deposition from AD 1410 to 1998. The Colonial Period (∼1603-1850) and North American "Gold Rush" (1850-1900) represent minor fractions (8% and 14%, respectively) of total anthropogenic Hg deposition in the record, with the majority (78%) occurring during the 20th Century. A period of maximum HgT fluxes from 1940 to 1975 coincides with estimates of enhanced anthropogenic Hg emissions from commercial sources, as well as with industrial emissions of other toxic metals. Rapid declines in HgT fluxes following peaks during the Gold Rush and the mid-20th Century indicate that atmospheric Hg deposition responds quickly to reductions in emissions. Increasing HgT fluxes from 1993 until the youngest samples in 1998 may reflect the resurgence of Hg emissions from unregulated coal burning and small-scale gold mining.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    68
    citations68
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • Authors: Christian Zdanowicz; Erich C. Osterberg; S. A. Beal; David A. Fisher;

    Past emissions of the toxic metal mercury (Hg) persist in the global environment, yet these emissions remain poorly constrained by existing data. Ice cores are high-resolution archives of atmospheric deposition that may provide crucial insight into past atmospheric Hg levels during recent and historical time. Here we present a record of total Hg (HgT) in an ice core from the pristine summit plateau (5340 m asl) of Mount Logan, Yukon, Canada, representing atmospheric deposition from AD 1410 to 1998. The Colonial Period (∼1603-1850) and North American "Gold Rush" (1850-1900) represent minor fractions (8% and 14%, respectively) of total anthropogenic Hg deposition in the record, with the majority (78%) occurring during the 20th Century. A period of maximum HgT fluxes from 1940 to 1975 coincides with estimates of enhanced anthropogenic Hg emissions from commercial sources, as well as with industrial emissions of other toxic metals. Rapid declines in HgT fluxes following peaks during the Gold Rush and the mid-20th Century indicate that atmospheric Hg deposition responds quickly to reductions in emissions. Increasing HgT fluxes from 1993 until the youngest samples in 1998 may reflect the resurgence of Hg emissions from unregulated coal burning and small-scale gold mining.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    68
    citations68
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Feiyue Wang; Gary A. Stern; Gary A. Stern; Amanda Cole; +11 Authors

    Recent studies have shown that climate change is already having significant impacts on many aspects of transport pathways, speciation and cycling of mercury within Arctic ecosystems. For example, the extensive loss of sea-ice in the Arctic Ocean and the concurrent shift from greater proportions of perennial to annual types have been shown to promote changes in primary productivity, shift foodweb structures, alter mercury methylation and demethylation rates, and influence mercury distribution and transport across the ocean-sea-ice-atmosphere interface (bottom-up processes). In addition, changes in animal social behavior associated with changing sea-ice regimes can affect dietary exposure to mercury (top-down processes). In this review, we address these and other possible ramifications of climate variability on mercury cycling, processes and exposure by applying recent literature to the following nine questions; 1) What impact has climate change had on Arctic physical characteristics and processes? 2) How do rising temperatures affect atmospheric mercury chemistry? 3) Will a decrease in sea-ice coverage have an impact on the amount of atmospheric mercury deposited to or emitted from the Arctic Ocean, and if so, how? 4) Does climate affect air-surface mercury flux, and riverine mercury fluxes, in Arctic freshwater and terrestrial systems, and if so, how? 5) How does climate change affect mercury methylation/demethylation in different compartments in the Arctic Ocean and freshwater systems? 6) How will climate change alter the structure and dynamics of freshwater food webs, and thereby affect the bioaccumulation of mercury? 7) How will climate change alter the structure and dynamics of marine food webs, and thereby affect the bioaccumulation of marine mercury? 8) What are the likely mercury emissions from melting glaciers and thawing permafrost under climate change scenarios? and 9) What can be learned from current mass balance inventories of mercury in the Arctic? The review finishes with several conclusions and recommendations.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    The Science of The Total Environment
    Article . 2012 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    198
    citations198
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      The Science of The Total Environment
      Article . 2012 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Feiyue Wang; Gary A. Stern; Gary A. Stern; Amanda Cole; +11 Authors

    Recent studies have shown that climate change is already having significant impacts on many aspects of transport pathways, speciation and cycling of mercury within Arctic ecosystems. For example, the extensive loss of sea-ice in the Arctic Ocean and the concurrent shift from greater proportions of perennial to annual types have been shown to promote changes in primary productivity, shift foodweb structures, alter mercury methylation and demethylation rates, and influence mercury distribution and transport across the ocean-sea-ice-atmosphere interface (bottom-up processes). In addition, changes in animal social behavior associated with changing sea-ice regimes can affect dietary exposure to mercury (top-down processes). In this review, we address these and other possible ramifications of climate variability on mercury cycling, processes and exposure by applying recent literature to the following nine questions; 1) What impact has climate change had on Arctic physical characteristics and processes? 2) How do rising temperatures affect atmospheric mercury chemistry? 3) Will a decrease in sea-ice coverage have an impact on the amount of atmospheric mercury deposited to or emitted from the Arctic Ocean, and if so, how? 4) Does climate affect air-surface mercury flux, and riverine mercury fluxes, in Arctic freshwater and terrestrial systems, and if so, how? 5) How does climate change affect mercury methylation/demethylation in different compartments in the Arctic Ocean and freshwater systems? 6) How will climate change alter the structure and dynamics of freshwater food webs, and thereby affect the bioaccumulation of mercury? 7) How will climate change alter the structure and dynamics of marine food webs, and thereby affect the bioaccumulation of marine mercury? 8) What are the likely mercury emissions from melting glaciers and thawing permafrost under climate change scenarios? and 9) What can be learned from current mass balance inventories of mercury in the Arctic? The review finishes with several conclusions and recommendations.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    The Science of The Total Environment
    Article . 2012 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    198
    citations198
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      The Science of The Total Environment
      Article . 2012 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
5 Research products
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Nicole Schaffer; Luke Copland; Christian Zdanowicz; Regine Hock;

    AbstractGlaciers of Baffin Island and nearby islands of Arctic Canada have experienced rapid mass losses over recent decades. However, projections of loss rates into the 21st century have so far been limited by the availability of model calibration and validation data. In this study, we model the surface mass balance of the largest ice cap on Baffin Island, Penny Ice Cap, since 1959, using an enhanced temperature index model calibrated with in situ data from 2006–2014. Subsequently, we project changes to 2099 based on the RCP4.5 climate scenario. Since the mid-1990s, the surface mass balance over Penny Ice Cap has become increasingly negative, particularly after 2005. Using volume–area scaling to account for glacier retreat, peak net mass loss is projected to occur between ~2040 and 2080, and the ice cap is expected to lose 22% (377.4 Gt or 60 m w.e.) of its 2014 ice mass by 2099, contributing 1.0 mm to sea level rise. Our 2015–2099 projections are approximately nine times more sensitive to changes in temperature than precipitation, with an absolute cumulative difference of 566 Gt (90 m w.e.) between +2 and −2°C scenarios, and 63 Gt (10 m w.e.) between +20% and −20% precipitation scenarios.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Annals of Glaciologyarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Annals of Glaciology
    Article . 2023 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    DOAJ
    Article
    Data sources: DOAJ
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    gold
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Annals of Glaciologyarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Annals of Glaciology
      Article . 2023 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      DOAJ
      Article
      Data sources: DOAJ
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Nicole Schaffer; Luke Copland; Christian Zdanowicz; Regine Hock;

    AbstractGlaciers of Baffin Island and nearby islands of Arctic Canada have experienced rapid mass losses over recent decades. However, projections of loss rates into the 21st century have so far been limited by the availability of model calibration and validation data. In this study, we model the surface mass balance of the largest ice cap on Baffin Island, Penny Ice Cap, since 1959, using an enhanced temperature index model calibrated with in situ data from 2006–2014. Subsequently, we project changes to 2099 based on the RCP4.5 climate scenario. Since the mid-1990s, the surface mass balance over Penny Ice Cap has become increasingly negative, particularly after 2005. Using volume–area scaling to account for glacier retreat, peak net mass loss is projected to occur between ~2040 and 2080, and the ice cap is expected to lose 22% (377.4 Gt or 60 m w.e.) of its 2014 ice mass by 2099, contributing 1.0 mm to sea level rise. Our 2015–2099 projections are approximately nine times more sensitive to changes in temperature than precipitation, with an absolute cumulative difference of 566 Gt (90 m w.e.) between +2 and −2°C scenarios, and 63 Gt (10 m w.e.) between +20% and −20% precipitation scenarios.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Annals of Glaciologyarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Annals of Glaciology
    Article . 2023 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    DOAJ
    Article
    Data sources: DOAJ
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    gold
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Annals of Glaciologyarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Annals of Glaciology
      Article . 2023 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      DOAJ
      Article
      Data sources: DOAJ
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Zdanowicz, Christian; Fisher, David; Bourgeois, Jocelyne; Demuth, Mike; +9 Authors

    A major achievement in research supported by the Kluane Lake Research Station was the recovery, in 2001 – 02, of a suite of cores from the icefields of the central St. Elias Mountains, Yukon, by teams of researchers from Canada, the United States, and Japan. This project led to the development of parallel, long (103 – 104 year) ice-core records of climate and atmospheric change over an altitudinal range of more than 2 km, from the Eclipse Icefield (3017 m) to the ice-covered plateau of Mt. Logan (5340 m). These efforts built on earlier work recovering single ice cores in this region. Comparison of these records has allowed for variations in climate and atmospheric composition to be linked with changes in the vertical structure and dynamics of the North Pacific atmosphere, providing a unique perspective on these changes over the Holocene. Owing to their privileged location, cores from the St. Elias Icefields also contain a remarkably detailed record of aerosols from various sources around or across the North Pacific. In this paper we review major scientific findings from the study of St. Elias Mountain ice cores, focusing on five main themes: (1) The record of stable water isotopes (δ18O, δD), which has unique characteristics that differ from those of Greenland, other Arctic ice cores, and even among sites in the St. Elias; (2) the snow accumulation history; (3) the record of pollen, biomass burning aerosol, and desert dust deposition; (4) the record of long-range air pollutant deposition (sulphate and lead); and (5) the record of paleo-volcanism. Our discussion draws on studies published since 2000, but based on older ice cores from the St. Elias Mountains obtained in 1980 and 1996.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ARCTICarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ARCTIC
    Article
    Data sources: UnpayWall
    ARCTIC
    Article . 2014 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    18
    citations18
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ARCTICarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ARCTIC
      Article
      Data sources: UnpayWall
      ARCTIC
      Article . 2014 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Zdanowicz, Christian; Fisher, David; Bourgeois, Jocelyne; Demuth, Mike; +9 Authors

    A major achievement in research supported by the Kluane Lake Research Station was the recovery, in 2001 – 02, of a suite of cores from the icefields of the central St. Elias Mountains, Yukon, by teams of researchers from Canada, the United States, and Japan. This project led to the development of parallel, long (103 – 104 year) ice-core records of climate and atmospheric change over an altitudinal range of more than 2 km, from the Eclipse Icefield (3017 m) to the ice-covered plateau of Mt. Logan (5340 m). These efforts built on earlier work recovering single ice cores in this region. Comparison of these records has allowed for variations in climate and atmospheric composition to be linked with changes in the vertical structure and dynamics of the North Pacific atmosphere, providing a unique perspective on these changes over the Holocene. Owing to their privileged location, cores from the St. Elias Icefields also contain a remarkably detailed record of aerosols from various sources around or across the North Pacific. In this paper we review major scientific findings from the study of St. Elias Mountain ice cores, focusing on five main themes: (1) The record of stable water isotopes (δ18O, δD), which has unique characteristics that differ from those of Greenland, other Arctic ice cores, and even among sites in the St. Elias; (2) the snow accumulation history; (3) the record of pollen, biomass burning aerosol, and desert dust deposition; (4) the record of long-range air pollutant deposition (sulphate and lead); and (5) the record of paleo-volcanism. Our discussion draws on studies published since 2000, but based on older ice cores from the St. Elias Mountains obtained in 1980 and 1996.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ARCTICarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ARCTIC
    Article
    Data sources: UnpayWall
    ARCTIC
    Article . 2014 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    18
    citations18
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ARCTICarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ARCTIC
      Article
      Data sources: UnpayWall
      ARCTIC
      Article . 2014 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Osterberg, E.; Mayewski, Paul Andrew; Kreutz, Karl J.; Fisher, D.; +7 Authors

    A high‐resolution, 8000 year‐long ice core record from the Mt. Logan summit plateau (5300 m asl) reveals the initiation of trans‐Pacific lead (Pb) pollution by ca. 1730, and a >10‐fold increase in Pb concentration (1981–1998 mean = 68.9 ng/l) above natural background (5.6 ng/l) attributed to rising anthropogenic Pb emissions from Asia. The largest rise in North Pacific Pb pollution from 1970–1998 (end of record) is contemporaneous with a decrease in Eurasian and North American Pb pollution as documented in ice core records from Greenland, Devon Island, and the European Alps. The distinct Pb pollution history in the North Pacific is interpreted to result from the later industrialization and less stringent abatement measures in Asia compared to North America and Eurasia. The Mt. Logan record shows evidence for both a rising Pb emissions signal from Asia and a trans‐Pacific transport efficiency signal related to the strength of the Aleutian Low.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geophysical Research...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Geophysical Research Letters
    Article . 2008 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    94
    citations94
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geophysical Research...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Geophysical Research Letters
      Article . 2008 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Osterberg, E.; Mayewski, Paul Andrew; Kreutz, Karl J.; Fisher, D.; +7 Authors

    A high‐resolution, 8000 year‐long ice core record from the Mt. Logan summit plateau (5300 m asl) reveals the initiation of trans‐Pacific lead (Pb) pollution by ca. 1730, and a >10‐fold increase in Pb concentration (1981–1998 mean = 68.9 ng/l) above natural background (5.6 ng/l) attributed to rising anthropogenic Pb emissions from Asia. The largest rise in North Pacific Pb pollution from 1970–1998 (end of record) is contemporaneous with a decrease in Eurasian and North American Pb pollution as documented in ice core records from Greenland, Devon Island, and the European Alps. The distinct Pb pollution history in the North Pacific is interpreted to result from the later industrialization and less stringent abatement measures in Asia compared to North America and Eurasia. The Mt. Logan record shows evidence for both a rising Pb emissions signal from Asia and a trans‐Pacific transport efficiency signal related to the strength of the Aleutian Low.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geophysical Research...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Geophysical Research Letters
    Article . 2008 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    94
    citations94
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geophysical Research...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Geophysical Research Letters
      Article . 2008 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Christian Zdanowicz; Erich C. Osterberg; S. A. Beal; David A. Fisher;

    Past emissions of the toxic metal mercury (Hg) persist in the global environment, yet these emissions remain poorly constrained by existing data. Ice cores are high-resolution archives of atmospheric deposition that may provide crucial insight into past atmospheric Hg levels during recent and historical time. Here we present a record of total Hg (HgT) in an ice core from the pristine summit plateau (5340 m asl) of Mount Logan, Yukon, Canada, representing atmospheric deposition from AD 1410 to 1998. The Colonial Period (∼1603-1850) and North American "Gold Rush" (1850-1900) represent minor fractions (8% and 14%, respectively) of total anthropogenic Hg deposition in the record, with the majority (78%) occurring during the 20th Century. A period of maximum HgT fluxes from 1940 to 1975 coincides with estimates of enhanced anthropogenic Hg emissions from commercial sources, as well as with industrial emissions of other toxic metals. Rapid declines in HgT fluxes following peaks during the Gold Rush and the mid-20th Century indicate that atmospheric Hg deposition responds quickly to reductions in emissions. Increasing HgT fluxes from 1993 until the youngest samples in 1998 may reflect the resurgence of Hg emissions from unregulated coal burning and small-scale gold mining.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    68
    citations68
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • Authors: Christian Zdanowicz; Erich C. Osterberg; S. A. Beal; David A. Fisher;

    Past emissions of the toxic metal mercury (Hg) persist in the global environment, yet these emissions remain poorly constrained by existing data. Ice cores are high-resolution archives of atmospheric deposition that may provide crucial insight into past atmospheric Hg levels during recent and historical time. Here we present a record of total Hg (HgT) in an ice core from the pristine summit plateau (5340 m asl) of Mount Logan, Yukon, Canada, representing atmospheric deposition from AD 1410 to 1998. The Colonial Period (∼1603-1850) and North American "Gold Rush" (1850-1900) represent minor fractions (8% and 14%, respectively) of total anthropogenic Hg deposition in the record, with the majority (78%) occurring during the 20th Century. A period of maximum HgT fluxes from 1940 to 1975 coincides with estimates of enhanced anthropogenic Hg emissions from commercial sources, as well as with industrial emissions of other toxic metals. Rapid declines in HgT fluxes following peaks during the Gold Rush and the mid-20th Century indicate that atmospheric Hg deposition responds quickly to reductions in emissions. Increasing HgT fluxes from 1993 until the youngest samples in 1998 may reflect the resurgence of Hg emissions from unregulated coal burning and small-scale gold mining.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    68
    citations68
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Feiyue Wang; Gary A. Stern; Gary A. Stern; Amanda Cole; +11 Authors

    Recent studies have shown that climate change is already having significant impacts on many aspects of transport pathways, speciation and cycling of mercury within Arctic ecosystems. For example, the extensive loss of sea-ice in the Arctic Ocean and the concurrent shift from greater proportions of perennial to annual types have been shown to promote changes in primary productivity, shift foodweb structures, alter mercury methylation and demethylation rates, and influence mercury distribution and transport across the ocean-sea-ice-atmosphere interface (bottom-up processes). In addition, changes in animal social behavior associated with changing sea-ice regimes can affect dietary exposure to mercury (top-down processes). In this review, we address these and other possible ramifications of climate variability on mercury cycling, processes and exposure by applying recent literature to the following nine questions; 1) What impact has climate change had on Arctic physical characteristics and processes? 2) How do rising temperatures affect atmospheric mercury chemistry? 3) Will a decrease in sea-ice coverage have an impact on the amount of atmospheric mercury deposited to or emitted from the Arctic Ocean, and if so, how? 4) Does climate affect air-surface mercury flux, and riverine mercury fluxes, in Arctic freshwater and terrestrial systems, and if so, how? 5) How does climate change affect mercury methylation/demethylation in different compartments in the Arctic Ocean and freshwater systems? 6) How will climate change alter the structure and dynamics of freshwater food webs, and thereby affect the bioaccumulation of mercury? 7) How will climate change alter the structure and dynamics of marine food webs, and thereby affect the bioaccumulation of marine mercury? 8) What are the likely mercury emissions from melting glaciers and thawing permafrost under climate change scenarios? and 9) What can be learned from current mass balance inventories of mercury in the Arctic? The review finishes with several conclusions and recommendations.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    The Science of The Total Environment
    Article . 2012 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    198
    citations198
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      The Science of The Total Environment
      Article . 2012 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Feiyue Wang; Gary A. Stern; Gary A. Stern; Amanda Cole; +11 Authors

    Recent studies have shown that climate change is already having significant impacts on many aspects of transport pathways, speciation and cycling of mercury within Arctic ecosystems. For example, the extensive loss of sea-ice in the Arctic Ocean and the concurrent shift from greater proportions of perennial to annual types have been shown to promote changes in primary productivity, shift foodweb structures, alter mercury methylation and demethylation rates, and influence mercury distribution and transport across the ocean-sea-ice-atmosphere interface (bottom-up processes). In addition, changes in animal social behavior associated with changing sea-ice regimes can affect dietary exposure to mercury (top-down processes). In this review, we address these and other possible ramifications of climate variability on mercury cycling, processes and exposure by applying recent literature to the following nine questions; 1) What impact has climate change had on Arctic physical characteristics and processes? 2) How do rising temperatures affect atmospheric mercury chemistry? 3) Will a decrease in sea-ice coverage have an impact on the amount of atmospheric mercury deposited to or emitted from the Arctic Ocean, and if so, how? 4) Does climate affect air-surface mercury flux, and riverine mercury fluxes, in Arctic freshwater and terrestrial systems, and if so, how? 5) How does climate change affect mercury methylation/demethylation in different compartments in the Arctic Ocean and freshwater systems? 6) How will climate change alter the structure and dynamics of freshwater food webs, and thereby affect the bioaccumulation of mercury? 7) How will climate change alter the structure and dynamics of marine food webs, and thereby affect the bioaccumulation of marine mercury? 8) What are the likely mercury emissions from melting glaciers and thawing permafrost under climate change scenarios? and 9) What can be learned from current mass balance inventories of mercury in the Arctic? The review finishes with several conclusions and recommendations.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    The Science of The Total Environment
    Article . 2012 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    198
    citations198
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      The Science of The Total Environment
      Article . 2012 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph