- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2023 SpainPublisher:Elsevier BV Fernando Pradanas-González; Riikka Peltomaa; Satu Lahtinen; Álvaro Luque-Uría; Vicente Más; Rodrigo Barderas; Chris M. Maragos; Ángeles Canales; Tero Soukka; Elena Benito-Peña; María C. Moreno-Bondi;Strains of Penicillium spp. are used for fungi-ripened cheeses and Aspergillus spp. routinely contaminate maize and other crops. Some of these strains can produce toxic secondary metabolites (mycotoxins), including the neurotoxin α-cyclopiazonic acid (CPA). In this work, we developed a homogeneous upconversion-resonance energy transfer (UC-RET) immunoassay for the detection of CPA using a novel epitope mimicking peptide, or mimotope, selected by phage display. CPA-specific antibody was used to isolate mimotopes from a cyclic 7-mer peptide library in consecutive selection rounds. Enrichment of antibody binding phages was achieved, and the analysis of individual phage clones revealed four different mimotope peptide sequences. The mimotope sequence, ACNWWDLTLC, performed best in phage-based immunoassays, surface plasmon resonance binding analyses, and UC-RET-based immunoassays. To develop a homogeneous assay, upconversion nanoparticles (UCNP, type NaYF4:Yb3+, Er3+) were used as energy donors and coated with streptavidin to anchor the synthetic biotinylated mimotope. Alexa Fluor 555, used as an energy acceptor, was conjugated to the anti-CPA antibody fragment. The homogeneous single-step immunoassay could detect CPA in just 5 min and enabled a limit of detection (LOD) of 30 pg mL-1 (1.5 μg kg-1) and an IC50 value of 0.36 ng mL-1. No significant cross-reactivity was observed with other co-produced mycotoxins. Finally, we applied the novel method for the detection of CPA in spiked maize samples using high-performance liquid chromatography coupled to a diode array detector (HPLC-DAD) as a reference method.
Biosensors and Bioel... arrow_drop_down Biosensors and BioelectronicsArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.bios.2023.115339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Biosensors and Bioel... arrow_drop_down Biosensors and BioelectronicsArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.bios.2023.115339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:American Chemical Society (ACS) Sami Blom; Terhi Riuttamäki; Leena Mattsson; Qi Wang; Krista Korpi; Riikka Arppe; Tero Soukka;doi: 10.1021/ac503691m
pmid: 25548870
Red blood cell folate is measured for folate deficiency diagnosis, because it reflects the long-term folate level in tissues, whereas serum folate only represents the dietary intake. Direct homogeneous assay from whole blood would be ideal but conventional fluorescence techniques in blood suffer from high background and strong absorption of light at ultraviolet and visible wavelengths. In this study, a new photon upconversion-based homogeneous assay for whole blood folate is introduced based on resonance energy transfer from upconverting nanophosphor donor coated with folate binding protein to a near-infrared fluorescent acceptor dye conjugated to folate analogue. The sensitized acceptor emission is measured at 740 nm upon 980 nm excitation. Thus, optically transparent wavelengths are utilized for both donor excitation and sensitized acceptor emission to minimize the sample absorption, and anti-Stokes detection completely eliminates the Stokes-shifted autofluorescence. The IC50 value of the assay was 6.0 nM and the limit of detection (LOD) was 1 nM. The measurable concentration range was 2 orders of magnitude between 1.0-100 nM, corresponding to 40-4000 nM folate in the whole blood sample. Recoveries of added folic acid were 112%-114%. A good correlation was found when compared to a competitive heterogeneous assay based on the DELFIA-technology. The introduced assay provides a simple and fast method for whole blood folate measurement.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ac503691m&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ac503691m&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Royal Society of Chemistry (RSC) Marja-Leena Järvenpää; Terhi Rantanen; Johanna Vuojola; Riikka Arppe; Katri Kuningas; Tero Soukka;doi: 10.1039/b901299k
pmid: 20448942
Upconverting phosphors (UCPs) are lanthanide-doped sub-micrometer-sized particles, which produce multiple narrow and well-separated anti-Stokes emission bands at visible wavelengths under infrared excitation (980 nm). The advantageous features of UCPs were utilized to construct a dual-parameter, homogeneous sandwich hybridization assay based on a UCP donor and lanthanide resonance energy transfer (LRET). UCPs with two emission bands (540 nm and 653 nm) were exploited together with two appropriate fluorophores as acceptors. The energy transfer excited emissions of the acceptors were measured at 600 nm and 740 nm without any significant interference from each other. The autofluorescence limitation associated with conventional fluorescence was totally avoided as the measurements were carried out at shorter wavelength relative to the excitation. In the sandwich hybridization assay two different single-stranded target-oligonucleotide sequences were detected simultaneously and quantitatively with a dynamic range from 0.03 to 0.4 pmol (corresponding 0.35-5.4 nM). The UCPs enable multiplexed homogeneous LRET-based assay requiring only a single excitation wavelength, which simplifies the detection and extends the applicability of upconversion in bioanalytical measurements.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/b901299k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu82 citations 82 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/b901299k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023 SpainPublisher:Elsevier BV Fernando Pradanas-González; Riikka Peltomaa; Satu Lahtinen; Álvaro Luque-Uría; Vicente Más; Rodrigo Barderas; Chris M. Maragos; Ángeles Canales; Tero Soukka; Elena Benito-Peña; María C. Moreno-Bondi;Strains of Penicillium spp. are used for fungi-ripened cheeses and Aspergillus spp. routinely contaminate maize and other crops. Some of these strains can produce toxic secondary metabolites (mycotoxins), including the neurotoxin α-cyclopiazonic acid (CPA). In this work, we developed a homogeneous upconversion-resonance energy transfer (UC-RET) immunoassay for the detection of CPA using a novel epitope mimicking peptide, or mimotope, selected by phage display. CPA-specific antibody was used to isolate mimotopes from a cyclic 7-mer peptide library in consecutive selection rounds. Enrichment of antibody binding phages was achieved, and the analysis of individual phage clones revealed four different mimotope peptide sequences. The mimotope sequence, ACNWWDLTLC, performed best in phage-based immunoassays, surface plasmon resonance binding analyses, and UC-RET-based immunoassays. To develop a homogeneous assay, upconversion nanoparticles (UCNP, type NaYF4:Yb3+, Er3+) were used as energy donors and coated with streptavidin to anchor the synthetic biotinylated mimotope. Alexa Fluor 555, used as an energy acceptor, was conjugated to the anti-CPA antibody fragment. The homogeneous single-step immunoassay could detect CPA in just 5 min and enabled a limit of detection (LOD) of 30 pg mL-1 (1.5 μg kg-1) and an IC50 value of 0.36 ng mL-1. No significant cross-reactivity was observed with other co-produced mycotoxins. Finally, we applied the novel method for the detection of CPA in spiked maize samples using high-performance liquid chromatography coupled to a diode array detector (HPLC-DAD) as a reference method.
Biosensors and Bioel... arrow_drop_down Biosensors and BioelectronicsArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.bios.2023.115339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Biosensors and Bioel... arrow_drop_down Biosensors and BioelectronicsArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.bios.2023.115339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:American Chemical Society (ACS) Sami Blom; Terhi Riuttamäki; Leena Mattsson; Qi Wang; Krista Korpi; Riikka Arppe; Tero Soukka;doi: 10.1021/ac503691m
pmid: 25548870
Red blood cell folate is measured for folate deficiency diagnosis, because it reflects the long-term folate level in tissues, whereas serum folate only represents the dietary intake. Direct homogeneous assay from whole blood would be ideal but conventional fluorescence techniques in blood suffer from high background and strong absorption of light at ultraviolet and visible wavelengths. In this study, a new photon upconversion-based homogeneous assay for whole blood folate is introduced based on resonance energy transfer from upconverting nanophosphor donor coated with folate binding protein to a near-infrared fluorescent acceptor dye conjugated to folate analogue. The sensitized acceptor emission is measured at 740 nm upon 980 nm excitation. Thus, optically transparent wavelengths are utilized for both donor excitation and sensitized acceptor emission to minimize the sample absorption, and anti-Stokes detection completely eliminates the Stokes-shifted autofluorescence. The IC50 value of the assay was 6.0 nM and the limit of detection (LOD) was 1 nM. The measurable concentration range was 2 orders of magnitude between 1.0-100 nM, corresponding to 40-4000 nM folate in the whole blood sample. Recoveries of added folic acid were 112%-114%. A good correlation was found when compared to a competitive heterogeneous assay based on the DELFIA-technology. The introduced assay provides a simple and fast method for whole blood folate measurement.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ac503691m&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ac503691m&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Royal Society of Chemistry (RSC) Marja-Leena Järvenpää; Terhi Rantanen; Johanna Vuojola; Riikka Arppe; Katri Kuningas; Tero Soukka;doi: 10.1039/b901299k
pmid: 20448942
Upconverting phosphors (UCPs) are lanthanide-doped sub-micrometer-sized particles, which produce multiple narrow and well-separated anti-Stokes emission bands at visible wavelengths under infrared excitation (980 nm). The advantageous features of UCPs were utilized to construct a dual-parameter, homogeneous sandwich hybridization assay based on a UCP donor and lanthanide resonance energy transfer (LRET). UCPs with two emission bands (540 nm and 653 nm) were exploited together with two appropriate fluorophores as acceptors. The energy transfer excited emissions of the acceptors were measured at 600 nm and 740 nm without any significant interference from each other. The autofluorescence limitation associated with conventional fluorescence was totally avoided as the measurements were carried out at shorter wavelength relative to the excitation. In the sandwich hybridization assay two different single-stranded target-oligonucleotide sequences were detected simultaneously and quantitatively with a dynamic range from 0.03 to 0.4 pmol (corresponding 0.35-5.4 nM). The UCPs enable multiplexed homogeneous LRET-based assay requiring only a single excitation wavelength, which simplifies the detection and extends the applicability of upconversion in bioanalytical measurements.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/b901299k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu82 citations 82 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/b901299k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu