- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2025 NetherlandsPublisher:Wiley Funded by:DFGDFGTing Tang; Bernhard Schmid; Meredith C. Schuman; Franca J. Bongers; Shan Li; Yu Liang; Sofia J. van Moorsel; Goddert von Oheimb; Walter Durka; Helge Bruelheide; Keping Ma; Xiaojuan Liu;doi: 10.1111/nph.70130
pmid: 40183224
Summary Afforestation projects using species mixtures are expected to better support ecosystem services than monoculture plantations. While grassland studies have shown natural selection favoring high‐performance genotypes in species‐rich communities, this has not been explored in forests. We used seed‐family identity (known maternity) to represent genetic identity and investigated how this affected the biomass accumulation (i.e. growth) of individual trees (n = 13 435) along a species richness gradient (1–16 species) and over stand age (9 yr) in a forest biodiversity experiment. We found that among the eight species tested, different seed families responded differently to species richness, some of them growing relatively better in low‐diversity plots and others in high‐diversity plots. Furthermore, within‐species growth variation increased with species richness and stand age, while between‐species variation decreased with stand age. These results indicate that seed families within species and their reaction norms along the species richness gradient vary considerably and thus can explain a substantial proportion of the overall variation in tree growth. Our findings suggest that the growth and associated ecosystem services of species‐rich mixtures in afforestation projects can be optimized by artificially selecting seed families with high mixture performance in biodiversity experiments.
Research@WUR arrow_drop_down New PhytologistArticle . 2025 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.70130&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Research@WUR arrow_drop_down New PhytologistArticle . 2025 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.70130&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Embargo end date: 01 May 2024 Netherlands, SwitzerlandPublisher:Wiley Yan, Haoru; Schmid, Bernhard; Xu, Wubing; Bongers, Franca J; Chen, Guoke; Tang, Ting; Wang, Zhiheng; Svenning, Jens‐Christian; Ma, Keping; Liu, Xiaojuan;pmid: 38698929
pmc: PMC11063782
AbstractPlot‐scale experiments indicate that functional diversity (FD) plays a pivotal role in sustaining ecosystem functions such as net primary productivity (NPP). However, the relationships between functional diversity and NPP across larger scale under varying climatic conditions are sparsely studied, despite its significance for understanding forest–atmosphere interactions and informing policy development. Hence, we examine the relationships of community‐weighted mean (CWM) and functional dispersion (FDis) of woody plant traits on NPP across China and if such relationships are modulated by climatic conditions at the national scale. Using comprehensive datasets of distribution, functional traits, and productivity for 9120 Chinese woody plant species, we evaluated the distribution pattern of community‐weighted mean and functional dispersion (including three orthogonal trait indicators: plant size, leaf morphology, and flower duration) and its relationships with NPP. Finally, we tested the effects of climatic conditions on community‐weighted mean/functional dispersion–NPP relationships. We first found overall functional diversity–NPP relationships, but also that the magnitude of these relationships was sensitive to climate, with plant size community‐weighted mean promoting NPP in warm regions and plant size functional dispersion promoting NPP in wet regions. Second, warm and wet conditions indirectly increased NPP by its positive effects on community‐weighted mean or functional dispersion, particularly through mean plant size and leaf morphology. Our study provides comprehensive evidence for the relationships between functional diversity and NPP under varying climates at a large scale. Importantly, our results indicate a broadening significance of multidimensional plant functional traits for woody vegetation NPP in response to rising temperatures and wetter climates. Restoration, reforestation actions and natural capital accounting need to carefully consider not only community‐weighted mean and functional dispersion but also their interactions with climate, to predict how functional diversity may promote ecosystem functioning under future climatic conditions.
Ecology and Evolutio... arrow_drop_down Wageningen Staff PublicationsArticle . 2024License: CC BYData sources: Wageningen Staff PublicationsZurich Open Repository and ArchiveArticle . 2024License: CC BYData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ece3.11364&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Ecology and Evolutio... arrow_drop_down Wageningen Staff PublicationsArticle . 2024License: CC BYData sources: Wageningen Staff PublicationsZurich Open Repository and ArchiveArticle . 2024License: CC BYData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ece3.11364&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2025 NetherlandsPublisher:Wiley Funded by:DFGDFGTing Tang; Bernhard Schmid; Meredith C. Schuman; Franca J. Bongers; Shan Li; Yu Liang; Sofia J. van Moorsel; Goddert von Oheimb; Walter Durka; Helge Bruelheide; Keping Ma; Xiaojuan Liu;doi: 10.1111/nph.70130
pmid: 40183224
Summary Afforestation projects using species mixtures are expected to better support ecosystem services than monoculture plantations. While grassland studies have shown natural selection favoring high‐performance genotypes in species‐rich communities, this has not been explored in forests. We used seed‐family identity (known maternity) to represent genetic identity and investigated how this affected the biomass accumulation (i.e. growth) of individual trees (n = 13 435) along a species richness gradient (1–16 species) and over stand age (9 yr) in a forest biodiversity experiment. We found that among the eight species tested, different seed families responded differently to species richness, some of them growing relatively better in low‐diversity plots and others in high‐diversity plots. Furthermore, within‐species growth variation increased with species richness and stand age, while between‐species variation decreased with stand age. These results indicate that seed families within species and their reaction norms along the species richness gradient vary considerably and thus can explain a substantial proportion of the overall variation in tree growth. Our findings suggest that the growth and associated ecosystem services of species‐rich mixtures in afforestation projects can be optimized by artificially selecting seed families with high mixture performance in biodiversity experiments.
Research@WUR arrow_drop_down New PhytologistArticle . 2025 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.70130&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Research@WUR arrow_drop_down New PhytologistArticle . 2025 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.70130&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Embargo end date: 01 May 2024 Netherlands, SwitzerlandPublisher:Wiley Yan, Haoru; Schmid, Bernhard; Xu, Wubing; Bongers, Franca J; Chen, Guoke; Tang, Ting; Wang, Zhiheng; Svenning, Jens‐Christian; Ma, Keping; Liu, Xiaojuan;pmid: 38698929
pmc: PMC11063782
AbstractPlot‐scale experiments indicate that functional diversity (FD) plays a pivotal role in sustaining ecosystem functions such as net primary productivity (NPP). However, the relationships between functional diversity and NPP across larger scale under varying climatic conditions are sparsely studied, despite its significance for understanding forest–atmosphere interactions and informing policy development. Hence, we examine the relationships of community‐weighted mean (CWM) and functional dispersion (FDis) of woody plant traits on NPP across China and if such relationships are modulated by climatic conditions at the national scale. Using comprehensive datasets of distribution, functional traits, and productivity for 9120 Chinese woody plant species, we evaluated the distribution pattern of community‐weighted mean and functional dispersion (including three orthogonal trait indicators: plant size, leaf morphology, and flower duration) and its relationships with NPP. Finally, we tested the effects of climatic conditions on community‐weighted mean/functional dispersion–NPP relationships. We first found overall functional diversity–NPP relationships, but also that the magnitude of these relationships was sensitive to climate, with plant size community‐weighted mean promoting NPP in warm regions and plant size functional dispersion promoting NPP in wet regions. Second, warm and wet conditions indirectly increased NPP by its positive effects on community‐weighted mean or functional dispersion, particularly through mean plant size and leaf morphology. Our study provides comprehensive evidence for the relationships between functional diversity and NPP under varying climates at a large scale. Importantly, our results indicate a broadening significance of multidimensional plant functional traits for woody vegetation NPP in response to rising temperatures and wetter climates. Restoration, reforestation actions and natural capital accounting need to carefully consider not only community‐weighted mean and functional dispersion but also their interactions with climate, to predict how functional diversity may promote ecosystem functioning under future climatic conditions.
Ecology and Evolutio... arrow_drop_down Wageningen Staff PublicationsArticle . 2024License: CC BYData sources: Wageningen Staff PublicationsZurich Open Repository and ArchiveArticle . 2024License: CC BYData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ece3.11364&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Ecology and Evolutio... arrow_drop_down Wageningen Staff PublicationsArticle . 2024License: CC BYData sources: Wageningen Staff PublicationsZurich Open Repository and ArchiveArticle . 2024License: CC BYData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ece3.11364&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu