- home
- Advanced Search
- Energy Research
- Closed Access
- Energy Research
- Closed Access
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Zheng Hu; Jiahai Yuan;Abstract For decades, China has long been striving for localized auto industry. Taking the opportunity of industrial transformation, China not only aims to overtake the mass auto industry, but also to shift into fast lane in developing indigenous premium 1 new energy vehicles (NEV). Premium auto industry represents the peak of market & technical trends. To spur China’s premium NEV development, it is essential to evaluate the platform of enabling premium NEV development in China by studying German premium NEV activities in this market. This paper reviews China’s NEV market and German premium automakers via a hexagonal framework: policy, market, technologies, charging, electricity efficiencies comparison and a case study of premium NEV activity heat map in Beijing. German NEV automakers are less active based on disadvantages over policy-supported Chinese players. In order to encourage market oriented NEV industrial development, ‘policy and market integration’ is essential: subsidy policies should be in place to promote technical innovations, while market should be more inclusive for foreign players to enable healthy market competitions.
Transportation Resea... arrow_drop_down Transportation Research Part A Policy and PracticeArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tra.2018.10.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Transportation Resea... arrow_drop_down Transportation Research Part A Policy and PracticeArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tra.2018.10.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Jiahai Yuan; Xinying Li; Chuanbo Xu; Changhong Zhao; Yuanxin Liu;Abstract Coal is an irreplaceable part of the world energy structure and the condition will not be changed in the near future. Under the Belt and Road initiative, more and more Chinese energy enterprises are planning to invest in coal-fired power plant (CFPP) abroad. However, there are multiple potential risks in investing in CFPP overseas. So, assessing the risk level can help the investors avoid too risky countries and at the same time facilitate the government to take measures to reduce the potential risks to attract more investors. To reasonably assess overseas investment risk of CFPP in countries along the Belt and Road initiative, this paper establishes an evaluation criteria system from eight dimensions which consists of a total of 39 criteria. Then, these criteria weights are determined through a combined analytic network process-Entropy method. Furthermore, considering the psychological characteristics of decision-makers, a TODIM (an acronym in Portuguese for Interactive Multi-criteria Decision Making) approach is used to rank the overall risk level of CFPP investment for 23 nations. The findings indicate that the criterion of economic foundation owns the largest weight. Moreover, among these evaluated nations, Singapore have the lowest risk for China’s CFPP investment, followed by New Zealand and Thailand.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.04.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 122 citations 122 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.04.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors: Jiahai Yuan; Zheng Hu; Zhaoguang Hu;Abstract Emissions mitigation is a major challenge for China's sustainable development. We summarize China's successful experiences on energy efficiency in past 30 years as the contributions of Energy Usage Management and Integrated Resource Strategic Planning, which are essential for low-carbon economy. In an Economy–Energy–Electricity–Environment (E4) framework, the paper studies the low-carbon development of China and gives an outlook of China's economy growth, energy–electricity demand, renewable power generation and energy conservation and emissions mitigation until 2030. A business-as-usual scenario is projected as baseline for comparison while low carbon energy and electricity development path is studied. It is defined as low carbon energy/electricity when an economy body manages to realize its potential economic growth fueled by less energy/electricity consumption, which can be characterized by indexes of energy/electricity intensity and emissions per-unit of energy consumption (electricity generation). Results show that, with EUM, China, could save energy by 4.38 billion ton oil equivalences (toes) and reduce CO2 emission by 16.55 billion tons; with IRSP, China, could save energy by 1.5 Btoes and reduce CO2 emission by 5.7 Btons, during 2010–2030. To realize the massive potential, China has to reshape its economic structure and rely much on technology innovation in the future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2011.02.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 74 citations 74 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2011.02.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Wiley Authors: Haonan Zhang; Xingping Zhang; Jiahai Yuan;doi: 10.1002/wene.386
AbstractChina's coal‐fired power industry is undergoing a fundamental transformation. From a historical perspective, we conducted a comprehensive assessment of the coal power sector in China, to understand the cause of the transition and where its future lies. Through the interactions among landscape, regime and niches, China's coal‐fired power industry has developed cleaner and more efficient, which positively mitigated the local pollution. Yet the decarbonization in the power sector is unsatisfactory. Due to its dominating role and nature of high‐carbon emitting, the coal power sector has always been a big challenge during China's climate actions. Although the goal of peaking carbon emissions by 2030 demonstrates China's ambitions, expanding coal‐fired power generation capacity hinders climate change mitigation and low‐carbon transition. In this regard, we discuss the guidelines for the future high‐quality coal‐fired power development to provide recommendations for policy‐makers and industry stakeholders. China's coal power sector should commit to the vision of deep decarbonization by 2050.This article is categorized under: Energy and Climate > Economics and Policy Fossil Fuels > Climate and Environment Energy Policy and Planning > Climate and Environment
Wiley Interdisciplin... arrow_drop_down Wiley Interdisciplinary Reviews Energy and EnvironmentArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefWiley Interdisciplinary Reviews Energy and EnvironmentJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/wene.386&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Wiley Interdisciplin... arrow_drop_down Wiley Interdisciplinary Reviews Energy and EnvironmentArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefWiley Interdisciplinary Reviews Energy and EnvironmentJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/wene.386&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Qilin Liu; Qi Lei; Jiahai Yuan; Huiming Xu;The Chinese Government just released its Energy Revolution Strategy (2016–2030) as an official policy response to President Xi Jinping’s urge. Withdraw of the US from Paris Climate Agreement has turned the global focus on if China can comply with its climate change commitments. The purpose of this paper is to conduct a comprehensive assessment on this utterly important question. We find that the 2030 Strategy is consistent with the GDP CO2 intensity target but cannot deliver CO2 peak earlier than 2030. We also explore the possibility for China to realize leapfrog in energy efficiency and contribute more to global society in CO2 emissions abatement. Given China’s economic restructuring potential, continuous efforts in energy efficiency could lead to much lower primary energy demand than the Strategy proposed and thus peak energy-related CO2 emissions around 2020. It can also make China a new champion in the world with highest energy efficiency level at comparable income level during the economic development process. A much lower primary energy demand can also facilitate China’s non-fossil primary energy share target and the low-carbon power system transition.
Resources Conservati... arrow_drop_down Resources Conservation and RecyclingArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.resconrec.2017.09.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 123 citations 123 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Resources Conservati... arrow_drop_down Resources Conservation and RecyclingArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.resconrec.2017.09.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Chunning Na; Chunning Na; Qi Lei; Jingsheng Guo; Zheng Hu; Minpeng Xiong; Jiahai Yuan;Abstract Coal holds dominant position in China’s primary energy mix, and roughly 45% of China’s coal consumption is used for power generation. In this paper, we study the prospective of coal used for power generation in China into 2030 by testing three interrelated factors, namely electricity demand, fuel mix and generation efficiency of coal power. We find that, under the ‘new economic normal’, electricity demand growth would slow down; under the effort of low-carbon transition, coal power is expected to reach the peak at around 970 GW by 2020; and coal used for power generation will reach the peak at around 1280 million ton coal equivalent (Mtce) under the clean coal power plan declared by the Chinese government.
Resources Conservati... arrow_drop_down Resources Conservation and RecyclingArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.resconrec.2016.03.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 157 citations 157 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Resources Conservati... arrow_drop_down Resources Conservation and RecyclingArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.resconrec.2016.03.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Jingsheng Guo; Zheng Hu; Changhong Zhao; Minpeng Xiong; Yan Xu; Jiahai Yuan;Abstract China is in the processes of rapid industrialization and urbanization. Based on the Kaya identity, this paper proposes an analytical framework for various energy scenarios that explicitly simulates China׳s economic development, with a prospective consideration on the impacts of urbanization and income distribution. With the framework, China׳s 2050 energy consumption and associated CO2 reduction scenarios are constructed. Main findings are: (1) energy consumption will peak at 5200–5400 million tons coal equivalent (Mtce) in 2035–2040; (2) CO2 emissions will peak at 9200–9400 million tons (Mt) in 2030–2035, whilst it can be potentially reduced by 200–300 Mt; (3) China׳s per capita energy consumption and per capita CO2 emission are projected to peak at 4 tce and 6.8 t respectively in 2020–2030, soon after China steps into the high income group.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2014.01.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 180 citations 180 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2014.01.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Springer Science and Business Media LLC Authors: Yueming Lucy Qiu; Yi David Wang; Jiahai Yuan;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-021-00976-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-021-00976-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Yan Xu; Jiahai Yuan; Zhaoguang Hu;Abstract This paper studies the transition to low carbon power systems in China. The methodology is built on the newly developed multi-level perspective (MLP) transitions, as well as literature on innovation systems. Three lines of thought on the transition process are integrated to probe the possible transition pathways in China's power sector. Five transition pathways, namely reproduction, transformation, substitution, reconfiguration, de-alignment/re-alignment and reconfiguration, with their possible technology options are presented. The requirements for a smart grid in the socio-technical transition process are addressed within the MLP framework. The paper goes further to propose an interactive framework for low carbon transition management in China. Representative technology options are appraised by employing innovation theory to demonstrate the logic of policy design within the framework. The work presented in this paper will be useful in informing policy-makers and other stakeholders in China and it may prove to be a valuable reference for other countries in energy transition management.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2012.08.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2012.08.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007Publisher:Elsevier BV Authors: Zhaoguang Hu; Changhong Zhao; Jiahai Yuan; Shunkun Yu;Abstract This paper applies the cointegration theory to examine the causal relationship between electricity consumption and real GDP (Gross Demostic Product) for China during 1978–2004. Our estimation results indicate that real GDP and electricity consumption for China are cointegrated and there is only unidirectional Granger causality running from electricity consumption to real GDP but not the vice versa. Then Hodrick–Prescott (HP) filter is applied to decompose the trend and fluctuation component of the GDP and electricity consumption series. The estimation results indicate that there is cointegration between not only the trend components, but also the cyclical components of the two series, which implies that, the Granger causality is probably related with the business cycle. The estimation results are of policy implication to the development of electric sector in China.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2006.09.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 330 citations 330 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2006.09.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Zheng Hu; Jiahai Yuan;Abstract For decades, China has long been striving for localized auto industry. Taking the opportunity of industrial transformation, China not only aims to overtake the mass auto industry, but also to shift into fast lane in developing indigenous premium 1 new energy vehicles (NEV). Premium auto industry represents the peak of market & technical trends. To spur China’s premium NEV development, it is essential to evaluate the platform of enabling premium NEV development in China by studying German premium NEV activities in this market. This paper reviews China’s NEV market and German premium automakers via a hexagonal framework: policy, market, technologies, charging, electricity efficiencies comparison and a case study of premium NEV activity heat map in Beijing. German NEV automakers are less active based on disadvantages over policy-supported Chinese players. In order to encourage market oriented NEV industrial development, ‘policy and market integration’ is essential: subsidy policies should be in place to promote technical innovations, while market should be more inclusive for foreign players to enable healthy market competitions.
Transportation Resea... arrow_drop_down Transportation Research Part A Policy and PracticeArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tra.2018.10.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Transportation Resea... arrow_drop_down Transportation Research Part A Policy and PracticeArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tra.2018.10.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Jiahai Yuan; Xinying Li; Chuanbo Xu; Changhong Zhao; Yuanxin Liu;Abstract Coal is an irreplaceable part of the world energy structure and the condition will not be changed in the near future. Under the Belt and Road initiative, more and more Chinese energy enterprises are planning to invest in coal-fired power plant (CFPP) abroad. However, there are multiple potential risks in investing in CFPP overseas. So, assessing the risk level can help the investors avoid too risky countries and at the same time facilitate the government to take measures to reduce the potential risks to attract more investors. To reasonably assess overseas investment risk of CFPP in countries along the Belt and Road initiative, this paper establishes an evaluation criteria system from eight dimensions which consists of a total of 39 criteria. Then, these criteria weights are determined through a combined analytic network process-Entropy method. Furthermore, considering the psychological characteristics of decision-makers, a TODIM (an acronym in Portuguese for Interactive Multi-criteria Decision Making) approach is used to rank the overall risk level of CFPP investment for 23 nations. The findings indicate that the criterion of economic foundation owns the largest weight. Moreover, among these evaluated nations, Singapore have the lowest risk for China’s CFPP investment, followed by New Zealand and Thailand.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.04.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 122 citations 122 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.04.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors: Jiahai Yuan; Zheng Hu; Zhaoguang Hu;Abstract Emissions mitigation is a major challenge for China's sustainable development. We summarize China's successful experiences on energy efficiency in past 30 years as the contributions of Energy Usage Management and Integrated Resource Strategic Planning, which are essential for low-carbon economy. In an Economy–Energy–Electricity–Environment (E4) framework, the paper studies the low-carbon development of China and gives an outlook of China's economy growth, energy–electricity demand, renewable power generation and energy conservation and emissions mitigation until 2030. A business-as-usual scenario is projected as baseline for comparison while low carbon energy and electricity development path is studied. It is defined as low carbon energy/electricity when an economy body manages to realize its potential economic growth fueled by less energy/electricity consumption, which can be characterized by indexes of energy/electricity intensity and emissions per-unit of energy consumption (electricity generation). Results show that, with EUM, China, could save energy by 4.38 billion ton oil equivalences (toes) and reduce CO2 emission by 16.55 billion tons; with IRSP, China, could save energy by 1.5 Btoes and reduce CO2 emission by 5.7 Btons, during 2010–2030. To realize the massive potential, China has to reshape its economic structure and rely much on technology innovation in the future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2011.02.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 74 citations 74 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2011.02.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Wiley Authors: Haonan Zhang; Xingping Zhang; Jiahai Yuan;doi: 10.1002/wene.386
AbstractChina's coal‐fired power industry is undergoing a fundamental transformation. From a historical perspective, we conducted a comprehensive assessment of the coal power sector in China, to understand the cause of the transition and where its future lies. Through the interactions among landscape, regime and niches, China's coal‐fired power industry has developed cleaner and more efficient, which positively mitigated the local pollution. Yet the decarbonization in the power sector is unsatisfactory. Due to its dominating role and nature of high‐carbon emitting, the coal power sector has always been a big challenge during China's climate actions. Although the goal of peaking carbon emissions by 2030 demonstrates China's ambitions, expanding coal‐fired power generation capacity hinders climate change mitigation and low‐carbon transition. In this regard, we discuss the guidelines for the future high‐quality coal‐fired power development to provide recommendations for policy‐makers and industry stakeholders. China's coal power sector should commit to the vision of deep decarbonization by 2050.This article is categorized under: Energy and Climate > Economics and Policy Fossil Fuels > Climate and Environment Energy Policy and Planning > Climate and Environment
Wiley Interdisciplin... arrow_drop_down Wiley Interdisciplinary Reviews Energy and EnvironmentArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefWiley Interdisciplinary Reviews Energy and EnvironmentJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/wene.386&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Wiley Interdisciplin... arrow_drop_down Wiley Interdisciplinary Reviews Energy and EnvironmentArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefWiley Interdisciplinary Reviews Energy and EnvironmentJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/wene.386&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Qilin Liu; Qi Lei; Jiahai Yuan; Huiming Xu;The Chinese Government just released its Energy Revolution Strategy (2016–2030) as an official policy response to President Xi Jinping’s urge. Withdraw of the US from Paris Climate Agreement has turned the global focus on if China can comply with its climate change commitments. The purpose of this paper is to conduct a comprehensive assessment on this utterly important question. We find that the 2030 Strategy is consistent with the GDP CO2 intensity target but cannot deliver CO2 peak earlier than 2030. We also explore the possibility for China to realize leapfrog in energy efficiency and contribute more to global society in CO2 emissions abatement. Given China’s economic restructuring potential, continuous efforts in energy efficiency could lead to much lower primary energy demand than the Strategy proposed and thus peak energy-related CO2 emissions around 2020. It can also make China a new champion in the world with highest energy efficiency level at comparable income level during the economic development process. A much lower primary energy demand can also facilitate China’s non-fossil primary energy share target and the low-carbon power system transition.
Resources Conservati... arrow_drop_down Resources Conservation and RecyclingArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.resconrec.2017.09.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 123 citations 123 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Resources Conservati... arrow_drop_down Resources Conservation and RecyclingArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.resconrec.2017.09.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Chunning Na; Chunning Na; Qi Lei; Jingsheng Guo; Zheng Hu; Minpeng Xiong; Jiahai Yuan;Abstract Coal holds dominant position in China’s primary energy mix, and roughly 45% of China’s coal consumption is used for power generation. In this paper, we study the prospective of coal used for power generation in China into 2030 by testing three interrelated factors, namely electricity demand, fuel mix and generation efficiency of coal power. We find that, under the ‘new economic normal’, electricity demand growth would slow down; under the effort of low-carbon transition, coal power is expected to reach the peak at around 970 GW by 2020; and coal used for power generation will reach the peak at around 1280 million ton coal equivalent (Mtce) under the clean coal power plan declared by the Chinese government.
Resources Conservati... arrow_drop_down Resources Conservation and RecyclingArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.resconrec.2016.03.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 157 citations 157 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Resources Conservati... arrow_drop_down Resources Conservation and RecyclingArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.resconrec.2016.03.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Jingsheng Guo; Zheng Hu; Changhong Zhao; Minpeng Xiong; Yan Xu; Jiahai Yuan;Abstract China is in the processes of rapid industrialization and urbanization. Based on the Kaya identity, this paper proposes an analytical framework for various energy scenarios that explicitly simulates China׳s economic development, with a prospective consideration on the impacts of urbanization and income distribution. With the framework, China׳s 2050 energy consumption and associated CO2 reduction scenarios are constructed. Main findings are: (1) energy consumption will peak at 5200–5400 million tons coal equivalent (Mtce) in 2035–2040; (2) CO2 emissions will peak at 9200–9400 million tons (Mt) in 2030–2035, whilst it can be potentially reduced by 200–300 Mt; (3) China׳s per capita energy consumption and per capita CO2 emission are projected to peak at 4 tce and 6.8 t respectively in 2020–2030, soon after China steps into the high income group.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2014.01.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 180 citations 180 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2014.01.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Springer Science and Business Media LLC Authors: Yueming Lucy Qiu; Yi David Wang; Jiahai Yuan;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-021-00976-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-021-00976-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Yan Xu; Jiahai Yuan; Zhaoguang Hu;Abstract This paper studies the transition to low carbon power systems in China. The methodology is built on the newly developed multi-level perspective (MLP) transitions, as well as literature on innovation systems. Three lines of thought on the transition process are integrated to probe the possible transition pathways in China's power sector. Five transition pathways, namely reproduction, transformation, substitution, reconfiguration, de-alignment/re-alignment and reconfiguration, with their possible technology options are presented. The requirements for a smart grid in the socio-technical transition process are addressed within the MLP framework. The paper goes further to propose an interactive framework for low carbon transition management in China. Representative technology options are appraised by employing innovation theory to demonstrate the logic of policy design within the framework. The work presented in this paper will be useful in informing policy-makers and other stakeholders in China and it may prove to be a valuable reference for other countries in energy transition management.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2012.08.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2012.08.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007Publisher:Elsevier BV Authors: Zhaoguang Hu; Changhong Zhao; Jiahai Yuan; Shunkun Yu;Abstract This paper applies the cointegration theory to examine the causal relationship between electricity consumption and real GDP (Gross Demostic Product) for China during 1978–2004. Our estimation results indicate that real GDP and electricity consumption for China are cointegrated and there is only unidirectional Granger causality running from electricity consumption to real GDP but not the vice versa. Then Hodrick–Prescott (HP) filter is applied to decompose the trend and fluctuation component of the GDP and electricity consumption series. The estimation results indicate that there is cointegration between not only the trend components, but also the cyclical components of the two series, which implies that, the Granger causality is probably related with the business cycle. The estimation results are of policy implication to the development of electric sector in China.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2006.09.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 330 citations 330 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2006.09.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu