- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 FrancePublisher:Springer Science and Business Media LLC Catherine Hénault; Hocine Bourennane; Adeline Ayzac; Céline Ratié; Nicolas Saby; Jean‐Pierre Cohan; Thomas Eglin; Cécile Le Gall;pmid: 31882900
pmc: PMC6934481
AbstractWhile concerns about human-induced effects on the Earth’s climate have mainly concentrated on carbon dioxide (CO2) and methane (CH4), reducing anthropogenic nitrous oxide (N2O) flux, mainly of agricultural origin, also represents an opportunity for substantial mitigation. To develop a solution that induces neither the transfer of nitrogen pollution nor decreases agricultural production, we specifically investigated the last step of the denitrification pathway, the N2O reduction path, in soils. We first observed that this path is mainly driven by soil pH and is progressively inhibited when pH is lower than 6.8. During field experiments, we observed that liming acidic soils to neutrality made N2O reduction more efficient and decreased soil N2O emissions. As we estimated acidic fertilized soils to represent 37% [27–50%] of French soils, we calculated that liming could potentially decrease France’s total N2O emissions by 15.7% [8.3–21.2%]. Nevertheless, due to the different possible other impacts of liming, we currently recommend that the deployment of this solution to mitigate N2O emission should be based on local studies that take into account agronomic, environmental and economic aspects.
Hyper Article en Lig... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)HAL - Université de Bourgogne (HAL-uB)Other literature type . 2019Data sources: HAL - Université de Bourgogne (HAL-uB)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-019-56694-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 88 citations 88 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)HAL - Université de Bourgogne (HAL-uB)Other literature type . 2019Data sources: HAL - Université de Bourgogne (HAL-uB)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-019-56694-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2012 FrancePublisher:Elsevier BV Bruno Mary; Catherine Hénault; Catherine Hénault; Magali Roussel; Joël Léonard; A. Grossel;Abstract This short review deals with soils as an important source of the greenhouse gas N2O. The production and consumption of N2O in soils mainly involve biotic processes: the anaerobic process of denitrification and the aerobic process of nitrification. The factors that significantly influence agricultural N2O emissions mainly concern the agricultural practices (N application rate, crop type, fertilizer type) and soil conditions (soil moisture, soil organic C content, soil pH and texture). Large variability of N2O fluxes is known to occur both at different spatial and temporal scales. Currently new techniques could help to improve the capture of the spatial variability. Continuous measurement systems with automatic chambers could also help to capture temporal variability and consequently to improve quantification of N2O emissions by soils. Some attempts for mitigating soil N2O emissions, either by modifying agricultural practices or by managing soil microbial functioning taking into account the origin of the soil N2O emission variability, are reviewed.
Hyper Article en Lig... arrow_drop_down HAL - Université de Bourgogne (HAL-uB)Other literature type . 2012Data sources: HAL - Université de Bourgogne (HAL-uB)Institut National de la Recherche Agronomique: ProdINRAArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s1002-0160(12)60029-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu147 citations 147 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down HAL - Université de Bourgogne (HAL-uB)Other literature type . 2012Data sources: HAL - Université de Bourgogne (HAL-uB)Institut National de la Recherche Agronomique: ProdINRAArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s1002-0160(12)60029-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2013 FrancePublisher:Springer Science and Business Media LLC Vermue, A.; Philippot, L.; Munier-Jolain, N.; Hénault, C.; Nicolardot, Bernard;Integrated weed management, which allows reducing the reliance of cropping systems on herbicides, is based on the use of specific combinations of innovative agricultural practices. However the impact of the introduction of these practices in cropping systems may influence soil functioning such as biogeochemical cycling. Here, we investigated N2O emissions and the abundances of N-cycling microorganisms in 11-year old cropping systems (i.e. conventional reference and integrated weed management) in order to estimate the environmental side-effects of long-term integrated weed management. N2O emissions were continuously measured using automated chambers coupled with infrared analysers. Abundances of ammonia oxidizers and denitrifiers together with total bacteria and archaea were determined monthly from 0 to 10 and 10–30 cm soil layer samples by quantitative Polymerase Chain Reaction (qPCR). The relationship between N2O emissions and microbial abundances during the study were investigated as were their relationships with soil physicochemical parameters and climatic conditions. Over 7 months, the system with integrated weed management emitted significantly more N2O with cumulated measured emissions of 240 and 544 g N-N2O ha−1 for conventional and integrated systems, respectively. Abundances of microbial guilds varied slightly between systems, although ammonia-oxidizing bacteria were more abundant in the reference system (1.7 106 gene copies g−1 dry weight soil) compared to the integrated system (1.0 106 gene copies g−1 dry weight soil). These differences revealed both the long-term modification of soil biogeochemical background and the functioning of microbial processes due to 11 years of alternative field management, and the short-term impacts of the agricultural practices introduced as part of weed management during the cropping year. The abundances of the different microbial communities involved in N cycling and the intensity of N2O emissions were not related, punctual high N2O emissions being more dependent on favourable soil conditions for nitrifying and denitrifying activities. Future studies will be performed to check these findings for other pedoclimatic conditions and to examine the impact of such cropping systems.
Hyper Article en Lig... arrow_drop_down HAL - Université de Bourgogne (HAL-uB)Other literature type . 2013Data sources: HAL - Université de Bourgogne (HAL-uB)Institut National de la Recherche Agronomique: ProdINRAArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11104-013-1821-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down HAL - Université de Bourgogne (HAL-uB)Other literature type . 2013Data sources: HAL - Université de Bourgogne (HAL-uB)Institut National de la Recherche Agronomique: ProdINRAArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11104-013-1821-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Review , Other literature type 2020 United Kingdom, FrancePublisher:Wiley Guenet, Bertrand; Gabrielle, Benoit; Chenu, Claire; Arrouays, Dominique; Balesdent, Jérôme; Bernoux, Martial; Bruni, Elisa; Caliman, Jean-Pierre; Cardinael, Rémi; Chen, Songchao; Ciais, Philippe; Desbois, Dominique; Fouché, Julien; Frank, Stefan; Henault, Catherine; Lugato, Emanuele; Naipal, Victoria; Nesme, Thomas; Obersteiner, Michael; Pellerin, Sylvain; Powlson, David; Rasse, Daniel; Rees, Frédéric; Soussana, Jean-François; Su, Yang; Tian, Hanqin; Valin, Hugo; Zhou, Feng;doi: 10.1111/gcb.15342
pmid: 32894815
AbstractTo respect the Paris agreement targeting a limitation of global warming below 2°C by 2100, and possibly below 1.5°C, drastic reductions of greenhouse gas emissions are mandatory but not sufficient. Large‐scale deployment of other climate mitigation strategies is also necessary. Among these, increasing soil organic carbon (SOC) stocks is an important lever because carbon in soils can be stored for long periods and land management options to achieve this already exist and have been widely tested. However, agricultural soils are also an important source of nitrous oxide (N2O), a powerful greenhouse gas, and increasing SOC may influence N2O emissions, likely causing an increase in many cases, thus tending to offset the climate change benefit from increased SOC storage. Here we review the main agricultural management options for increasing SOC stocks. We evaluate the amount of SOC that can be stored as well as resulting changes in N2O emissions to better estimate the climate benefits of these management options. Based on quantitative data obtained from published meta‐analyses and from our current level of understanding, we conclude that the climate mitigation induced by increased SOC storage is generally overestimated if associated N2O emissions are not considered but, with the exception of reduced tillage, is never fully offset. Some options (e.g. biochar or non‐pyrogenic C amendment application) may even decrease N2O emissions.
HAL-IRD arrow_drop_down Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefHAL - Université de Bourgogne (HAL-uB)Other literature type . 2021Data sources: HAL - Université de Bourgogne (HAL-uB)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15342&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 261 citations 261 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert HAL-IRD arrow_drop_down Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefHAL - Université de Bourgogne (HAL-uB)Other literature type . 2021Data sources: HAL - Université de Bourgogne (HAL-uB)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15342&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Conference object 2022 FranceRouch,, Laly; Follain, Stéphane; Pimet, Eric; Florian, Bizouard,; Hénault, Catherine; Blouin, Manuel;Despite the possible mitigation of carbon emissions by favoring carbon transfer to terrestrial carbon sinks, little is knownabout the capacity of different crop genotypes to enhance soil carbon sequestration. We hypothesize that carbon sequestrationpotential linked to old wheat varieties (released before 1960) is higher than the one linked to modern ones while old varietiesare known to develop bigger and deeper root systems. Moreover, modern varieties are often cultivated using syntheticchemical inputs known to modify soil carbon dynamics. We conducted a field experiment by cultivating four modern andfour old wheat varieties, with and without chemical inputs (nitrogen, herbicide and fungicide), in Calcaric Cambisolconditions. After root and soil sampling, root morphology was assessed by image analysis, whereas potential catabolicactivities by soil microbial communities was assessed by MicroResp ™ measurements. Additionally, CO2 emissionsmeasurements were done by incubating soil and roots from each agronomic modality. Results suggest that the genotype (oldversus modern varieties) did not affect root traits nor substrates respiration, but the soil from old variety modalities released6% more CO2 than the one from modern ones. Application of inputs did not affect root traits, but increased soil microbialrespiration by 11%. Inputs also increased the respiration of citric acid by 19.1%, while it decreased respiration of fructose andalanine by 8.84% and 16.79%, respectively. Taken together, our results invalidate the hypothesis that old varieties could bemore performant than modern ones in storing carbon in this specific soil.
HAL INRAE arrow_drop_down HAL - Université de Bourgogne (HAL-uB)Other literature type . 2022Data sources: HAL - Université de Bourgogne (HAL-uB)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::e02eeb869265c1e26b0a88a0d00da704&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert HAL INRAE arrow_drop_down HAL - Université de Bourgogne (HAL-uB)Other literature type . 2022Data sources: HAL - Université de Bourgogne (HAL-uB)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::e02eeb869265c1e26b0a88a0d00da704&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 FrancePublisher:EDP Sciences Viard, Amélie; Hénault, Catherine; Rochette, Philippe; Kuikman, Peter; Flénet, Francis; Cellier, Pierre;Nitrous oxide (N2O) is a greenhouse gas that mainly originates from soils and agricultural activities. International initiatives require that countries calculate national inventories of their N2O emissions from agricultural soils. Several methodologies can be applied: (i) Tier I Intergovernmental Panel on Climate Change (IPCC) default approach that only takes into account nitrogen (N) input, (ii) Country-specific methodologies (Tier II and Tier III) that account for regional climatic and land use impacts on N2O emission factors, and include several sources. Strategies to mitigate N2O emissions from agricultural soils are based on a rational use of N resource and the stimulation of soil aerobic conditions and biological activity. Management practices to reduce the N2O emissions should be focused on: (i) Avoiding the soil denitrification process by maximizing soil aeration and reducing their acidity, (ii) Improving N fertilization by reducing free N in soil and optimizing N use efficiency in cropping systems, (iii) Direct actions on the microbial processes by limiting the nitrification process and stimulating the last step of the denitrification process (N2O reduction to N2).
Oilseeds and fats, c... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/ocl.2013.0501&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Oilseeds and fats, c... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/ocl.2013.0501&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 FrancePublisher:Elsevier BV Funded by:ANR | ESCAPADEANR| ESCAPADEGrossel, Agnès; Nicoullaud, Bernard; Bourennane, Hocine; Lacoste, Marine; Guimbaud, Christophe; Robert, C; Hénault, Catherine;Tile drainage may have contrasting effects on soil nitrous oxide (N2O) emission. Because drainage decreases anoxic periods in soils, it could reduce N2O production via denitrification and also limit the reduction of N2O into nitrogen gas (N2). Moreover, drainage accelerates the discharge of water enriched in dissolved N2O and mineral nitrogen. Thus, nitrogen losses and N2O releases from discharged surface water need to be quantified to assess the total effect of drainage on N2O emissions. Thus, the objectives of this study were two-fold: (1) to assess the effect of tile-drainage on soil N2O emissions in an agricultural area in Central France (direct emissions) and (2) to compare emissions from soils and from the stream draining the area (indirect emissions). The emissions of N2O by soils were measured using static chambers in two drained and two undrained cereal plots over two growing seasons. A rule-based model was fitted to identify the influence of drainage and ancillary variables. Stream N2O emissions were measured with a floating chamber during one growing season. The mean direct N2O emissions were 0.071 mg N m−2 h−1 and were larger in the undrained plots than in the drained plots in both growing seasons (p < 0.001). The rule-based model showed that the drainage effect on N2O emissions was dominant over the permanent soil variables. The mean stream N2O emissions were 0.190 mg N m−2 h−1. The surface water emissions represented 31 kg N during the flow period (7 months) while direct emissions were 1846 kg N during the same period. Thus, indirect emissions accounted for <2% of the total N2O emissions in the study site. While tile-drainage did not result in significant indirect emissions at this local site scale, it was identified as the dominant factor controlling the direct soil N2O emissions. Thus, drainage should be taken into account in greenhouse gas emission inventories for larger areas.
Archive de l'Observa... arrow_drop_down Archive de l'Observatoire de Paris (HAL)Article . 2016Full-Text: https://insu.hal.science/insu-01373724Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://insu.hal.science/insu-01373724Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Agriculture Ecosystems & EnvironmentArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agee.2016.06.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archive de l'Observa... arrow_drop_down Archive de l'Observatoire de Paris (HAL)Article . 2016Full-Text: https://insu.hal.science/insu-01373724Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://insu.hal.science/insu-01373724Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Agriculture Ecosystems & EnvironmentArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agee.2016.06.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2012 France, France, France, France, France, France, France, United KingdomPublisher:Elsevier BV Authors: Jean-Michel Harmand; Kristell Hergoualc'h; Kristell Hergoualc'h; Eric Blanchart; +2 AuthorsJean-Michel Harmand; Kristell Hergoualc'h; Kristell Hergoualc'h; Eric Blanchart; Ute Skiba; Catherine Hénault;handle: 10568/95665
Agroforestry represents an opportunity to reduce CO2 concentrations in the atmosphere by increasing carbon (C) stocks in agricultural lands. Agroforestry practices may also promote mineral N fertilization and the use of N2-fixing legumes that favor the emission of non-CO2 greenhouse gases (GHG) (N2O and CH4). The present study evaluates the net GHG balance in two adjacent coffee plantations, both highly fertilized (250 kg N ha-1 year-1): a monoculture (CM) and a culture shaded by the N2-fixing legume tree species Inga densiflora (CIn). C stocks, soil N2O emissions and CH4 uptakes were measured during the first cycle of both plantations. During a 3-year period (6-9 years after the establishment of the systems), soil C in the upper 10 cm remained constant in the CIn plantation (+0.09 ± 0.58 Mg C ha-1 year-1) and decreased slightly but not significantly in the CM plantation (-0.43 ± 0.53 Mg C ha-1 year-1). Aboveground carbon stocks in the coffee monoculture and the agroforestry system amounted to 9.8 ± 0.4 and 25.2 ± 0.6 Mg C ha-1, respectively, at 7 years after establishment. C storage rate in the phytomass was more than twice as large in the CIn compared to the CM system (4.6 ± 0.1 and 2.0 ± 0.1 Mg C ha-1 year-1, respectively). Annual soil N2O emissions were 1.3 times larger in the CIn than in the CM plantation (5.8 ± 0.5 and 4.3 ± 0.3 kg N-N2O ha-1 year-1, respectively). The net GHG balance at the soil scale calculated from the changes in soil C stocks and N2O emissions, expressed in CO2 equivalent, was negative in both coffee plantations indicating that the soil was a net source of GHG. Nevertheless this balance was in favor of the agroforestry system. The net GHG balance at the plantation scale, which includes additionally C storage in the phytomass, was positive and about 4 times larger in the CIn (14.59 ± 2.20 Mg CO2 eq ha-1 year-1) than in the CM plantation (3.83 ± 1.98 Mg CO2 eq ha-1 year-1). Thus converting the coffee monoculture to the coffee agroforestry plantation shaded by the N2-fixing tree species I. densiflora would increase net atmospheric GHG removals by 10.76 ± 2.96 Mg CO2 eq ha-1 year-1 during the first cycle of 8-9 years.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/95665Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverAgriculture Ecosystems & EnvironmentArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefHAL - Université de Bourgogne (HAL-uB)Other literature type . 2012Data sources: HAL - Université de Bourgogne (HAL-uB)CIRAD: HAL (Agricultural Research for Development)Article . 2012Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agee.2011.11.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 94 citations 94 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/95665Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverAgriculture Ecosystems & EnvironmentArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefHAL - Université de Bourgogne (HAL-uB)Other literature type . 2012Data sources: HAL - Université de Bourgogne (HAL-uB)CIRAD: HAL (Agricultural Research for Development)Article . 2012Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agee.2011.11.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2008 France, France, France, France, United Kingdom, France, FrancePublisher:Springer Science and Business Media LLC Jean-Michel Harmand; Ute Skiba; Kristell Hergoualc'h; Kristell Hergoualc'h; Kristell Hergoualc'h; Catherine Hénault;handle: 10568/20707
The objective of this study was to evaluate the effect of N fertilization and the presence of N2 fixing leguminous trees on soil fluxes of greenhouse gases. For a one year period, we measured soil fluxes of nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4), related soil parameters (temperature, water-filled pore space, mineral nitrogen content, N mineralization potential) and litterfall in two highly fertilized (250 kg N ha−1 year−1) coffee cultivation: a monoculture (CM) and a culture shaded by the N2 fixing legume species Inga densiflora (CIn). Nitrogen fertilizer addition significantly influenced N2O emissions with 84% of the annual N2O emitted during the post fertilization periods, and temporarily increased soil respiration and decreased CH4 uptakes. The higher annual N2O emissions from the shaded plantation (5.8 ± 0.3 kg N ha−1 year−1) when compared to that from the monoculture (4.3 ± 0.1 kg N ha−1 year−1) was related to the higher N input through litterfall (246 ± 16 kg N ha−1 year−1) and higher potential soil N mineralization rate (3.7 ± 0.2 mg N kg−1 d.w. d−1) in the shaded cultivation when compared to the monoculture (153 ± 6.8 kg N ha−1 year−1 and 2.2 ± 0.2 mg N kg−1 d.w. d−1). This confirms that the presence of N2 fixing shade trees can increase N2O emissions. Annual CO2 and CH4 fluxes of both systems were similar (8.4 ± 2.6 and 7.5 ± 2.3 t C-CO2 ha−1 year−1, −1.1 ± 1.5 and 3.3 ± 1.1 kg C-CH4 ha−1 year−1, respectively in the CIn and CM plantations) but, unexpectedly increased during the dry season.
Hyper Article en Lig... arrow_drop_down HAL - Université de Bourgogne (HAL-uB)Other literature type . 2008Data sources: HAL - Université de Bourgogne (HAL-uB)Institut National de la Recherche Agronomique: ProdINRAArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2008Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10533-008-9222-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 63 citations 63 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down HAL - Université de Bourgogne (HAL-uB)Other literature type . 2008Data sources: HAL - Université de Bourgogne (HAL-uB)Institut National de la Recherche Agronomique: ProdINRAArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2008Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10533-008-9222-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 FrancePublisher:Elsevier BV Grossel, Agnès; Nicoullaud, Bernard; Bourennane, Hocine; Rochette, Pierre; Guimbaud, Christophe; Chartier, M.; Catoire, Valéry; Hénault, C.;Abstract Estimating total N 2 O emission from agricultural soils is associated with considerable uncertainty due to the very large spatial variability of the fluxes. Thus characterizing the range of variations is of great interest. Modeling N 2 O fluxes remains challenging, especially at the within-field scale. The aim of this study was to test the ability of a simple process-based model, NOE (Nitrous Oxide Emission), to simulate N 2 O at scales finer than the field. Six field studies including 30–49 measurements of chamber N 2 O fluxes and ancillary variables were conducted in a barley/wheat field on hydromorphous soils. Three studies were made on surfaces of ∼10 m 2 (defined as the local scale), and three studies along a 150-m transect (defined as the transect scale). First, the model was tested deterministically for predicting the flux spatial patterns, i.e., to try to reproduce the high flux points. Then the denitrification part of the model was tested stochastically for simulating the flux distributions by randomly generating input variables from the measured frequency distributions (Monte Carlo simulation). Measured fluxes were comprised between 0 and 1.5 mg N h −1 m −2 . The deterministic prediction of spatial patterns provided a good match with measurements in 1 of the 6 studied cases, in a transect study. Denitrification was assessed to be the main source of N 2 O in 5 of the 6 cases and the model satisfactorily simulated frequency distributions in 4 cases out of 5, 2 at the local scale and 2 at the transect scale. Thus this study suggests that simple process-based models such as NOE, combined to Monte Carlo methods, can be used to improve simulation of the skewed frequency distributions of N 2 O fluxes and provide valuable information about the range of spatial variations in N 2 O fluxes.
Hyper Article en Lig... arrow_drop_down Archive de l'Observatoire de Paris (HAL)Article . 2014License: CC BY NC NDFull-Text: https://insu.hal.science/insu-01064719Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2014License: CC BY NC NDFull-Text: https://insu.hal.science/insu-01064719Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2014License: CC BY NC NDData sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2014Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2014License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolmodel.2014.06.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 11 citations 11 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Archive de l'Observatoire de Paris (HAL)Article . 2014License: CC BY NC NDFull-Text: https://insu.hal.science/insu-01064719Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2014License: CC BY NC NDFull-Text: https://insu.hal.science/insu-01064719Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2014License: CC BY NC NDData sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2014Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2014License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolmodel.2014.06.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 FrancePublisher:Springer Science and Business Media LLC Catherine Hénault; Hocine Bourennane; Adeline Ayzac; Céline Ratié; Nicolas Saby; Jean‐Pierre Cohan; Thomas Eglin; Cécile Le Gall;pmid: 31882900
pmc: PMC6934481
AbstractWhile concerns about human-induced effects on the Earth’s climate have mainly concentrated on carbon dioxide (CO2) and methane (CH4), reducing anthropogenic nitrous oxide (N2O) flux, mainly of agricultural origin, also represents an opportunity for substantial mitigation. To develop a solution that induces neither the transfer of nitrogen pollution nor decreases agricultural production, we specifically investigated the last step of the denitrification pathway, the N2O reduction path, in soils. We first observed that this path is mainly driven by soil pH and is progressively inhibited when pH is lower than 6.8. During field experiments, we observed that liming acidic soils to neutrality made N2O reduction more efficient and decreased soil N2O emissions. As we estimated acidic fertilized soils to represent 37% [27–50%] of French soils, we calculated that liming could potentially decrease France’s total N2O emissions by 15.7% [8.3–21.2%]. Nevertheless, due to the different possible other impacts of liming, we currently recommend that the deployment of this solution to mitigate N2O emission should be based on local studies that take into account agronomic, environmental and economic aspects.
Hyper Article en Lig... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)HAL - Université de Bourgogne (HAL-uB)Other literature type . 2019Data sources: HAL - Université de Bourgogne (HAL-uB)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-019-56694-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 88 citations 88 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)HAL - Université de Bourgogne (HAL-uB)Other literature type . 2019Data sources: HAL - Université de Bourgogne (HAL-uB)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-019-56694-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2012 FrancePublisher:Elsevier BV Bruno Mary; Catherine Hénault; Catherine Hénault; Magali Roussel; Joël Léonard; A. Grossel;Abstract This short review deals with soils as an important source of the greenhouse gas N2O. The production and consumption of N2O in soils mainly involve biotic processes: the anaerobic process of denitrification and the aerobic process of nitrification. The factors that significantly influence agricultural N2O emissions mainly concern the agricultural practices (N application rate, crop type, fertilizer type) and soil conditions (soil moisture, soil organic C content, soil pH and texture). Large variability of N2O fluxes is known to occur both at different spatial and temporal scales. Currently new techniques could help to improve the capture of the spatial variability. Continuous measurement systems with automatic chambers could also help to capture temporal variability and consequently to improve quantification of N2O emissions by soils. Some attempts for mitigating soil N2O emissions, either by modifying agricultural practices or by managing soil microbial functioning taking into account the origin of the soil N2O emission variability, are reviewed.
Hyper Article en Lig... arrow_drop_down HAL - Université de Bourgogne (HAL-uB)Other literature type . 2012Data sources: HAL - Université de Bourgogne (HAL-uB)Institut National de la Recherche Agronomique: ProdINRAArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s1002-0160(12)60029-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu147 citations 147 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down HAL - Université de Bourgogne (HAL-uB)Other literature type . 2012Data sources: HAL - Université de Bourgogne (HAL-uB)Institut National de la Recherche Agronomique: ProdINRAArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s1002-0160(12)60029-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2013 FrancePublisher:Springer Science and Business Media LLC Vermue, A.; Philippot, L.; Munier-Jolain, N.; Hénault, C.; Nicolardot, Bernard;Integrated weed management, which allows reducing the reliance of cropping systems on herbicides, is based on the use of specific combinations of innovative agricultural practices. However the impact of the introduction of these practices in cropping systems may influence soil functioning such as biogeochemical cycling. Here, we investigated N2O emissions and the abundances of N-cycling microorganisms in 11-year old cropping systems (i.e. conventional reference and integrated weed management) in order to estimate the environmental side-effects of long-term integrated weed management. N2O emissions were continuously measured using automated chambers coupled with infrared analysers. Abundances of ammonia oxidizers and denitrifiers together with total bacteria and archaea were determined monthly from 0 to 10 and 10–30 cm soil layer samples by quantitative Polymerase Chain Reaction (qPCR). The relationship between N2O emissions and microbial abundances during the study were investigated as were their relationships with soil physicochemical parameters and climatic conditions. Over 7 months, the system with integrated weed management emitted significantly more N2O with cumulated measured emissions of 240 and 544 g N-N2O ha−1 for conventional and integrated systems, respectively. Abundances of microbial guilds varied slightly between systems, although ammonia-oxidizing bacteria were more abundant in the reference system (1.7 106 gene copies g−1 dry weight soil) compared to the integrated system (1.0 106 gene copies g−1 dry weight soil). These differences revealed both the long-term modification of soil biogeochemical background and the functioning of microbial processes due to 11 years of alternative field management, and the short-term impacts of the agricultural practices introduced as part of weed management during the cropping year. The abundances of the different microbial communities involved in N cycling and the intensity of N2O emissions were not related, punctual high N2O emissions being more dependent on favourable soil conditions for nitrifying and denitrifying activities. Future studies will be performed to check these findings for other pedoclimatic conditions and to examine the impact of such cropping systems.
Hyper Article en Lig... arrow_drop_down HAL - Université de Bourgogne (HAL-uB)Other literature type . 2013Data sources: HAL - Université de Bourgogne (HAL-uB)Institut National de la Recherche Agronomique: ProdINRAArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11104-013-1821-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down HAL - Université de Bourgogne (HAL-uB)Other literature type . 2013Data sources: HAL - Université de Bourgogne (HAL-uB)Institut National de la Recherche Agronomique: ProdINRAArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11104-013-1821-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Review , Other literature type 2020 United Kingdom, FrancePublisher:Wiley Guenet, Bertrand; Gabrielle, Benoit; Chenu, Claire; Arrouays, Dominique; Balesdent, Jérôme; Bernoux, Martial; Bruni, Elisa; Caliman, Jean-Pierre; Cardinael, Rémi; Chen, Songchao; Ciais, Philippe; Desbois, Dominique; Fouché, Julien; Frank, Stefan; Henault, Catherine; Lugato, Emanuele; Naipal, Victoria; Nesme, Thomas; Obersteiner, Michael; Pellerin, Sylvain; Powlson, David; Rasse, Daniel; Rees, Frédéric; Soussana, Jean-François; Su, Yang; Tian, Hanqin; Valin, Hugo; Zhou, Feng;doi: 10.1111/gcb.15342
pmid: 32894815
AbstractTo respect the Paris agreement targeting a limitation of global warming below 2°C by 2100, and possibly below 1.5°C, drastic reductions of greenhouse gas emissions are mandatory but not sufficient. Large‐scale deployment of other climate mitigation strategies is also necessary. Among these, increasing soil organic carbon (SOC) stocks is an important lever because carbon in soils can be stored for long periods and land management options to achieve this already exist and have been widely tested. However, agricultural soils are also an important source of nitrous oxide (N2O), a powerful greenhouse gas, and increasing SOC may influence N2O emissions, likely causing an increase in many cases, thus tending to offset the climate change benefit from increased SOC storage. Here we review the main agricultural management options for increasing SOC stocks. We evaluate the amount of SOC that can be stored as well as resulting changes in N2O emissions to better estimate the climate benefits of these management options. Based on quantitative data obtained from published meta‐analyses and from our current level of understanding, we conclude that the climate mitigation induced by increased SOC storage is generally overestimated if associated N2O emissions are not considered but, with the exception of reduced tillage, is never fully offset. Some options (e.g. biochar or non‐pyrogenic C amendment application) may even decrease N2O emissions.
HAL-IRD arrow_drop_down Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefHAL - Université de Bourgogne (HAL-uB)Other literature type . 2021Data sources: HAL - Université de Bourgogne (HAL-uB)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15342&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 261 citations 261 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert HAL-IRD arrow_drop_down Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefHAL - Université de Bourgogne (HAL-uB)Other literature type . 2021Data sources: HAL - Université de Bourgogne (HAL-uB)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15342&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Conference object 2022 FranceRouch,, Laly; Follain, Stéphane; Pimet, Eric; Florian, Bizouard,; Hénault, Catherine; Blouin, Manuel;Despite the possible mitigation of carbon emissions by favoring carbon transfer to terrestrial carbon sinks, little is knownabout the capacity of different crop genotypes to enhance soil carbon sequestration. We hypothesize that carbon sequestrationpotential linked to old wheat varieties (released before 1960) is higher than the one linked to modern ones while old varietiesare known to develop bigger and deeper root systems. Moreover, modern varieties are often cultivated using syntheticchemical inputs known to modify soil carbon dynamics. We conducted a field experiment by cultivating four modern andfour old wheat varieties, with and without chemical inputs (nitrogen, herbicide and fungicide), in Calcaric Cambisolconditions. After root and soil sampling, root morphology was assessed by image analysis, whereas potential catabolicactivities by soil microbial communities was assessed by MicroResp ™ measurements. Additionally, CO2 emissionsmeasurements were done by incubating soil and roots from each agronomic modality. Results suggest that the genotype (oldversus modern varieties) did not affect root traits nor substrates respiration, but the soil from old variety modalities released6% more CO2 than the one from modern ones. Application of inputs did not affect root traits, but increased soil microbialrespiration by 11%. Inputs also increased the respiration of citric acid by 19.1%, while it decreased respiration of fructose andalanine by 8.84% and 16.79%, respectively. Taken together, our results invalidate the hypothesis that old varieties could bemore performant than modern ones in storing carbon in this specific soil.
HAL INRAE arrow_drop_down HAL - Université de Bourgogne (HAL-uB)Other literature type . 2022Data sources: HAL - Université de Bourgogne (HAL-uB)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::e02eeb869265c1e26b0a88a0d00da704&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert HAL INRAE arrow_drop_down HAL - Université de Bourgogne (HAL-uB)Other literature type . 2022Data sources: HAL - Université de Bourgogne (HAL-uB)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::e02eeb869265c1e26b0a88a0d00da704&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 FrancePublisher:EDP Sciences Viard, Amélie; Hénault, Catherine; Rochette, Philippe; Kuikman, Peter; Flénet, Francis; Cellier, Pierre;Nitrous oxide (N2O) is a greenhouse gas that mainly originates from soils and agricultural activities. International initiatives require that countries calculate national inventories of their N2O emissions from agricultural soils. Several methodologies can be applied: (i) Tier I Intergovernmental Panel on Climate Change (IPCC) default approach that only takes into account nitrogen (N) input, (ii) Country-specific methodologies (Tier II and Tier III) that account for regional climatic and land use impacts on N2O emission factors, and include several sources. Strategies to mitigate N2O emissions from agricultural soils are based on a rational use of N resource and the stimulation of soil aerobic conditions and biological activity. Management practices to reduce the N2O emissions should be focused on: (i) Avoiding the soil denitrification process by maximizing soil aeration and reducing their acidity, (ii) Improving N fertilization by reducing free N in soil and optimizing N use efficiency in cropping systems, (iii) Direct actions on the microbial processes by limiting the nitrification process and stimulating the last step of the denitrification process (N2O reduction to N2).
Oilseeds and fats, c... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/ocl.2013.0501&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Oilseeds and fats, c... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/ocl.2013.0501&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 FrancePublisher:Elsevier BV Funded by:ANR | ESCAPADEANR| ESCAPADEGrossel, Agnès; Nicoullaud, Bernard; Bourennane, Hocine; Lacoste, Marine; Guimbaud, Christophe; Robert, C; Hénault, Catherine;Tile drainage may have contrasting effects on soil nitrous oxide (N2O) emission. Because drainage decreases anoxic periods in soils, it could reduce N2O production via denitrification and also limit the reduction of N2O into nitrogen gas (N2). Moreover, drainage accelerates the discharge of water enriched in dissolved N2O and mineral nitrogen. Thus, nitrogen losses and N2O releases from discharged surface water need to be quantified to assess the total effect of drainage on N2O emissions. Thus, the objectives of this study were two-fold: (1) to assess the effect of tile-drainage on soil N2O emissions in an agricultural area in Central France (direct emissions) and (2) to compare emissions from soils and from the stream draining the area (indirect emissions). The emissions of N2O by soils were measured using static chambers in two drained and two undrained cereal plots over two growing seasons. A rule-based model was fitted to identify the influence of drainage and ancillary variables. Stream N2O emissions were measured with a floating chamber during one growing season. The mean direct N2O emissions were 0.071 mg N m−2 h−1 and were larger in the undrained plots than in the drained plots in both growing seasons (p < 0.001). The rule-based model showed that the drainage effect on N2O emissions was dominant over the permanent soil variables. The mean stream N2O emissions were 0.190 mg N m−2 h−1. The surface water emissions represented 31 kg N during the flow period (7 months) while direct emissions were 1846 kg N during the same period. Thus, indirect emissions accounted for <2% of the total N2O emissions in the study site. While tile-drainage did not result in significant indirect emissions at this local site scale, it was identified as the dominant factor controlling the direct soil N2O emissions. Thus, drainage should be taken into account in greenhouse gas emission inventories for larger areas.
Archive de l'Observa... arrow_drop_down Archive de l'Observatoire de Paris (HAL)Article . 2016Full-Text: https://insu.hal.science/insu-01373724Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://insu.hal.science/insu-01373724Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Agriculture Ecosystems & EnvironmentArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agee.2016.06.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archive de l'Observa... arrow_drop_down Archive de l'Observatoire de Paris (HAL)Article . 2016Full-Text: https://insu.hal.science/insu-01373724Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://insu.hal.science/insu-01373724Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Agriculture Ecosystems & EnvironmentArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agee.2016.06.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2012 France, France, France, France, France, France, France, United KingdomPublisher:Elsevier BV Authors: Jean-Michel Harmand; Kristell Hergoualc'h; Kristell Hergoualc'h; Eric Blanchart; +2 AuthorsJean-Michel Harmand; Kristell Hergoualc'h; Kristell Hergoualc'h; Eric Blanchart; Ute Skiba; Catherine Hénault;handle: 10568/95665
Agroforestry represents an opportunity to reduce CO2 concentrations in the atmosphere by increasing carbon (C) stocks in agricultural lands. Agroforestry practices may also promote mineral N fertilization and the use of N2-fixing legumes that favor the emission of non-CO2 greenhouse gases (GHG) (N2O and CH4). The present study evaluates the net GHG balance in two adjacent coffee plantations, both highly fertilized (250 kg N ha-1 year-1): a monoculture (CM) and a culture shaded by the N2-fixing legume tree species Inga densiflora (CIn). C stocks, soil N2O emissions and CH4 uptakes were measured during the first cycle of both plantations. During a 3-year period (6-9 years after the establishment of the systems), soil C in the upper 10 cm remained constant in the CIn plantation (+0.09 ± 0.58 Mg C ha-1 year-1) and decreased slightly but not significantly in the CM plantation (-0.43 ± 0.53 Mg C ha-1 year-1). Aboveground carbon stocks in the coffee monoculture and the agroforestry system amounted to 9.8 ± 0.4 and 25.2 ± 0.6 Mg C ha-1, respectively, at 7 years after establishment. C storage rate in the phytomass was more than twice as large in the CIn compared to the CM system (4.6 ± 0.1 and 2.0 ± 0.1 Mg C ha-1 year-1, respectively). Annual soil N2O emissions were 1.3 times larger in the CIn than in the CM plantation (5.8 ± 0.5 and 4.3 ± 0.3 kg N-N2O ha-1 year-1, respectively). The net GHG balance at the soil scale calculated from the changes in soil C stocks and N2O emissions, expressed in CO2 equivalent, was negative in both coffee plantations indicating that the soil was a net source of GHG. Nevertheless this balance was in favor of the agroforestry system. The net GHG balance at the plantation scale, which includes additionally C storage in the phytomass, was positive and about 4 times larger in the CIn (14.59 ± 2.20 Mg CO2 eq ha-1 year-1) than in the CM plantation (3.83 ± 1.98 Mg CO2 eq ha-1 year-1). Thus converting the coffee monoculture to the coffee agroforestry plantation shaded by the N2-fixing tree species I. densiflora would increase net atmospheric GHG removals by 10.76 ± 2.96 Mg CO2 eq ha-1 year-1 during the first cycle of 8-9 years.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/95665Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverAgriculture Ecosystems & EnvironmentArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefHAL - Université de Bourgogne (HAL-uB)Other literature type . 2012Data sources: HAL - Université de Bourgogne (HAL-uB)CIRAD: HAL (Agricultural Research for Development)Article . 2012Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agee.2011.11.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 94 citations 94 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/95665Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverAgriculture Ecosystems & EnvironmentArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefHAL - Université de Bourgogne (HAL-uB)Other literature type . 2012Data sources: HAL - Université de Bourgogne (HAL-uB)CIRAD: HAL (Agricultural Research for Development)Article . 2012Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agee.2011.11.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2008 France, France, France, France, United Kingdom, France, FrancePublisher:Springer Science and Business Media LLC Jean-Michel Harmand; Ute Skiba; Kristell Hergoualc'h; Kristell Hergoualc'h; Kristell Hergoualc'h; Catherine Hénault;handle: 10568/20707
The objective of this study was to evaluate the effect of N fertilization and the presence of N2 fixing leguminous trees on soil fluxes of greenhouse gases. For a one year period, we measured soil fluxes of nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4), related soil parameters (temperature, water-filled pore space, mineral nitrogen content, N mineralization potential) and litterfall in two highly fertilized (250 kg N ha−1 year−1) coffee cultivation: a monoculture (CM) and a culture shaded by the N2 fixing legume species Inga densiflora (CIn). Nitrogen fertilizer addition significantly influenced N2O emissions with 84% of the annual N2O emitted during the post fertilization periods, and temporarily increased soil respiration and decreased CH4 uptakes. The higher annual N2O emissions from the shaded plantation (5.8 ± 0.3 kg N ha−1 year−1) when compared to that from the monoculture (4.3 ± 0.1 kg N ha−1 year−1) was related to the higher N input through litterfall (246 ± 16 kg N ha−1 year−1) and higher potential soil N mineralization rate (3.7 ± 0.2 mg N kg−1 d.w. d−1) in the shaded cultivation when compared to the monoculture (153 ± 6.8 kg N ha−1 year−1 and 2.2 ± 0.2 mg N kg−1 d.w. d−1). This confirms that the presence of N2 fixing shade trees can increase N2O emissions. Annual CO2 and CH4 fluxes of both systems were similar (8.4 ± 2.6 and 7.5 ± 2.3 t C-CO2 ha−1 year−1, −1.1 ± 1.5 and 3.3 ± 1.1 kg C-CH4 ha−1 year−1, respectively in the CIn and CM plantations) but, unexpectedly increased during the dry season.
Hyper Article en Lig... arrow_drop_down HAL - Université de Bourgogne (HAL-uB)Other literature type . 2008Data sources: HAL - Université de Bourgogne (HAL-uB)Institut National de la Recherche Agronomique: ProdINRAArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2008Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10533-008-9222-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 63 citations 63 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down HAL - Université de Bourgogne (HAL-uB)Other literature type . 2008Data sources: HAL - Université de Bourgogne (HAL-uB)Institut National de la Recherche Agronomique: ProdINRAArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2008Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10533-008-9222-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 FrancePublisher:Elsevier BV Grossel, Agnès; Nicoullaud, Bernard; Bourennane, Hocine; Rochette, Pierre; Guimbaud, Christophe; Chartier, M.; Catoire, Valéry; Hénault, C.;Abstract Estimating total N 2 O emission from agricultural soils is associated with considerable uncertainty due to the very large spatial variability of the fluxes. Thus characterizing the range of variations is of great interest. Modeling N 2 O fluxes remains challenging, especially at the within-field scale. The aim of this study was to test the ability of a simple process-based model, NOE (Nitrous Oxide Emission), to simulate N 2 O at scales finer than the field. Six field studies including 30–49 measurements of chamber N 2 O fluxes and ancillary variables were conducted in a barley/wheat field on hydromorphous soils. Three studies were made on surfaces of ∼10 m 2 (defined as the local scale), and three studies along a 150-m transect (defined as the transect scale). First, the model was tested deterministically for predicting the flux spatial patterns, i.e., to try to reproduce the high flux points. Then the denitrification part of the model was tested stochastically for simulating the flux distributions by randomly generating input variables from the measured frequency distributions (Monte Carlo simulation). Measured fluxes were comprised between 0 and 1.5 mg N h −1 m −2 . The deterministic prediction of spatial patterns provided a good match with measurements in 1 of the 6 studied cases, in a transect study. Denitrification was assessed to be the main source of N 2 O in 5 of the 6 cases and the model satisfactorily simulated frequency distributions in 4 cases out of 5, 2 at the local scale and 2 at the transect scale. Thus this study suggests that simple process-based models such as NOE, combined to Monte Carlo methods, can be used to improve simulation of the skewed frequency distributions of N 2 O fluxes and provide valuable information about the range of spatial variations in N 2 O fluxes.
Hyper Article en Lig... arrow_drop_down Archive de l'Observatoire de Paris (HAL)Article . 2014License: CC BY NC NDFull-Text: https://insu.hal.science/insu-01064719Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2014License: CC BY NC NDFull-Text: https://insu.hal.science/insu-01064719Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2014License: CC BY NC NDData sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2014Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2014License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolmodel.2014.06.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 11 citations 11 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Archive de l'Observatoire de Paris (HAL)Article . 2014License: CC BY NC NDFull-Text: https://insu.hal.science/insu-01064719Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2014License: CC BY NC NDFull-Text: https://insu.hal.science/insu-01064719Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2014License: CC BY NC NDData sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2014Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2014License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolmodel.2014.06.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu