- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2024 United Kingdom, Tanzania (United Republic of), Argentina, Sweden, Argentina, United KingdomPublisher:Springer Science and Business Media LLC Anna Scaini; Joe Mulligan; Håkan Berg; Albert C. Brangarí; Vera Bukachi; Sebastián Carenzo; Chau Thi Da; Colin J. Courtney Mustaphi; Anneli Ekblom; Hanne Fjelde; Mathias Fridahl; Anders Hansson; Lettice C. Hicks; Mattias Höjer; Benard Juma; Jaan‐Henrik Kain; Rebecca W. Kariuki; Soben Kim; Paul Lane; Ainara Leizeaga; Regina Lindborg; John Livsey; Steve W. Lyon; Robert Marchant; Jennifer McConville; Linus K. Munishi; David Nilsson; Luke Olang; Stefan Olin; Lennart Olsson; Peter Msumali Rogers; Johannes Rousk; Hans Sandén; Nophea Sasaki; Anna Shoemaker; Benjamin Smith; Lan Thai Huynh Phuong; Ana Varela Varela; Manjunatha Venkatappa; Giulia Vico; Nina von Uexkull; Christine Wamsler; Menale Wondie; Patrik Zapata; María José Zapata Campos; Stefano Manzoni; Anna Tompsett;AbstractDrawing on collective experience from ten collaborative research projects focused on the Global South, we identify three major challenges that impede the translation of research on sustainability and resilience into better-informed choices by individuals and policy-makers that in turn can support transformation to a sustainable future. The three challenges comprise: (i) converting knowledge produced during research projects into successful knowledge application; (ii) scaling up knowledge in time when research projects are short-term and potential impacts are long-term; and (iii) scaling up knowledge across space, from local research sites to larger-scale or even global impact. Some potential pathways for funding agencies to overcome these challenges include providing targeted prolonged funding for dissemination and outreach, and facilitating collaboration and coordination across different sites, research teams, and partner organizations. By systematically documenting these challenges, we hope to pave the way for further innovations in the research cycle.
AMBIO arrow_drop_down Publikationer från Linköpings universitetArticle . 2024 . Peer-reviewedData sources: Publikationer från Linköpings universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2024 . Peer-reviewedDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2024 . Peer-reviewedUniversity of Western Sydney (UWS): Research DirectArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13280-023-01968-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert AMBIO arrow_drop_down Publikationer från Linköpings universitetArticle . 2024 . Peer-reviewedData sources: Publikationer från Linköpings universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2024 . Peer-reviewedDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2024 . Peer-reviewedUniversity of Western Sydney (UWS): Research DirectArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13280-023-01968-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 NetherlandsPublisher:Wiley Lí, Jin-Tao; Hicks, Lettice C.; Brangarí, Albert C.; Tájmel, Dániel; Cruz-Paredes, Carla; Rousk, Johannes;AbstractClimate change is predicted to cause milder winters and thus exacerbate soil freeze–thaw perturbations in the subarctic, recasting the environmental challenges that soil microorganisms need to endure. Historical exposure to environmental stressors can facilitate the microbial resilience to new cycles of that same stress. However, whether and how such microbial memory or stress legacy can modulate microbial responses to cycles of frost remains untested. Here, we conducted an in situ field experiment in a subarctic birch forest, where winter warming resulted in a substantial increase in the number and intensity of freeze–thaw events. After one season of winter warming, which raised mean surface and soil (−8 cm) temperatures by 2.9 and 1.4°C, respectively, we investigated whether the in situ warming‐induced increase in frost cycles improved soil microbial resilience to an experimental freeze–thaw perturbation. We found that the resilience of microbial growth was enhanced in the winter warmed soil, which was associated with community differences across treatments. We also found that winter warming enhanced the resilience of bacteria more than fungi. In contrast, the respiration response to freeze–thaw was not affected by a legacy of winter warming. This translated into an enhanced microbial carbon‐use efficiency in the winter warming treatments, which could promote the stabilization of soil carbon during such perturbations. Together, these findings highlight the importance of climate history in shaping current and future dynamics of soil microbial functioning to perturbations associated with climate change, with important implications for understanding the potential consequences on microbial‐mediated biogeochemical cycles.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Wiley Authors: Johannes Rousk; Albert C. Brangarí;We show that the explosive microbial and biogeochemical dynamics triggered by rewetting dry soil in laboratory experiments also has relevance in intact ecosystems. This highlights an opportunity to use predictions derived from laboratory studies to provide targets in ecosystem-scale biogeochemical studies.
Global Change Biolog... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16163&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16163&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Netherlands, Spain, Morocco, SpainPublisher:Wiley Haoran He; Jingxiong Zhou; Yunqiang Wang; Shuo Jiao; Xun Qian; Yurong Liu; Ji Liu; Ji Chen; Manuel Delgado‐Baquerizo; Albert C. Brangarí; Li Chen; Yongxing Cui; Haibo Pan; Renmao Tian; Yuting Liang; Wenfeng Tan; Raúl Ochoa‐Hueso; Linchuan Fang;doi: 10.1111/gcb.17028
pmid: 37955302
AbstractMicrobes inhabiting deep soil layers are known to be different from their counterpart in topsoil yet remain under investigation in terms of their structure, function, and how their diversity is shaped. The microbiome of deep soils (>1 m) is expected to be relatively stable and highly independent from climatic conditions. Much less is known, however, on how these microbial communities vary along climate gradients. Here, we used amplicon sequencing to investigate bacteria, archaea, and fungi along fifteen 18‐m depth profiles at 20–50‐cm intervals across contrasting aridity conditions in semi‐arid forest ecosystems of China's Loess Plateau. Our results showed that bacterial and fungal α diversity and bacterial and archaeal community similarity declined dramatically in topsoil and remained relatively stable in deep soil. Nevertheless, deep soil microbiome still showed the functional potential of N cycling, plant‐derived organic matter degradation, resource exchange, and water coordination. The deep soil microbiome had closer taxa–taxa and bacteria–fungi associations and more influence of dispersal limitation than topsoil microbiome. Geographic distance was more influential in deep soil bacteria and archaea than in topsoil. We further showed that aridity was negatively correlated with deep‐soil archaeal and fungal richness, archaeal community similarity, relative abundance of plant saprotroph, and bacteria–fungi associations, but increased the relative abundance of aerobic ammonia oxidation, manganese oxidation, and arbuscular mycorrhizal in the deep soils. Root depth, complexity, soil volumetric moisture, and clay play bridging roles in the indirect effects of aridity on microbes in deep soils. Our work indicates that, even microbial communities and nutrient cycling in deep soil are susceptible to changes in water availability, with consequences for understanding the sustainability of dryland ecosystems and the whole‐soil in response to aridification. Moreover, we propose that neglecting soil depth may underestimate the role of soil moisture in dryland ecosystems under future climate scenarios.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio de Objetos de Docencia e Investigación de la Universidad de CádizArticle . 2023License: CC BY NC NDGlobal Change BiologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2024Data sources: Universiteit van Amsterdam Digital Academic Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 51visibility views 51 download downloads 70 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio de Objetos de Docencia e Investigación de la Universidad de CádizArticle . 2023License: CC BY NC NDGlobal Change BiologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2024Data sources: Universiteit van Amsterdam Digital Academic Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Lí, Jin-Tao; Hicks, Lettice C.; Brangarí, Albert C.; Tájmel, Dániel; Cruz-Paredes, Carla; Rousk, Johannes;Original data for the study: Lí, et al. Subarctic winter-warming promotes soil microbial resilience to freeze-thaw cycles and enhances the microbial carbon-use efficiency. This dataset mainly contains the data showing the legacy effect of field winter warming on the dynamic response of soil microbial growth, respiration, and C-use efficiency during an imposed freezing-thawing perturbation. Six sheets are included in an Excel file named "Open data for WinterWarmingFTW.xlsx" as follows: Figure1. Field temp & moist Table1. Soil variables & PLFAs Figure2. PCA of PLFAs Figure3. Bac & Fung grwoth Figure4. Resp Figure5. FB & CUE
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8307940&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8307940&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2024 United Kingdom, Tanzania (United Republic of), Argentina, Sweden, Argentina, United KingdomPublisher:Springer Science and Business Media LLC Anna Scaini; Joe Mulligan; Håkan Berg; Albert C. Brangarí; Vera Bukachi; Sebastián Carenzo; Chau Thi Da; Colin J. Courtney Mustaphi; Anneli Ekblom; Hanne Fjelde; Mathias Fridahl; Anders Hansson; Lettice C. Hicks; Mattias Höjer; Benard Juma; Jaan‐Henrik Kain; Rebecca W. Kariuki; Soben Kim; Paul Lane; Ainara Leizeaga; Regina Lindborg; John Livsey; Steve W. Lyon; Robert Marchant; Jennifer McConville; Linus K. Munishi; David Nilsson; Luke Olang; Stefan Olin; Lennart Olsson; Peter Msumali Rogers; Johannes Rousk; Hans Sandén; Nophea Sasaki; Anna Shoemaker; Benjamin Smith; Lan Thai Huynh Phuong; Ana Varela Varela; Manjunatha Venkatappa; Giulia Vico; Nina von Uexkull; Christine Wamsler; Menale Wondie; Patrik Zapata; María José Zapata Campos; Stefano Manzoni; Anna Tompsett;AbstractDrawing on collective experience from ten collaborative research projects focused on the Global South, we identify three major challenges that impede the translation of research on sustainability and resilience into better-informed choices by individuals and policy-makers that in turn can support transformation to a sustainable future. The three challenges comprise: (i) converting knowledge produced during research projects into successful knowledge application; (ii) scaling up knowledge in time when research projects are short-term and potential impacts are long-term; and (iii) scaling up knowledge across space, from local research sites to larger-scale or even global impact. Some potential pathways for funding agencies to overcome these challenges include providing targeted prolonged funding for dissemination and outreach, and facilitating collaboration and coordination across different sites, research teams, and partner organizations. By systematically documenting these challenges, we hope to pave the way for further innovations in the research cycle.
AMBIO arrow_drop_down Publikationer från Linköpings universitetArticle . 2024 . Peer-reviewedData sources: Publikationer från Linköpings universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2024 . Peer-reviewedDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2024 . Peer-reviewedUniversity of Western Sydney (UWS): Research DirectArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13280-023-01968-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert AMBIO arrow_drop_down Publikationer från Linköpings universitetArticle . 2024 . Peer-reviewedData sources: Publikationer från Linköpings universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2024 . Peer-reviewedDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2024 . Peer-reviewedUniversity of Western Sydney (UWS): Research DirectArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13280-023-01968-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 NetherlandsPublisher:Wiley Lí, Jin-Tao; Hicks, Lettice C.; Brangarí, Albert C.; Tájmel, Dániel; Cruz-Paredes, Carla; Rousk, Johannes;AbstractClimate change is predicted to cause milder winters and thus exacerbate soil freeze–thaw perturbations in the subarctic, recasting the environmental challenges that soil microorganisms need to endure. Historical exposure to environmental stressors can facilitate the microbial resilience to new cycles of that same stress. However, whether and how such microbial memory or stress legacy can modulate microbial responses to cycles of frost remains untested. Here, we conducted an in situ field experiment in a subarctic birch forest, where winter warming resulted in a substantial increase in the number and intensity of freeze–thaw events. After one season of winter warming, which raised mean surface and soil (−8 cm) temperatures by 2.9 and 1.4°C, respectively, we investigated whether the in situ warming‐induced increase in frost cycles improved soil microbial resilience to an experimental freeze–thaw perturbation. We found that the resilience of microbial growth was enhanced in the winter warmed soil, which was associated with community differences across treatments. We also found that winter warming enhanced the resilience of bacteria more than fungi. In contrast, the respiration response to freeze–thaw was not affected by a legacy of winter warming. This translated into an enhanced microbial carbon‐use efficiency in the winter warming treatments, which could promote the stabilization of soil carbon during such perturbations. Together, these findings highlight the importance of climate history in shaping current and future dynamics of soil microbial functioning to perturbations associated with climate change, with important implications for understanding the potential consequences on microbial‐mediated biogeochemical cycles.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Wiley Authors: Johannes Rousk; Albert C. Brangarí;We show that the explosive microbial and biogeochemical dynamics triggered by rewetting dry soil in laboratory experiments also has relevance in intact ecosystems. This highlights an opportunity to use predictions derived from laboratory studies to provide targets in ecosystem-scale biogeochemical studies.
Global Change Biolog... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16163&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16163&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Netherlands, Spain, Morocco, SpainPublisher:Wiley Haoran He; Jingxiong Zhou; Yunqiang Wang; Shuo Jiao; Xun Qian; Yurong Liu; Ji Liu; Ji Chen; Manuel Delgado‐Baquerizo; Albert C. Brangarí; Li Chen; Yongxing Cui; Haibo Pan; Renmao Tian; Yuting Liang; Wenfeng Tan; Raúl Ochoa‐Hueso; Linchuan Fang;doi: 10.1111/gcb.17028
pmid: 37955302
AbstractMicrobes inhabiting deep soil layers are known to be different from their counterpart in topsoil yet remain under investigation in terms of their structure, function, and how their diversity is shaped. The microbiome of deep soils (>1 m) is expected to be relatively stable and highly independent from climatic conditions. Much less is known, however, on how these microbial communities vary along climate gradients. Here, we used amplicon sequencing to investigate bacteria, archaea, and fungi along fifteen 18‐m depth profiles at 20–50‐cm intervals across contrasting aridity conditions in semi‐arid forest ecosystems of China's Loess Plateau. Our results showed that bacterial and fungal α diversity and bacterial and archaeal community similarity declined dramatically in topsoil and remained relatively stable in deep soil. Nevertheless, deep soil microbiome still showed the functional potential of N cycling, plant‐derived organic matter degradation, resource exchange, and water coordination. The deep soil microbiome had closer taxa–taxa and bacteria–fungi associations and more influence of dispersal limitation than topsoil microbiome. Geographic distance was more influential in deep soil bacteria and archaea than in topsoil. We further showed that aridity was negatively correlated with deep‐soil archaeal and fungal richness, archaeal community similarity, relative abundance of plant saprotroph, and bacteria–fungi associations, but increased the relative abundance of aerobic ammonia oxidation, manganese oxidation, and arbuscular mycorrhizal in the deep soils. Root depth, complexity, soil volumetric moisture, and clay play bridging roles in the indirect effects of aridity on microbes in deep soils. Our work indicates that, even microbial communities and nutrient cycling in deep soil are susceptible to changes in water availability, with consequences for understanding the sustainability of dryland ecosystems and the whole‐soil in response to aridification. Moreover, we propose that neglecting soil depth may underestimate the role of soil moisture in dryland ecosystems under future climate scenarios.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio de Objetos de Docencia e Investigación de la Universidad de CádizArticle . 2023License: CC BY NC NDGlobal Change BiologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2024Data sources: Universiteit van Amsterdam Digital Academic Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 51visibility views 51 download downloads 70 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio de Objetos de Docencia e Investigación de la Universidad de CádizArticle . 2023License: CC BY NC NDGlobal Change BiologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2024Data sources: Universiteit van Amsterdam Digital Academic Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Lí, Jin-Tao; Hicks, Lettice C.; Brangarí, Albert C.; Tájmel, Dániel; Cruz-Paredes, Carla; Rousk, Johannes;Original data for the study: Lí, et al. Subarctic winter-warming promotes soil microbial resilience to freeze-thaw cycles and enhances the microbial carbon-use efficiency. This dataset mainly contains the data showing the legacy effect of field winter warming on the dynamic response of soil microbial growth, respiration, and C-use efficiency during an imposed freezing-thawing perturbation. Six sheets are included in an Excel file named "Open data for WinterWarmingFTW.xlsx" as follows: Figure1. Field temp & moist Table1. Soil variables & PLFAs Figure2. PCA of PLFAs Figure3. Bac & Fung grwoth Figure4. Resp Figure5. FB & CUE
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8307940&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8307940&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu