- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Preprint , Journal , Other literature type 2011Embargo end date: 01 Jan 2010 United States, AustraliaPublisher:EDP Sciences Publicly fundedCarl W. Akerlof; Arne Rau; B. Paciesas; Andrea Rossi; Eli S. Rykoff; Sheila McBreen; L. A. Arnold; R. Filgas; P. Afonso; Fang Yuan; Lorenzo Amati; Steve Schulze; Patricia Schady; F. E. Olivares; A. Panaitescu; D. A. Kann; Shashi B. Pandey; Shashi B. Pandey; H. A. Krimm; A. Yoldas; C. Clemens; A. Nicuesa Guelbenzu; Adria C. Updike; Adria C. Updike; Adria C. Updike; Dieter H. Hartmann; Thomas Krühler; Gudlaugur Johannesson; Timothy A. McKay; Jochen Greiner; G. P. Szokoly; A. Kupcu Yoldas; S. Klose; P. Ferrero; P. Ferrero;We present the results of a comprehensive study of the gamma-ray burst 080928 and of its afterglow. GRB 080928 was a long burst detected by Swift/BAT and Fermi/GBM. It is one of the exceptional cases where optical emission had already been detected when the GRB itself was still radiating in the gamma-ray band. For nearly 100 seconds simultaneous optical, X-ray and gamma-ray data provide a coverage of the spectral energy distribution of the transient source from about 1 eV to 150 keV. In particular, we show that the SED during the main prompt emission phase agrees with synchrotron radiation. We constructed the optical/near-infrared light curve and the spectral energy distribution based on Swift/UVOT, ROTSE-IIIa (Australia), and GROND (La Silla) data and compared it to the X-ray light curve retrieved from the Swift/XRT repository. We show that its bumpy shape can be modeled by multiple energy-injections into the forward shock.Furthermore, we investigate whether the temporal and spectral evolution of the tail emission of the first strong flare seen in the early X-ray light curve can be explained by large-angle emission (LAE). We find that a nonstandard LAE model is required to explain the observations. Finally, we report on the results of our search for the GRB host galaxy, for which only a deep upper limit can be provided. A&A, in press (including revisions according to the language editor), 14 pages, 11 figures, 7 tables; Online Appendix: 4 pages, 1 figure, 4 tables; v4: final journal version to be published soon
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/78609Data sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.48550/ar...Article . 2010License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/0004-6361/201015324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/78609Data sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.48550/ar...Article . 2010License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/0004-6361/201015324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Preprint , Journal , Other literature type 2011Embargo end date: 01 Jan 2010 United States, AustraliaPublisher:EDP Sciences Publicly fundedCarl W. Akerlof; Arne Rau; B. Paciesas; Andrea Rossi; Eli S. Rykoff; Sheila McBreen; L. A. Arnold; R. Filgas; P. Afonso; Fang Yuan; Lorenzo Amati; Steve Schulze; Patricia Schady; F. E. Olivares; A. Panaitescu; D. A. Kann; Shashi B. Pandey; Shashi B. Pandey; H. A. Krimm; A. Yoldas; C. Clemens; A. Nicuesa Guelbenzu; Adria C. Updike; Adria C. Updike; Adria C. Updike; Dieter H. Hartmann; Thomas Krühler; Gudlaugur Johannesson; Timothy A. McKay; Jochen Greiner; G. P. Szokoly; A. Kupcu Yoldas; S. Klose; P. Ferrero; P. Ferrero;We present the results of a comprehensive study of the gamma-ray burst 080928 and of its afterglow. GRB 080928 was a long burst detected by Swift/BAT and Fermi/GBM. It is one of the exceptional cases where optical emission had already been detected when the GRB itself was still radiating in the gamma-ray band. For nearly 100 seconds simultaneous optical, X-ray and gamma-ray data provide a coverage of the spectral energy distribution of the transient source from about 1 eV to 150 keV. In particular, we show that the SED during the main prompt emission phase agrees with synchrotron radiation. We constructed the optical/near-infrared light curve and the spectral energy distribution based on Swift/UVOT, ROTSE-IIIa (Australia), and GROND (La Silla) data and compared it to the X-ray light curve retrieved from the Swift/XRT repository. We show that its bumpy shape can be modeled by multiple energy-injections into the forward shock.Furthermore, we investigate whether the temporal and spectral evolution of the tail emission of the first strong flare seen in the early X-ray light curve can be explained by large-angle emission (LAE). We find that a nonstandard LAE model is required to explain the observations. Finally, we report on the results of our search for the GRB host galaxy, for which only a deep upper limit can be provided. A&A, in press (including revisions according to the language editor), 14 pages, 11 figures, 7 tables; Online Appendix: 4 pages, 1 figure, 4 tables; v4: final journal version to be published soon
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/78609Data sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.48550/ar...Article . 2010License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/0004-6361/201015324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/78609Data sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.48550/ar...Article . 2010License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/0004-6361/201015324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu