- home
- Advanced Search
- Energy Research
- 11. Sustainability
- Energy Research
- 11. Sustainability
description Publicationkeyboard_double_arrow_right Article , Journal 2019 SpainPublisher:MDPI AG Funded by:EC | IMBALANCE-PEC| IMBALANCE-PChun Wang; Qingwen Min; Abbas Ali Abid; Jordi Sardans; Honghui Wu; Derrick Yuk Fo Lai; Josep Peñuelas; Weiqi Wang;doi: 10.3390/su11041092
In agriculture, synthetic fertilizers have played a key role in enhancing food production and keeping the world’s population adequately fed. China’s participation is essential to global efforts in reducing greenhouse gas (GHG) emissions because it is the largest producer and consumer of synthetic fertilizers. A field experiment was conducted in a Jasminum sambac (L.) field to evaluate the impact different doses of fertilizers (half, standard, and double) and their combination with straw on ecosystem (including crop plants and soil) GHG emissions. The results showed that in comparison with the control or straw treatments, the straw + standard fertilizer treatment increased the soil water content. The fertilizer treatments decreased the soil pH, but the straw and combination treatments, especially the straw + standard fertilizer treatment, had higher soil pH in comparison with the fertilizer treatment. The active soil Fe (Fe2+ and Fe3+) concentration was slightly increased in the straw + standard fertilizer treatment in comparison with the control. Moreover, fertilizer increased the CO2 emission, and we detected a positive interaction between the straw application and the double fertilization dose that increased CO2 emission, but the straw + standard fertilizer treatment decreased it. Fertilizer decreased CH4 and N2O emissions, but when straw and fertilizer treatments were applied together, this increased CH4 and N2O emissions. Overall, considering the soil properties and GHG emissions, the straw + standard fertilizer treatment was the best method to enhance soil water retention capacity, improve soil acid, and mitigate greenhouse gas emissions for sustainable management of J. sambac dry croplands.
Sustainability arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019License: CC BYData sources: Diposit Digital de Documents de la UABadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11041092&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019License: CC BYData sources: Diposit Digital de Documents de la UABadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11041092&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 SpainPublisher:Elsevier BV Funded by:EC | IMBALANCE-PEC| IMBALANCE-PWang, Weiqi; Sardans i Galobart, Jordi; Lai, Derrick Y. F.; Wang, Chun; Zeng, Congsheng; Tong, Chuan; Liang, Y.; Peñuelas, Josep;Asia is responsible for over 90% of the world's rice production and hence plays a key role in safeguarding food security. With China being one of the major global producers and consumers of rice, achieving a sustainable balance in maximizing crop productivity and minimizing greenhouse gas emissions from paddy fields in this country becomes increasingly important. This study examined the effects of applying steel slag, a residual product derived from the steel industry, on crop yield and CH4 and N2O emissions over multiple growing seasons in a Chinese subtropical paddy field. Average CH4 emission was considerably higher during the periods of rice crop growth compared to that during the periods of fallowing and vegetable crop growth, regardless of the amount of steel slag applied. When compared to the controls, significantly lower mean emissions of CH4 (1.03 vs. 2.34 mg m−2 h−1) and N2O (0.41 vs. 32.43 μg m−2 h−1) were obtained in plots with slag addition at a rate of 8 Mg ha−1 over the study period. The application of slag at 8 Mg ha−1 increased crop yields by 4.2 and 9.1% for early and late rice crops, respectively, probably due to the higher availability of inorganic nutrients such as silicates and calcium from the slag. Slag addition had no significant effect on the concentrations of heavy metals in either the soil or the rice grains, although a slight increase in the levels of manganese and cobalt in the soil and a decrease in the levels of manganese and zinc in the rice grains were observed. Our results demonstrate the potential of steel slag as a soil amendment in enhancing crop yield and reducing greenhouse gas emissions in subtropical paddy fields in China, while posing no adverse short-term impacts on the concentrations of heavy metals in the soil or the rice grains. However, long-term implications of this management practice and the cost/benefit remain unknown, so further studies to assess the suitability at large scale are warranted.
Field Crops Research arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2015License: CC BY NC NDData sources: Diposit Digital de Documents de la UABadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fcr.2014.10.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 74 citations 74 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Field Crops Research arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2015License: CC BY NC NDData sources: Diposit Digital de Documents de la UABadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fcr.2014.10.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019 SpainPublisher:MDPI AG Funded by:EC | IMBALANCE-PEC| IMBALANCE-PChun Wang; Qingwen Min; Abbas Ali Abid; Jordi Sardans; Honghui Wu; Derrick Yuk Fo Lai; Josep Peñuelas; Weiqi Wang;doi: 10.3390/su11041092
In agriculture, synthetic fertilizers have played a key role in enhancing food production and keeping the world’s population adequately fed. China’s participation is essential to global efforts in reducing greenhouse gas (GHG) emissions because it is the largest producer and consumer of synthetic fertilizers. A field experiment was conducted in a Jasminum sambac (L.) field to evaluate the impact different doses of fertilizers (half, standard, and double) and their combination with straw on ecosystem (including crop plants and soil) GHG emissions. The results showed that in comparison with the control or straw treatments, the straw + standard fertilizer treatment increased the soil water content. The fertilizer treatments decreased the soil pH, but the straw and combination treatments, especially the straw + standard fertilizer treatment, had higher soil pH in comparison with the fertilizer treatment. The active soil Fe (Fe2+ and Fe3+) concentration was slightly increased in the straw + standard fertilizer treatment in comparison with the control. Moreover, fertilizer increased the CO2 emission, and we detected a positive interaction between the straw application and the double fertilization dose that increased CO2 emission, but the straw + standard fertilizer treatment decreased it. Fertilizer decreased CH4 and N2O emissions, but when straw and fertilizer treatments were applied together, this increased CH4 and N2O emissions. Overall, considering the soil properties and GHG emissions, the straw + standard fertilizer treatment was the best method to enhance soil water retention capacity, improve soil acid, and mitigate greenhouse gas emissions for sustainable management of J. sambac dry croplands.
Sustainability arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019License: CC BYData sources: Diposit Digital de Documents de la UABadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11041092&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019License: CC BYData sources: Diposit Digital de Documents de la UABadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11041092&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 SpainPublisher:Elsevier BV Funded by:EC | IMBALANCE-PEC| IMBALANCE-PWang, Weiqi; Sardans i Galobart, Jordi; Lai, Derrick Y. F.; Wang, Chun; Zeng, Congsheng; Tong, Chuan; Liang, Y.; Peñuelas, Josep;Asia is responsible for over 90% of the world's rice production and hence plays a key role in safeguarding food security. With China being one of the major global producers and consumers of rice, achieving a sustainable balance in maximizing crop productivity and minimizing greenhouse gas emissions from paddy fields in this country becomes increasingly important. This study examined the effects of applying steel slag, a residual product derived from the steel industry, on crop yield and CH4 and N2O emissions over multiple growing seasons in a Chinese subtropical paddy field. Average CH4 emission was considerably higher during the periods of rice crop growth compared to that during the periods of fallowing and vegetable crop growth, regardless of the amount of steel slag applied. When compared to the controls, significantly lower mean emissions of CH4 (1.03 vs. 2.34 mg m−2 h−1) and N2O (0.41 vs. 32.43 μg m−2 h−1) were obtained in plots with slag addition at a rate of 8 Mg ha−1 over the study period. The application of slag at 8 Mg ha−1 increased crop yields by 4.2 and 9.1% for early and late rice crops, respectively, probably due to the higher availability of inorganic nutrients such as silicates and calcium from the slag. Slag addition had no significant effect on the concentrations of heavy metals in either the soil or the rice grains, although a slight increase in the levels of manganese and cobalt in the soil and a decrease in the levels of manganese and zinc in the rice grains were observed. Our results demonstrate the potential of steel slag as a soil amendment in enhancing crop yield and reducing greenhouse gas emissions in subtropical paddy fields in China, while posing no adverse short-term impacts on the concentrations of heavy metals in the soil or the rice grains. However, long-term implications of this management practice and the cost/benefit remain unknown, so further studies to assess the suitability at large scale are warranted.
Field Crops Research arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2015License: CC BY NC NDData sources: Diposit Digital de Documents de la UABadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fcr.2014.10.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 74 citations 74 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Field Crops Research arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2015License: CC BY NC NDData sources: Diposit Digital de Documents de la UABadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fcr.2014.10.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu