- home
- Advanced Search
- Energy Research
- 2016-2025
- Energy Research
- 2016-2025
description Publicationkeyboard_double_arrow_right Article 2024 United KingdomPublisher:Elsevier BV Ping Yang; Linhai Zhang; Yongxin Lin; Hong Yang; Derrick Y.F. Lai; Chuan Tong; Yifei Zhang; Lishan Tan; Guanghui Zhao; Kam W. Tang;pmid: 38064785
Aquaculture ponds are potential hotspots for carbon cycling and emission of greenhouse gases (GHGs) like CO2 and CH4, but they are often poorly assessed in the global GHG budget. This study determined the temporal variations of CO2 and CH4 concentrations and diffusive fluxes and their environmental drivers in coastal aquaculture ponds in southeastern China over a five-year period (2017-2021). The findings indicated that CH4 flux from aquaculture ponds fluctuated markedly year-to-year, and CO2 flux varied between positive and negative between years. The coefficient of inter-annual variation of CO2 and CH4 diffusive fluxes was 168% and 127%, respectively, highlighting the importance of long-term observations to improve GHG assessment from aquaculture ponds. In addition to chlorophyll-a and dissolved oxygen as the common environmental drivers, CO2 was further regulated by total dissolved phosphorus and CH4 by dissolved organic carbon. Feed conversion ratio correlated positively with both CO2 and CH4 concentrations and fluxes, showing that unconsumed feeds fueled microbial GHG production. A linear regression based on binned (averaged) monthly CO2 diffusive flux data, calculated from CO2 concentrations, can be used to estimate CH4 diffusive flux with a fair degree of confidence (r2 = 0.66; p < 0.001). This algorithm provides a simple and practical way to assess the total carbon diffusive flux from aquaculture ponds. Overall, this study provides new insights into mitigating the carbon footprint of aquaculture production and assessing the impact of aquaculture ponds on the regional and global scales.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2023.120943&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 22 citations 22 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2023.120943&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 SpainPublisher:Public Library of Science (PLoS) Funded by:EC | IMBALANCE-PEC| IMBALANCE-PChun Wang; Derrick Y. F. Lai; Jordi Sardans; Weiqi Wang; Congsheng Zeng; Josep Peñuelas;Paddy fields are major sources of global atmospheric greenhouse gases, including methane (CH4) and nitrous oxide (N2O). The different phases previous to emission (production, transport, diffusion, dissolution in pore water and ebullition) despite well-established have rarely been measured in field conditions. We examined them and their relationships with temperature, soil traits and plant biomass in a paddy field in Fujian, southeastern China. CH4 emission was positively correlated with CH4 production, plant-mediated transport, ebullition, diffusion, and concentration of dissolved CH4 in porewater and negatively correlated with sulfate concentration, suggesting the potential use of sulfate fertilizers to mitigate CH4 release. Air temperature and humidity, plant stem biomass, and concentrations of soil sulfate, available N, and DOC together accounted for 92% of the variance in CH4 emission, and Eh, pH, and the concentrations of available N and Fe3+, leaf biomass, and air temperature 95% of the N2O emission. Given the positive correlations between CH4 emission and DOC content and plant biomass, reduce the addition of a carbon substrate such as straw and the development of smaller but higher yielding rice genotypes could be viable options for reducing the release of greenhouse gases from paddy fields to the atmosphere.
PLoS ONE arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2017License: CC BYData sources: Diposit Digital de Documents de la UABhttp://dx.doi.org/10.1371/jour...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0169254&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 80 citations 80 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert PLoS ONE arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2017License: CC BYData sources: Diposit Digital de Documents de la UABhttp://dx.doi.org/10.1371/jour...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0169254&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 AustriaPublisher:Elsevier BV Viktor J. Bruckman; Jinglan Cui; Stephan Glatzel; Derrick Y.F. Lai; Baozhan Wang;pmid: 33636794
Biochar management has been proposed as a promising strategy to mitigate climate change. However, the long-term effects of biochar amendment on soil greenhouse gas (GHG) production and microbial community in forest ecosystems under projected warming remain highly uncertain. In this study, we conducted a 49-day incubation experiment to investigate the impact of biochar application on soil physico-chemical properties, GHG production rates, and microbial community at three temperature levels using a temperate forest soil amended with spruce biochar four years ago. Our results showed that temperature exerted a positive effect on soil CO2, CH4 and N2O production, leading to an increase in total global warming potential by 169% and 87% as temperature rose from 5 to 15 °C and from 15 to 25 °C, respectively, and thus a positive feedback to warming. Moreover, warming was found to reduce soil microbial biomass significantly, but at the same time promote the selection of an activated microbial community towards some phyla, e.g. Acidobacteria and Actinobacteria. We observed that biochar amendment reduced soil CH4 consumption and N2O production in the absence of litter by 106% and 94%, respectively, but did not affect soil CO2 production. While biochar had no significant influence of total global warming potential of forest soil, it could promote climate change mitigation by increasing the total soil carbon content by 26% in the presence of litter. In addition, biochar application was shown to enhance soil available phosphorus and dissolved organic carbon concentrations, as well as soil microbial biomass under a warmer environment. Our findings highlighted the potential of spruce biochar as a soil amendment in improving soil fertility and carbon sequestration in temperate forest over the long term, without creating any adverse climatic impacts associated with soil GHG production.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.145021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Top 10% influence Average impulse Top 1% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.145021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 SpainPublisher:MDPI AG Funded by:EC | IMBALANCE-PEC| IMBALANCE-PChun Wang; Qingwen Min; Abbas Ali Abid; Jordi Sardans; Honghui Wu; Derrick Yuk Fo Lai; Josep Peñuelas; Weiqi Wang;doi: 10.3390/su11041092
In agriculture, synthetic fertilizers have played a key role in enhancing food production and keeping the world’s population adequately fed. China’s participation is essential to global efforts in reducing greenhouse gas (GHG) emissions because it is the largest producer and consumer of synthetic fertilizers. A field experiment was conducted in a Jasminum sambac (L.) field to evaluate the impact different doses of fertilizers (half, standard, and double) and their combination with straw on ecosystem (including crop plants and soil) GHG emissions. The results showed that in comparison with the control or straw treatments, the straw + standard fertilizer treatment increased the soil water content. The fertilizer treatments decreased the soil pH, but the straw and combination treatments, especially the straw + standard fertilizer treatment, had higher soil pH in comparison with the fertilizer treatment. The active soil Fe (Fe2+ and Fe3+) concentration was slightly increased in the straw + standard fertilizer treatment in comparison with the control. Moreover, fertilizer increased the CO2 emission, and we detected a positive interaction between the straw application and the double fertilization dose that increased CO2 emission, but the straw + standard fertilizer treatment decreased it. Fertilizer decreased CH4 and N2O emissions, but when straw and fertilizer treatments were applied together, this increased CH4 and N2O emissions. Overall, considering the soil properties and GHG emissions, the straw + standard fertilizer treatment was the best method to enhance soil water retention capacity, improve soil acid, and mitigate greenhouse gas emissions for sustainable management of J. sambac dry croplands.
Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/11/4/1092/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019License: CC BYData sources: Diposit Digital de Documents de la UABadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11041092&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/11/4/1092/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019License: CC BYData sources: Diposit Digital de Documents de la UABadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11041092&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Jiaxing Xu; Derrick Y. F. Lai; Suvadip Neogi;doi: 10.3390/w12071856
Changes in land use types can alter the soil and environmental characteristics of wetlands, which in turn influence the magnitude of greenhouse gas production by soil microbes. However, the effects of land use change on the production potential of methane (CH4) and carbon dioxide (CO2) in subtropical wetland soils and the underlying controls are still largely unknown. In this study, we examined the soil CH4 and CO2 production potentials under five different land use types (natural mangrove, Gei Wai water channel, Gei Wai forest, reedbed, and freshwater pond) and their relationships with soil physico-chemical properties in a subtropical wetland in Hong Kong using aerobic and anaerobic laboratory incubation experiments. Our results showed an overall decreasing trend of CH4 and CO2 production potentials down the soil profile at all sites, which could be attributed to a reduction in the concentrations of soil organic matter (SOM), total Kjeldahl nitrogen (TKN) and ammonium nitrogen (NH4+-N). Moreover, the soil CH4 and CO2 production potentials varied significantly in the surface soils among land use types, but were more similar across the sites in the deeper soils. The conversion of natural mangrove to other land use types significantly reduced both the aerobic and anaerobic CO2 production potentials in the top 10 cm soils, except for Gei Wai forest, which demonstrated significantly higher CO2 production rates (61.15–97.91 μg g−1 day−1). Meanwhile, the mean CH4 production potential in the surface soils of natural mangrove (0.05 μg g−1 d−1) was significantly lower than that in the Gei Wai forest and Gei Wai channel (0.26–0.27 μg g−1 day−1) but slightly higher than that in the freshwater pond and reedbed (0.00–0.02 μg g−1 day−1). The high soil CH4 and CO2 production potentials observed in the Gei Wai forest could be explained by the high soil concentrations of SOM, TKN and NH4+-N. On the other hand, the lower anaerobic CH4 and aerobic CO2 productions observed in the reedbed could be attributed to the lower concentrations of NH4+-N and available phosphorus. Our findings highlighted the significant impacts of land use types on the CH4 and CO2 production potentials of subtropical wetland soils, which had practical implications for wetland management for climate change mitigation.
Water arrow_drop_down WaterOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4441/12/7/1856/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w12071856&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Water arrow_drop_down WaterOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4441/12/7/1856/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w12071856&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2024 United KingdomPublisher:Elsevier BV Ping Yang; Linhai Zhang; Yongxin Lin; Hong Yang; Derrick Y.F. Lai; Chuan Tong; Yifei Zhang; Lishan Tan; Guanghui Zhao; Kam W. Tang;pmid: 38064785
Aquaculture ponds are potential hotspots for carbon cycling and emission of greenhouse gases (GHGs) like CO2 and CH4, but they are often poorly assessed in the global GHG budget. This study determined the temporal variations of CO2 and CH4 concentrations and diffusive fluxes and their environmental drivers in coastal aquaculture ponds in southeastern China over a five-year period (2017-2021). The findings indicated that CH4 flux from aquaculture ponds fluctuated markedly year-to-year, and CO2 flux varied between positive and negative between years. The coefficient of inter-annual variation of CO2 and CH4 diffusive fluxes was 168% and 127%, respectively, highlighting the importance of long-term observations to improve GHG assessment from aquaculture ponds. In addition to chlorophyll-a and dissolved oxygen as the common environmental drivers, CO2 was further regulated by total dissolved phosphorus and CH4 by dissolved organic carbon. Feed conversion ratio correlated positively with both CO2 and CH4 concentrations and fluxes, showing that unconsumed feeds fueled microbial GHG production. A linear regression based on binned (averaged) monthly CO2 diffusive flux data, calculated from CO2 concentrations, can be used to estimate CH4 diffusive flux with a fair degree of confidence (r2 = 0.66; p < 0.001). This algorithm provides a simple and practical way to assess the total carbon diffusive flux from aquaculture ponds. Overall, this study provides new insights into mitigating the carbon footprint of aquaculture production and assessing the impact of aquaculture ponds on the regional and global scales.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2023.120943&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 22 citations 22 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2023.120943&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 SpainPublisher:Public Library of Science (PLoS) Funded by:EC | IMBALANCE-PEC| IMBALANCE-PChun Wang; Derrick Y. F. Lai; Jordi Sardans; Weiqi Wang; Congsheng Zeng; Josep Peñuelas;Paddy fields are major sources of global atmospheric greenhouse gases, including methane (CH4) and nitrous oxide (N2O). The different phases previous to emission (production, transport, diffusion, dissolution in pore water and ebullition) despite well-established have rarely been measured in field conditions. We examined them and their relationships with temperature, soil traits and plant biomass in a paddy field in Fujian, southeastern China. CH4 emission was positively correlated with CH4 production, plant-mediated transport, ebullition, diffusion, and concentration of dissolved CH4 in porewater and negatively correlated with sulfate concentration, suggesting the potential use of sulfate fertilizers to mitigate CH4 release. Air temperature and humidity, plant stem biomass, and concentrations of soil sulfate, available N, and DOC together accounted for 92% of the variance in CH4 emission, and Eh, pH, and the concentrations of available N and Fe3+, leaf biomass, and air temperature 95% of the N2O emission. Given the positive correlations between CH4 emission and DOC content and plant biomass, reduce the addition of a carbon substrate such as straw and the development of smaller but higher yielding rice genotypes could be viable options for reducing the release of greenhouse gases from paddy fields to the atmosphere.
PLoS ONE arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2017License: CC BYData sources: Diposit Digital de Documents de la UABhttp://dx.doi.org/10.1371/jour...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0169254&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 80 citations 80 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert PLoS ONE arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2017License: CC BYData sources: Diposit Digital de Documents de la UABhttp://dx.doi.org/10.1371/jour...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0169254&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 AustriaPublisher:Elsevier BV Viktor J. Bruckman; Jinglan Cui; Stephan Glatzel; Derrick Y.F. Lai; Baozhan Wang;pmid: 33636794
Biochar management has been proposed as a promising strategy to mitigate climate change. However, the long-term effects of biochar amendment on soil greenhouse gas (GHG) production and microbial community in forest ecosystems under projected warming remain highly uncertain. In this study, we conducted a 49-day incubation experiment to investigate the impact of biochar application on soil physico-chemical properties, GHG production rates, and microbial community at three temperature levels using a temperate forest soil amended with spruce biochar four years ago. Our results showed that temperature exerted a positive effect on soil CO2, CH4 and N2O production, leading to an increase in total global warming potential by 169% and 87% as temperature rose from 5 to 15 °C and from 15 to 25 °C, respectively, and thus a positive feedback to warming. Moreover, warming was found to reduce soil microbial biomass significantly, but at the same time promote the selection of an activated microbial community towards some phyla, e.g. Acidobacteria and Actinobacteria. We observed that biochar amendment reduced soil CH4 consumption and N2O production in the absence of litter by 106% and 94%, respectively, but did not affect soil CO2 production. While biochar had no significant influence of total global warming potential of forest soil, it could promote climate change mitigation by increasing the total soil carbon content by 26% in the presence of litter. In addition, biochar application was shown to enhance soil available phosphorus and dissolved organic carbon concentrations, as well as soil microbial biomass under a warmer environment. Our findings highlighted the potential of spruce biochar as a soil amendment in improving soil fertility and carbon sequestration in temperate forest over the long term, without creating any adverse climatic impacts associated with soil GHG production.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.145021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Top 10% influence Average impulse Top 1% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.145021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 SpainPublisher:MDPI AG Funded by:EC | IMBALANCE-PEC| IMBALANCE-PChun Wang; Qingwen Min; Abbas Ali Abid; Jordi Sardans; Honghui Wu; Derrick Yuk Fo Lai; Josep Peñuelas; Weiqi Wang;doi: 10.3390/su11041092
In agriculture, synthetic fertilizers have played a key role in enhancing food production and keeping the world’s population adequately fed. China’s participation is essential to global efforts in reducing greenhouse gas (GHG) emissions because it is the largest producer and consumer of synthetic fertilizers. A field experiment was conducted in a Jasminum sambac (L.) field to evaluate the impact different doses of fertilizers (half, standard, and double) and their combination with straw on ecosystem (including crop plants and soil) GHG emissions. The results showed that in comparison with the control or straw treatments, the straw + standard fertilizer treatment increased the soil water content. The fertilizer treatments decreased the soil pH, but the straw and combination treatments, especially the straw + standard fertilizer treatment, had higher soil pH in comparison with the fertilizer treatment. The active soil Fe (Fe2+ and Fe3+) concentration was slightly increased in the straw + standard fertilizer treatment in comparison with the control. Moreover, fertilizer increased the CO2 emission, and we detected a positive interaction between the straw application and the double fertilization dose that increased CO2 emission, but the straw + standard fertilizer treatment decreased it. Fertilizer decreased CH4 and N2O emissions, but when straw and fertilizer treatments were applied together, this increased CH4 and N2O emissions. Overall, considering the soil properties and GHG emissions, the straw + standard fertilizer treatment was the best method to enhance soil water retention capacity, improve soil acid, and mitigate greenhouse gas emissions for sustainable management of J. sambac dry croplands.
Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/11/4/1092/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019License: CC BYData sources: Diposit Digital de Documents de la UABadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11041092&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/11/4/1092/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019License: CC BYData sources: Diposit Digital de Documents de la UABadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11041092&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Jiaxing Xu; Derrick Y. F. Lai; Suvadip Neogi;doi: 10.3390/w12071856
Changes in land use types can alter the soil and environmental characteristics of wetlands, which in turn influence the magnitude of greenhouse gas production by soil microbes. However, the effects of land use change on the production potential of methane (CH4) and carbon dioxide (CO2) in subtropical wetland soils and the underlying controls are still largely unknown. In this study, we examined the soil CH4 and CO2 production potentials under five different land use types (natural mangrove, Gei Wai water channel, Gei Wai forest, reedbed, and freshwater pond) and their relationships with soil physico-chemical properties in a subtropical wetland in Hong Kong using aerobic and anaerobic laboratory incubation experiments. Our results showed an overall decreasing trend of CH4 and CO2 production potentials down the soil profile at all sites, which could be attributed to a reduction in the concentrations of soil organic matter (SOM), total Kjeldahl nitrogen (TKN) and ammonium nitrogen (NH4+-N). Moreover, the soil CH4 and CO2 production potentials varied significantly in the surface soils among land use types, but were more similar across the sites in the deeper soils. The conversion of natural mangrove to other land use types significantly reduced both the aerobic and anaerobic CO2 production potentials in the top 10 cm soils, except for Gei Wai forest, which demonstrated significantly higher CO2 production rates (61.15–97.91 μg g−1 day−1). Meanwhile, the mean CH4 production potential in the surface soils of natural mangrove (0.05 μg g−1 d−1) was significantly lower than that in the Gei Wai forest and Gei Wai channel (0.26–0.27 μg g−1 day−1) but slightly higher than that in the freshwater pond and reedbed (0.00–0.02 μg g−1 day−1). The high soil CH4 and CO2 production potentials observed in the Gei Wai forest could be explained by the high soil concentrations of SOM, TKN and NH4+-N. On the other hand, the lower anaerobic CH4 and aerobic CO2 productions observed in the reedbed could be attributed to the lower concentrations of NH4+-N and available phosphorus. Our findings highlighted the significant impacts of land use types on the CH4 and CO2 production potentials of subtropical wetland soils, which had practical implications for wetland management for climate change mitigation.
Water arrow_drop_down WaterOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4441/12/7/1856/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w12071856&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Water arrow_drop_down WaterOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4441/12/7/1856/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w12071856&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu