- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2018 France, IrelandPublisher:Elsevier BV Publicly fundedFunded by:SNSF | Thermo-electrochemistry f..., EC | nanoOIPC, EC | SOFT-PHOTOCONVERSION +1 projectsSNSF| Thermo-electrochemistry for energy applications: Heat-to-Power copper batteries ,EC| nanoOIPC ,EC| SOFT-PHOTOCONVERSION ,SFI| Designing Reactive Functionalised Soft Interfaces – Self-healing soft materials for solar energy conversion, energy storage, and sustainable low cost hydrogen productionAuthors: Peljo, Pekka; Scanlon, Micheál D.; Stockmann, T. Jane;Summary Simulated curves compared to recorded data have provided a breadth of insight into mechanisms and kinetic aspects of charge transfer at the liquid|liquid interface (LLI). This is often performed with software employing finite element methods (FEMs). The advent and application of this asset to soft interfacial chemistry has allowed a more facile exploration of geometric considerations, the role of interfacial size (from macro to nano), while simultaneously expanding to include homo/heterogeneous reactions such as electrocatalytic, photochemical, nanoparticle interactions, etc. This article provides insight into the status of the field of LLI FEM studies as well as a perspective as to what role simulations and numerical analysis will play in the future.
Hyper Article en Lig... arrow_drop_down Current Opinion in ElectrochemistryArticle . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefUniversity of Limerick Institutional RepositoryArticle . 2018 . Peer-reviewedData sources: University of Limerick Institutional RepositoryCurrent Opinion in ElectrochemistryArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.coelec.2017.09.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Current Opinion in ElectrochemistryArticle . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefUniversity of Limerick Institutional RepositoryArticle . 2018 . Peer-reviewedData sources: University of Limerick Institutional RepositoryCurrent Opinion in ElectrochemistryArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.coelec.2017.09.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2016 IrelandPublisher:Wiley Publicly fundedFunded by:SFI | Designing Reactive Functi...SFI| Designing Reactive Functionalised Soft Interfaces – Self-healing soft materials for solar energy conversion, energy storage, and sustainable low cost hydrogen productionAuthors: Hidalgo-Acosta, Jonnathan C.; Scanlon, Micheál D.; Méndez, Manuel A.; Peljo, Pekka; +3 AuthorsHidalgo-Acosta, Jonnathan C.; Scanlon, Micheál D.; Méndez, Manuel A.; Peljo, Pekka; Opallo, Marcin; Girault, Hubert H.; Girault, Hubert H.;AbstractThe water oxidation process in acidified water/acetonitrile mixtures was studied by cyclic voltammetry using fluorinated tin oxide (FTO) electrodes modified layer‐by‐layer with deposited bilayers of positively charged poly(diallyldimethylammonium chloride) (PDDA) polymer and negatively charged citrate‐stabilized iridium oxide (IrO2) nanoparticles. The voltammetric profiles obtained at high water contents resemble those in aqueous media and remain approximately unchanged. However, as the water content decreases below a water mole fraction (XH2O) of 0.6, a tipping point is reached and the onset potential for water oxidation gradually decreases. This reflects an enhanced reactivity, and therefore lower overpotential, of water molecules towards oxidation in water/acetonitrile mixtures. These lower kinetic barriers towards water oxidation are rationalized based on the degradation of the hydrogen bond network upon the formation of water/acetonitrile mixtures. Thus, as the ice‐like structure of neat water transitions to clusters and low‐bonded oligomers, these water molecules in more “free” states exhibit an enhanced susceptibility to water oxidation.
ChemElectroChem arrow_drop_down University of Limerick Institutional RepositoryArticle . 2016 . Peer-reviewedData sources: University of Limerick Institutional RepositoryChemElectroChemArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/celc.201600190&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Average influence Average impulse Average Powered by BIP!
more_vert ChemElectroChem arrow_drop_down University of Limerick Institutional RepositoryArticle . 2016 . Peer-reviewedData sources: University of Limerick Institutional RepositoryChemElectroChemArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/celc.201600190&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Review 2023 France, Spain, IrelandPublisher:Elsevier BV Publicly fundedFunded by:IRC, EC | SoftBioArt, EC | SOFT-PHOTOCONVERSION +3 projectsIRC ,EC| SoftBioArt ,EC| SOFT-PHOTOCONVERSION ,EC| Bi3BoostFlowBat ,AKA| Photoproduction of hydrogen in biphasic systems with electron donor recycling ,AKA| Development and in operando characterization of solid redox boosters for high energy density redox flow batteries (redoxSolid Flow)Authors: Gamero-Quijano, Alonso; Herzog, Grégoire; Peljo, Pekka; Scanlon, Micheál D.;Electrocatalysis at the interface between two immiscible elec?trolyte solutions (ITIES) is an emerging field of research, which allows the separation of reactants according to their lipophilicity. Electrocatalysts of various natures (noble metals, carbon-based and inorganic nanomaterials, enzymes, and supramolecular ensembles) are assembled at the ITIES, either spontaneously or following the application of an interfacial Galvani potential difference. While primarily used for the electrocatalysis of the oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER), recent work has focused on the electrocatalysis of the oxygen evolution reaction (OER) and the electrocatalytic oxidation of elemental sulfur (S8) and an organosulfur compound. Protocols to compare electrocatalytic performances at the ITIES call for careful data analysis and a detailed knowledge of the catalyst’s morphological parameters (e.g., active surface area and catalyst loading). However, standardisation of such protocols at the ITIES has yet to be implemented and is required to allow better comparison of the results from individual biphasic systems.
Current Opinion in E... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Limerick Research RepositoryArticle . 2023License: CC BY NC SAData sources: University of Limerick Research RepositoryRepositorio Institucional de la Universidad de AlicanteArticle . 2023Data sources: Repositorio Institucional de la Universidad de AlicanteCurrent Opinion in ElectrochemistryArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttps://dx.doi.org/10.34961/re...Other literature type . 2023License: CC BY NC SAData sources: Datacitehttps://dx.doi.org/10.34961/re...Other literature type . 2023License: CC BY NC SAData sources: DataciteCurrent Opinion in ElectrochemistryArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.coelec.2023.101212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 7visibility views 7 download downloads 7 Powered bymore_vert Current Opinion in E... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Limerick Research RepositoryArticle . 2023License: CC BY NC SAData sources: University of Limerick Research RepositoryRepositorio Institucional de la Universidad de AlicanteArticle . 2023Data sources: Repositorio Institucional de la Universidad de AlicanteCurrent Opinion in ElectrochemistryArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttps://dx.doi.org/10.34961/re...Other literature type . 2023License: CC BY NC SAData sources: Datacitehttps://dx.doi.org/10.34961/re...Other literature type . 2023License: CC BY NC SAData sources: DataciteCurrent Opinion in ElectrochemistryArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.coelec.2023.101212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Funded by:AKA | Development and in operan..., EC | Bi3BoostFlowBatAKA| Development and in operando characterization of solid redox boosters for high energy density redox flow batteries (redoxSolid Flow) ,EC| Bi3BoostFlowBatAuthors: Battistel, Alberto; Peljo, Pekka;Abstract Given the ever-growing awareness on global warming, much interest has focused on new and effective ways to manage energy, especially by harvesting and exploiting low-temperature heat sources, ubiquitous in the modern environment. Here, the holy grail is the direct conversion of heat into electricity especially using thermoelectric devices, and in this contribution, we focus on thermoelectrochemical systems. We give a brief overview of the most common thermally regenerative electrochemical cells developed nowadays with a short overview of their thermodynamic derivation, and we collect some of the most recent results in terms of their thermoelectrochemical properties, in particular, their temperature coefficients. We see that although the most used redox couples are based on Fe3+/Fe2+ and their derivates, thermodiffusion effects and other entropy-related phenomena are attracting the attention of the scientific community and boosting astonishing results. On the other hand, thermally regenerative batteries are emerging, showing modest performance.
ZENODO arrow_drop_down Current Opinion in ElectrochemistryArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefCurrent Opinion in ElectrochemistryArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.coelec.2021.100853&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 2visibility views 2 download downloads 22 Powered bymore_vert ZENODO arrow_drop_down Current Opinion in ElectrochemistryArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefCurrent Opinion in ElectrochemistryArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.coelec.2021.100853&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 FinlandPublisher:Royal Society of Chemistry (RSC) Funded by:AKA | Multidimensional engineer..., EC | Bi3BoostFlowBatAKA| Multidimensional engineering for the circular economy of energy storage devices (HYPER-SPHERE) ,EC| Bi3BoostFlowBatNeha Garg; Simo Pekkinen; Eduardo Martínez González; Rodrigo Serna-Guerrero; Pekka Peljo; Annukka Santasalo-Aarnio;The safe recycling of spent LIBs is challenging, as they often contain residual energy. Left untreated, this can trigger a thermal runaway and result in disaster during the recycling process. Electrochemical discharge method is an easy and inexpensive method to eliminate this hazard.
Sustainable Energy &... arrow_drop_down Aaltodoc Publication ArchiveArticle . 2024 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4se00125g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainable Energy &... arrow_drop_down Aaltodoc Publication ArchiveArticle . 2024 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4se00125g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 SwitzerlandPublisher:Royal Society of Chemistry (RSC) Authors: Pekka Peljo; Hubert H. Girault;doi: 10.1039/c8ee01286e
Electrolyte stability is governed by its oxidation and reduction potentials, not by the energy levels of its HOMO and LUMO.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2018 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8ee01286e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu393 citations 393 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2018 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8ee01286e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 SwitzerlandPublisher:American Chemical Society (ACS) Publicly fundedFunded by:SFI | Designing Reactive Functi..., SNSF | Solar Fuels 2 - Hydrogen ...SFI| Designing Reactive Functionalised Soft Interfaces – Self-healing soft materials for solar energy conversion, energy storage, and sustainable low cost hydrogen production ,SNSF| Solar Fuels 2 - Hydrogen evolution at soft interfaces and Carbon dioxide reduction in supercritical mediaLucie Rivier; Micheál D. Scanlon; Micheál D. Scanlon; Hubert H. Girault; Pekka Peljo; T. Jane Stockmann; T. Jane Stockmann; Marcin Opallo; Manuel A. Méndez;The formation and the dissociation of metal hydrides are key steps within the hydrogen evolution reaction (HER) pathway for photochemical water splitting, but also impacts a wide range of other catalytic, industrial, and biochemical reactions. Herein, we describe our recent work studying HER at the interface between two immiscible electrolyte solutions (ITIES), between water|1,2-dichloroethane. This is a unique platform for evaluating the kinetics/thermodynamics for metallocene hydride formation using decamethylruthenocene. In this approach, an aqueous acid serves as the proton source and is pumped across the ITIES via an externally applied potential or the use of a phase transfer catalyst. Simulated curves developed using COMSOL Multiphysics software and compared to experimental ones, indicate a modified EC′ (electrochemical–chemical) mechanism for the decamethylruthenocene hydride formation. In the proposed pathway, decamethylruthenocene hydride is metastable in 1,2-dichloroethane and persists on the ti...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.jpcc.5b08148&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.jpcc.5b08148&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Funded by:EC | SOFT-PHOTOCONVERSION, EC | Bi3BoostFlowBatEC| SOFT-PHOTOCONVERSION ,EC| Bi3BoostFlowBatAuthors: Gamero-Quijano, Alonso; Herzog, Grégoire; Peljo, Pekka; Scanlon, Micheál D.;A.G.-Q. acknowledges funding received from an Irish Research Council (IRC) Government of Ireland Postdoctoral Fellowship Award (grant no. GOIPD/2018/252) and a Marie Skłodowska-Curie Postdoctoral Fellowship (grant no. MSCA-IF-EF-ST 2020/101018277). P.P. acknowledges funding from the Academy Research Fellow funding and project funding by the Academy of Finland (Grants No. 315739 and 334828). This is a dataset used to prepare Figure 4 in the review "Electrocatalysis at the Polarised Interface between Two Immiscible Electrolyte Solutions", prepared for the journal Current Opinion in Electrochemistry.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7400926&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 9visibility views 9 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7400926&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Finland, SpainPublisher:American Chemical Society (ACS) Funded by:EC | Bi3BoostFlowBat, AKA | Photoproduction of hydrog..., AKA | Development and in operan... +1 projectsEC| Bi3BoostFlowBat ,AKA| Photoproduction of hydrogen in biphasic systems with electron donor recycling ,AKA| Development and in operando characterization of solid redox boosters for high energy density redox flow batteries (redoxSolid Flow) ,EC| HIGREEWAsenjo-Pascual, Juan; Wiberg, Cedrik; Shahsavan, Mahsa; Salmeron-Sanchez, Ivan; Mauleon, Pablo; Aviles Moreno, Juan Ramon; Ocon, Pilar; Peljo, Pekka;A new highly soluble triazine derivative (SPr)34TpyTz showing three reversible redox processes with fast kinetics and high diffusion coefficients has been synthesized using an efficient, low-cost, and straightforward synthetic route. Concentrated single cell tests and DFT studies reveal a tendency of the reduced triazine species to form aggregates which could be avoided by tuning the supporting electrolyte concentration. Under the right conditions, (SPr)34TpyTz shows no capacity decay and good Coulombic, voltage, and energy efficiencies for the storage of two electrons. The storage of further electrons leads to a higher capacity decay and an increase of the electrolyte pH, suggesting the irreversible protonation of the generated species. So, a plausible mechanism has been proposed. A higher concentration of (SPr)34TpyTz shows slightly higher capacity decay and lower efficiencies due to the aggregate formation.
ACS Applied Material... arrow_drop_down ACS Applied Materials & InterfacesArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAACS Applied Materials & InterfacesArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsami.3c05850&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert ACS Applied Material... arrow_drop_down ACS Applied Materials & InterfacesArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAACS Applied Materials & InterfacesArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsami.3c05850&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Switzerland, IrelandPublisher:American Chemical Society (ACS) Publicly fundedFunded by:SFI | Designing Reactive Functi..., SNSF | Thermo-electrochemistry f...SFI| Designing Reactive Functionalised Soft Interfaces – Self-healing soft materials for solar energy conversion, energy storage, and sustainable low cost hydrogen production ,SNSF| Thermo-electrochemistry for energy applications: Heat-to-Power copper batteriesPekka Peljo; Micheál D. Scanlon; Astrid J. Olaya; Lucie Rivier; Evgeny Smirnov; Hubert H. Girault;pmid: 28707892
Redox electrocatalysis (catalysis of electron-transfer reactions by floating conductive particles) is discussed from the point-of-view of Fermi level equilibration, and an overall theoretical framework is given. Examples of redox electrocatalysis in solution, in bipolar configuration, and at liquid-liquid interfaces are provided, highlighting that bipolar and liquid-liquid interfacial systems allow the study of the electrocatalytic properties of particles without effects from the support, but only liquid-liquid interfaces allow measurement of the electrocatalytic current directly. Additionally, photoinduced redox electrocatalysis will be of interest, for example, to achieve water splitting.
The Journal of Physi... arrow_drop_down University of Limerick Institutional RepositoryArticle . 2017 . Peer-reviewedData sources: University of Limerick Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.jpclett.7b00685&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 46 citations 46 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The Journal of Physi... arrow_drop_down University of Limerick Institutional RepositoryArticle . 2017 . Peer-reviewedData sources: University of Limerick Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.jpclett.7b00685&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018 France, IrelandPublisher:Elsevier BV Publicly fundedFunded by:SNSF | Thermo-electrochemistry f..., EC | nanoOIPC, EC | SOFT-PHOTOCONVERSION +1 projectsSNSF| Thermo-electrochemistry for energy applications: Heat-to-Power copper batteries ,EC| nanoOIPC ,EC| SOFT-PHOTOCONVERSION ,SFI| Designing Reactive Functionalised Soft Interfaces – Self-healing soft materials for solar energy conversion, energy storage, and sustainable low cost hydrogen productionAuthors: Peljo, Pekka; Scanlon, Micheál D.; Stockmann, T. Jane;Summary Simulated curves compared to recorded data have provided a breadth of insight into mechanisms and kinetic aspects of charge transfer at the liquid|liquid interface (LLI). This is often performed with software employing finite element methods (FEMs). The advent and application of this asset to soft interfacial chemistry has allowed a more facile exploration of geometric considerations, the role of interfacial size (from macro to nano), while simultaneously expanding to include homo/heterogeneous reactions such as electrocatalytic, photochemical, nanoparticle interactions, etc. This article provides insight into the status of the field of LLI FEM studies as well as a perspective as to what role simulations and numerical analysis will play in the future.
Hyper Article en Lig... arrow_drop_down Current Opinion in ElectrochemistryArticle . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefUniversity of Limerick Institutional RepositoryArticle . 2018 . Peer-reviewedData sources: University of Limerick Institutional RepositoryCurrent Opinion in ElectrochemistryArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.coelec.2017.09.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Current Opinion in ElectrochemistryArticle . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefUniversity of Limerick Institutional RepositoryArticle . 2018 . Peer-reviewedData sources: University of Limerick Institutional RepositoryCurrent Opinion in ElectrochemistryArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.coelec.2017.09.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2016 IrelandPublisher:Wiley Publicly fundedFunded by:SFI | Designing Reactive Functi...SFI| Designing Reactive Functionalised Soft Interfaces – Self-healing soft materials for solar energy conversion, energy storage, and sustainable low cost hydrogen productionAuthors: Hidalgo-Acosta, Jonnathan C.; Scanlon, Micheál D.; Méndez, Manuel A.; Peljo, Pekka; +3 AuthorsHidalgo-Acosta, Jonnathan C.; Scanlon, Micheál D.; Méndez, Manuel A.; Peljo, Pekka; Opallo, Marcin; Girault, Hubert H.; Girault, Hubert H.;AbstractThe water oxidation process in acidified water/acetonitrile mixtures was studied by cyclic voltammetry using fluorinated tin oxide (FTO) electrodes modified layer‐by‐layer with deposited bilayers of positively charged poly(diallyldimethylammonium chloride) (PDDA) polymer and negatively charged citrate‐stabilized iridium oxide (IrO2) nanoparticles. The voltammetric profiles obtained at high water contents resemble those in aqueous media and remain approximately unchanged. However, as the water content decreases below a water mole fraction (XH2O) of 0.6, a tipping point is reached and the onset potential for water oxidation gradually decreases. This reflects an enhanced reactivity, and therefore lower overpotential, of water molecules towards oxidation in water/acetonitrile mixtures. These lower kinetic barriers towards water oxidation are rationalized based on the degradation of the hydrogen bond network upon the formation of water/acetonitrile mixtures. Thus, as the ice‐like structure of neat water transitions to clusters and low‐bonded oligomers, these water molecules in more “free” states exhibit an enhanced susceptibility to water oxidation.
ChemElectroChem arrow_drop_down University of Limerick Institutional RepositoryArticle . 2016 . Peer-reviewedData sources: University of Limerick Institutional RepositoryChemElectroChemArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/celc.201600190&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Average influence Average impulse Average Powered by BIP!
more_vert ChemElectroChem arrow_drop_down University of Limerick Institutional RepositoryArticle . 2016 . Peer-reviewedData sources: University of Limerick Institutional RepositoryChemElectroChemArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/celc.201600190&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Review 2023 France, Spain, IrelandPublisher:Elsevier BV Publicly fundedFunded by:IRC, EC | SoftBioArt, EC | SOFT-PHOTOCONVERSION +3 projectsIRC ,EC| SoftBioArt ,EC| SOFT-PHOTOCONVERSION ,EC| Bi3BoostFlowBat ,AKA| Photoproduction of hydrogen in biphasic systems with electron donor recycling ,AKA| Development and in operando characterization of solid redox boosters for high energy density redox flow batteries (redoxSolid Flow)Authors: Gamero-Quijano, Alonso; Herzog, Grégoire; Peljo, Pekka; Scanlon, Micheál D.;Electrocatalysis at the interface between two immiscible elec?trolyte solutions (ITIES) is an emerging field of research, which allows the separation of reactants according to their lipophilicity. Electrocatalysts of various natures (noble metals, carbon-based and inorganic nanomaterials, enzymes, and supramolecular ensembles) are assembled at the ITIES, either spontaneously or following the application of an interfacial Galvani potential difference. While primarily used for the electrocatalysis of the oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER), recent work has focused on the electrocatalysis of the oxygen evolution reaction (OER) and the electrocatalytic oxidation of elemental sulfur (S8) and an organosulfur compound. Protocols to compare electrocatalytic performances at the ITIES call for careful data analysis and a detailed knowledge of the catalyst’s morphological parameters (e.g., active surface area and catalyst loading). However, standardisation of such protocols at the ITIES has yet to be implemented and is required to allow better comparison of the results from individual biphasic systems.
Current Opinion in E... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Limerick Research RepositoryArticle . 2023License: CC BY NC SAData sources: University of Limerick Research RepositoryRepositorio Institucional de la Universidad de AlicanteArticle . 2023Data sources: Repositorio Institucional de la Universidad de AlicanteCurrent Opinion in ElectrochemistryArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttps://dx.doi.org/10.34961/re...Other literature type . 2023License: CC BY NC SAData sources: Datacitehttps://dx.doi.org/10.34961/re...Other literature type . 2023License: CC BY NC SAData sources: DataciteCurrent Opinion in ElectrochemistryArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.coelec.2023.101212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 7visibility views 7 download downloads 7 Powered bymore_vert Current Opinion in E... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Limerick Research RepositoryArticle . 2023License: CC BY NC SAData sources: University of Limerick Research RepositoryRepositorio Institucional de la Universidad de AlicanteArticle . 2023Data sources: Repositorio Institucional de la Universidad de AlicanteCurrent Opinion in ElectrochemistryArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttps://dx.doi.org/10.34961/re...Other literature type . 2023License: CC BY NC SAData sources: Datacitehttps://dx.doi.org/10.34961/re...Other literature type . 2023License: CC BY NC SAData sources: DataciteCurrent Opinion in ElectrochemistryArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.coelec.2023.101212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Funded by:AKA | Development and in operan..., EC | Bi3BoostFlowBatAKA| Development and in operando characterization of solid redox boosters for high energy density redox flow batteries (redoxSolid Flow) ,EC| Bi3BoostFlowBatAuthors: Battistel, Alberto; Peljo, Pekka;Abstract Given the ever-growing awareness on global warming, much interest has focused on new and effective ways to manage energy, especially by harvesting and exploiting low-temperature heat sources, ubiquitous in the modern environment. Here, the holy grail is the direct conversion of heat into electricity especially using thermoelectric devices, and in this contribution, we focus on thermoelectrochemical systems. We give a brief overview of the most common thermally regenerative electrochemical cells developed nowadays with a short overview of their thermodynamic derivation, and we collect some of the most recent results in terms of their thermoelectrochemical properties, in particular, their temperature coefficients. We see that although the most used redox couples are based on Fe3+/Fe2+ and their derivates, thermodiffusion effects and other entropy-related phenomena are attracting the attention of the scientific community and boosting astonishing results. On the other hand, thermally regenerative batteries are emerging, showing modest performance.
ZENODO arrow_drop_down Current Opinion in ElectrochemistryArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefCurrent Opinion in ElectrochemistryArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.coelec.2021.100853&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 2visibility views 2 download downloads 22 Powered bymore_vert ZENODO arrow_drop_down Current Opinion in ElectrochemistryArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefCurrent Opinion in ElectrochemistryArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.coelec.2021.100853&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 FinlandPublisher:Royal Society of Chemistry (RSC) Funded by:AKA | Multidimensional engineer..., EC | Bi3BoostFlowBatAKA| Multidimensional engineering for the circular economy of energy storage devices (HYPER-SPHERE) ,EC| Bi3BoostFlowBatNeha Garg; Simo Pekkinen; Eduardo Martínez González; Rodrigo Serna-Guerrero; Pekka Peljo; Annukka Santasalo-Aarnio;The safe recycling of spent LIBs is challenging, as they often contain residual energy. Left untreated, this can trigger a thermal runaway and result in disaster during the recycling process. Electrochemical discharge method is an easy and inexpensive method to eliminate this hazard.
Sustainable Energy &... arrow_drop_down Aaltodoc Publication ArchiveArticle . 2024 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4se00125g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainable Energy &... arrow_drop_down Aaltodoc Publication ArchiveArticle . 2024 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4se00125g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 SwitzerlandPublisher:Royal Society of Chemistry (RSC) Authors: Pekka Peljo; Hubert H. Girault;doi: 10.1039/c8ee01286e
Electrolyte stability is governed by its oxidation and reduction potentials, not by the energy levels of its HOMO and LUMO.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2018 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8ee01286e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu393 citations 393 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2018 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8ee01286e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 SwitzerlandPublisher:American Chemical Society (ACS) Publicly fundedFunded by:SFI | Designing Reactive Functi..., SNSF | Solar Fuels 2 - Hydrogen ...SFI| Designing Reactive Functionalised Soft Interfaces – Self-healing soft materials for solar energy conversion, energy storage, and sustainable low cost hydrogen production ,SNSF| Solar Fuels 2 - Hydrogen evolution at soft interfaces and Carbon dioxide reduction in supercritical mediaLucie Rivier; Micheál D. Scanlon; Micheál D. Scanlon; Hubert H. Girault; Pekka Peljo; T. Jane Stockmann; T. Jane Stockmann; Marcin Opallo; Manuel A. Méndez;The formation and the dissociation of metal hydrides are key steps within the hydrogen evolution reaction (HER) pathway for photochemical water splitting, but also impacts a wide range of other catalytic, industrial, and biochemical reactions. Herein, we describe our recent work studying HER at the interface between two immiscible electrolyte solutions (ITIES), between water|1,2-dichloroethane. This is a unique platform for evaluating the kinetics/thermodynamics for metallocene hydride formation using decamethylruthenocene. In this approach, an aqueous acid serves as the proton source and is pumped across the ITIES via an externally applied potential or the use of a phase transfer catalyst. Simulated curves developed using COMSOL Multiphysics software and compared to experimental ones, indicate a modified EC′ (electrochemical–chemical) mechanism for the decamethylruthenocene hydride formation. In the proposed pathway, decamethylruthenocene hydride is metastable in 1,2-dichloroethane and persists on the ti...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.jpcc.5b08148&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.jpcc.5b08148&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Funded by:EC | SOFT-PHOTOCONVERSION, EC | Bi3BoostFlowBatEC| SOFT-PHOTOCONVERSION ,EC| Bi3BoostFlowBatAuthors: Gamero-Quijano, Alonso; Herzog, Grégoire; Peljo, Pekka; Scanlon, Micheál D.;A.G.-Q. acknowledges funding received from an Irish Research Council (IRC) Government of Ireland Postdoctoral Fellowship Award (grant no. GOIPD/2018/252) and a Marie Skłodowska-Curie Postdoctoral Fellowship (grant no. MSCA-IF-EF-ST 2020/101018277). P.P. acknowledges funding from the Academy Research Fellow funding and project funding by the Academy of Finland (Grants No. 315739 and 334828). This is a dataset used to prepare Figure 4 in the review "Electrocatalysis at the Polarised Interface between Two Immiscible Electrolyte Solutions", prepared for the journal Current Opinion in Electrochemistry.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7400926&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 9visibility views 9 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7400926&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Finland, SpainPublisher:American Chemical Society (ACS) Funded by:EC | Bi3BoostFlowBat, AKA | Photoproduction of hydrog..., AKA | Development and in operan... +1 projectsEC| Bi3BoostFlowBat ,AKA| Photoproduction of hydrogen in biphasic systems with electron donor recycling ,AKA| Development and in operando characterization of solid redox boosters for high energy density redox flow batteries (redoxSolid Flow) ,EC| HIGREEWAsenjo-Pascual, Juan; Wiberg, Cedrik; Shahsavan, Mahsa; Salmeron-Sanchez, Ivan; Mauleon, Pablo; Aviles Moreno, Juan Ramon; Ocon, Pilar; Peljo, Pekka;A new highly soluble triazine derivative (SPr)34TpyTz showing three reversible redox processes with fast kinetics and high diffusion coefficients has been synthesized using an efficient, low-cost, and straightforward synthetic route. Concentrated single cell tests and DFT studies reveal a tendency of the reduced triazine species to form aggregates which could be avoided by tuning the supporting electrolyte concentration. Under the right conditions, (SPr)34TpyTz shows no capacity decay and good Coulombic, voltage, and energy efficiencies for the storage of two electrons. The storage of further electrons leads to a higher capacity decay and an increase of the electrolyte pH, suggesting the irreversible protonation of the generated species. So, a plausible mechanism has been proposed. A higher concentration of (SPr)34TpyTz shows slightly higher capacity decay and lower efficiencies due to the aggregate formation.
ACS Applied Material... arrow_drop_down ACS Applied Materials & InterfacesArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAACS Applied Materials & InterfacesArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsami.3c05850&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert ACS Applied Material... arrow_drop_down ACS Applied Materials & InterfacesArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAACS Applied Materials & InterfacesArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsami.3c05850&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Switzerland, IrelandPublisher:American Chemical Society (ACS) Publicly fundedFunded by:SFI | Designing Reactive Functi..., SNSF | Thermo-electrochemistry f...SFI| Designing Reactive Functionalised Soft Interfaces – Self-healing soft materials for solar energy conversion, energy storage, and sustainable low cost hydrogen production ,SNSF| Thermo-electrochemistry for energy applications: Heat-to-Power copper batteriesPekka Peljo; Micheál D. Scanlon; Astrid J. Olaya; Lucie Rivier; Evgeny Smirnov; Hubert H. Girault;pmid: 28707892
Redox electrocatalysis (catalysis of electron-transfer reactions by floating conductive particles) is discussed from the point-of-view of Fermi level equilibration, and an overall theoretical framework is given. Examples of redox electrocatalysis in solution, in bipolar configuration, and at liquid-liquid interfaces are provided, highlighting that bipolar and liquid-liquid interfacial systems allow the study of the electrocatalytic properties of particles without effects from the support, but only liquid-liquid interfaces allow measurement of the electrocatalytic current directly. Additionally, photoinduced redox electrocatalysis will be of interest, for example, to achieve water splitting.
The Journal of Physi... arrow_drop_down University of Limerick Institutional RepositoryArticle . 2017 . Peer-reviewedData sources: University of Limerick Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.jpclett.7b00685&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 46 citations 46 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The Journal of Physi... arrow_drop_down University of Limerick Institutional RepositoryArticle . 2017 . Peer-reviewedData sources: University of Limerick Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.jpclett.7b00685&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu