- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 SpainPublisher:MDPI AG Authors: Isabel C. Gil-García; Mª Socorro García-Cascales; Habib Dagher; Angel Molina-García;doi: 10.3390/su13063430
handle: 10317/9395
Energy transition requires actions from different sectors and levels, mainly focused on achieving a low-carbon and high-renewable integration society. Among the different sectors, the transport sector is responsible for more than 20% of global greenhouse gas emissions, mostly emitted in cities. Therefore, initiatives and analysis focused on electric vehicles integration powered by renewables is currently a desirable solution to mitigate climate change and promote energy transition. Under this framework, this paper proposes a multi-indicator analysis for the estimation of CO2 emissions combining renewable integration targets, reduction emission targets and realistic renewable resource potentials. Four scenarios are identified and analyzed: (i) current situation with conventional vehicles, (ii) replacement of such conventional by electric vehicles without renewable integration, (iii) and (iv) integration of renewables to fulfill emission reduction targets for 2030 and 2050 respectively. The analysis is evaluated in the state of Maine (United States). From the results, a minimum renewable penetration of 39% and 82%, respectively, is needed to fulfill the emission reduction targets for 2030 and 2050 by considering 100% conventional vehicle replacement. Different combinations of available renewable resources can reduce emissions by more than 35%.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/6/3430/pdfData sources: Multidisciplinary Digital Publishing InstituteRepositorio Digital de la Universidad Politécnica de CartagenaArticleFull-Text: http://hdl.handle.net/10317/9395Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13063430&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/6/3430/pdfData sources: Multidisciplinary Digital Publishing InstituteRepositorio Digital de la Universidad Politécnica de CartagenaArticleFull-Text: http://hdl.handle.net/10317/9395Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13063430&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 SpainPublisher:Springer Science and Business Media LLC Authors: Gil García, Isabel Cristina; Fernández-Guillamón, Ana; Molina-García, Ángel;The need to reduce global emissions leads us to look for various sources of clean energy. In recent decades, wind technology has advanced significantly, enabling large-scale power generation in both marine and terrestrial environments, as well as the development of mini-wind solutions. However, we often underestimate the capacity of certain human activities and production processes to generate clean energy, wasting their true potential. This work focuses on using artificially generated wind gusts to transform them into clean electricity through small wind turbines. The proposal is developed in four phases: (1) identify activities that generate wind, (2) collect data on wind speed and direction, (3) perform a descriptive statistical analysis of the wind resource, and (4) select the appropriate technology to calculate the electricity generation. The proposal is evaluated using the air flow produced by the air conditioning systems of a data center in Colombia. The results are analyzed from technical, economic, environmental, and political perspectives. Through small wind power, an annual production of approximately 468 MWh is estimated, avoiding the emission of 300 metric tons of CO 2 .
Scientific Reports arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-024-74141-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Scientific Reports arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-024-74141-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SpainPublisher:Elsevier BV Authors: Ramos Escudero, Adela; Gil García, Isabel Cristina; García-Cascales, M. Socorro; Molina-García, Ángel;During the last decades, both population growth and increasingly concentration in cities turn these areas into major consumers of energy, mainly due to heating and cooling energy demanded by residential and commercial sectors. In parallel, the promotion of renewables and policies aimed to decrease fossil fuel dependence and save emissions have addressed mostly solutions based on renewable energy resources. Under this scenario, this paper evaluates the feasibility of vertical Ground Source Heat Pump systems based on the spatial study of the site–specific parameters affecting their performance at a local scale. A GIS–based energy, economic and environmental multidimensional approach is then proposed to analyze the heating and cooling energy demand by considering the urban pattern and the real space available for the installations. The paper explores and compares different Borehole Heat Exchanger Ground Source Heat Pump systems by using the G.POT method applied to residential customers. Two Spanish residential locations are included as case study. From the results, geothermal resource gives highly beneficial results also for cooling energy demand, which is not usually considered in geothermal analysis. The proposed renewable system can be also evaluated from this multidimensional perspective on both commercial and tertiary sector, as well as in other locations with a diversity of heating and cooling energy demand profiles. 2020-21
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTASustainable Cities and SocietyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scs.2021.103267&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTASustainable Cities and SocietyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scs.2021.103267&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 SpainPublisher:MDPI AG Authors: Isabel C. Gil-García; M. Socorro García-Cascales; Ana Fernández-Guillamón; Angel Molina-García;doi: 10.3390/jmse7110391
handle: 10317/9383
Wind power is widely considered to be a qualified renewable, clean, ecological and inexhaustible resource that is becoming a leader in the current energy transition process. It is a mature technology solution that was quickly developed and has been massively integrated into power systems in recent years. Indeed, a remarkable number of renewable integration policies have been promoted by different governments and countries. With the aim of maximizing the power given by wind resources, the locations of both onshore and offshore wind power plants must be optimized following a sort of different criteria. Under this scenario, a number of factors and decision criteria in the evaluation and selection of locations can be identified. Moreover, the relevant wind power increasing in the power generation mix is addressed, along with a standardization of factors and decision criteria in the optimization and selection of such optimal locations. In this context, this paper describes a systematic review and meta-analysis combining most of the contributions and studies proposed during the last decade. Thus, our aim is focused on reviewing and categorizing all factors to be considered for optimal location estimation, pointing out the differences among the selected factors and the decision criteria for onshore and offshore wind power plants. In addition, our review also includes an analysis of the representative key indicators for the contributions, such as the annual frequency of publications, geographical classification, analysis by category, evaluation method and determining factors.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2077-1312/7/11/391/pdfData sources: Multidisciplinary Digital Publishing InstituteRepositorio Digital de la Universidad Politécnica de CartagenaArticleLicense: CC BY NC NDFull-Text: https://www.mdpi.com/2077-1312/7/11/391Data sources: Bielefeld Academic Search Engine (BASE)Journal of Marine Science and EngineeringArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse7110391&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2077-1312/7/11/391/pdfData sources: Multidisciplinary Digital Publishing InstituteRepositorio Digital de la Universidad Politécnica de CartagenaArticleLicense: CC BY NC NDFull-Text: https://www.mdpi.com/2077-1312/7/11/391Data sources: Bielefeld Academic Search Engine (BASE)Journal of Marine Science and EngineeringArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse7110391&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 SpainPublisher:MDPI AG Authors: Andrés Rodriguez-Caviedes; Isabel C. Gil-García;doi: 10.3390/wind2020020
Colombia has an energy matrix that is mostly hydroelectric and includes renewable energies such as wind power, which represents a minor contribution. The only operational wind farm is in the northern part of the country, where more projects will be implemented in the future in search of increasing the installed capacity and electricity generation. However, the wind potential and behavior of other areas of the national territory have been little reviewed. The most recommended method to characterize the potential in different areas of Colombia is to use real data, generating vertical extrapolations and respecting the good practices of the wind industry. The foregoing not only allows the generation of statistical and descriptive characterizations but also, together with the climatological, geographical, and technological variables (turbines), an estimate of the generable energy that can be obtained. In the described study, we applied specialized software to generate a rating matrix, from which it was possible to issue an opinion on five possible locations obtained from the theoretical development of micrositing, where 14 factors were reviewed. There is no published research of this nature for the country, so it is relevant in terms of novelty. Finally, it can be concluded that in Colombia, the wind potential should not be associated with a specific region, since there are data throughout the territory where this type of research can be replicated.
Wind arrow_drop_down WindOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2674-032X/2/2/20/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/wind2020020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Wind arrow_drop_down WindOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2674-032X/2/2/20/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/wind2020020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022 SpainPublisher:Elsevier BV Isabel C. Gil-García; Adela Ramos-Escudero; M.S. García-Cascales; Habib Dagher; A. Molina-García;This paper describes a multi-criterion decision-making approach for optimal off-shore wind location assessment by including fuzzy geographical information systems to prioritize the different locations and alternatives. The multi-objective framework involves a variety of elements, such as climatic, geographic, social, environmental, location, and economic factors. The proposed decision-making solution is based on a multicriteria evaluation method divided into two steps: an analytic hierarchy process and a prioritization of the alternatives in comparison to a parallel approach based on a fuzzy geographical information system solution. The Gulf of Maine (USA) is considered as a case example, owing to the relevant offshore wind potential of such an area. A descriptive statistical evaluation of the wind resource was previously carried out to characterize this area with wind speed field measurements for 10 years (2010–2019). A design proposal for a 1 GW offshore wind power plant is used in a case study based on a 15 MW variable speed wind turbine prototype recently proposed by the IEA Wind Task 37. The results include prioritization of optimal offshore wind power plant sites, levelized cost of electricity estimation, and avoided emissions in comparison to traditional supply side scenarios, mainly based on fossil fuel generation units. 2021-22
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.10.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 61 citations 61 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.10.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2023 SpainPublisher:IATED Authors: Javier Ureña Jorquera; Isabel Cristina Gil García; Ángel Molina García;New environmental technologies are designed and implemented exponentially, in order to mitigate climate change. This fact brings with it that engineering students and specialized technicians from different sectors of renewable energy such as wind, solar, geothermal energy, etc., need to have access to different types of technological educational materials and simulation programs for free. In this ambit, this paper discusses the results obtained with Scilab free software as an application for modeling wind turbines within the subjects of wind energy. The use of Scilab, as an open-source software, helps to disseminate the results and simulations and, at the same time, provides the students a more detailed and low-level study of wind turbine control strategies. The application is based on a 1.5 MW Doubly Fed Induction Generators (DFIG) modeling, which allows us to estimate the electric performance and dynamics under different wind conditions. Simulations and modeling were tested in the wind subjects of the Official Master of Renewable Energies, Universidad Politécnica de Cartagena, Spain. 2022-23
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21125/edulearn.2023.0359&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21125/edulearn.2023.0359&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 SpainPublisher:Elsevier BV Authors: Isabel C. Gil-García; Ana Fernández-Guillamón; M. Socorro García-Cascales; Angel Molina-García; +1 AuthorsIsabel C. Gil-García; Ana Fernández-Guillamón; M. Socorro García-Cascales; Angel Molina-García; Habib Dagher;handle: 10578/43026
Nowadays, climate change is a major global societal challenge that significantly increases environmental stress. Most international organizations and policies have promoted initiatives to minimize emissions, reduce fossil fuel dependence and increase renewable energy resource integration into different sectors. An energy transformation toward more renewable systems is thus a priority. Under this scenario, the present paper describes and evaluates an alternative energy conversion matrix–based model to combine sector electrification, power generation units from renewables, and new clean technologies. The proposed green matrix-based model allows analysing future scenarios, including electricity participation in end–use consumption and electric power generated by renewables —potentially integrated into different sectors—. The proposed model is evaluated in the state of Maine (United States). This case study is focused on decarbonizing both residential heating and transport sector through the integration of large offshore wind power plant. Results and discussion is also included in the paper, providing expected energy demand reductions and decreasing emissions through the integration of renewables. This energy transition integration case study is proposed in three road-maps with different penetration rates and time scales. The proposed green matrix–based model can be also applied to other areas and energy resources, as an alternative way to analyse and estimate renewable integration into different sectors. 2023-24
Energy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2024.130246&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2024.130246&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:EC | STOREandGOEC| STOREandGOAuthors: Isabel C. Gil-García; Ana Fernández-Guillamón; Ángel Molina-García;A key obstacle to achieving a fully renewable energy system is energy storage. A promising solution involves generating green hydrogen by using wind power. In parallel, as some wind power plants near the end of their operational life, crucial decisions about their future must be made. In this context, hybrid solutions emerge as promising renewable systems, offering resilient and cost-effective approaches. This paper provides a methodology for the optimal selection of wind-hydrogen hybrid systems, combining repowered wind power plants and green hydrogen production. The methodology aims to maximize the power and hydrogen generation; promoting the industrial sector cooperation and minimizing costs and emissions in line with Sustainable Development Goals 7, 9, and 13. The methodology is evaluated in three scenarios considering a real case study: (i) only repowering, (ii) repowering with energy surplus for hydrogen production purposes, and (iii) repowering with specific wind turbines focused on hydrogen production. From the results, the third scenario achieves the objectives of the previous Sustainable Development Goals, maximizing the clean energy generation (160—240 GWh/year of electricity, and 1500—3000 ton H2/year), CO2 emissions (up to 15%), and minimizing the hybrid solution costs up to 130,000e. Further successful hybrid solutions and implementations require significant additional investments in research, development, and deployment on a global scale, along with supportive policies and regulatory frameworks to encourage adoption and development.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2024.3471912&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2024.3471912&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 SpainPublisher:MDPI AG Authors: Isabel C. Gil-García; Ana Fernández-Guillamón; M. Socorro García-Cascales; Angel Molina-García;doi: 10.3390/en14196280
The integration of renewables into power systems is a key transformation for mitigating climate change and reducing fossil-fuel dependence. Among the different resources, wind participation has become crucial in recent decades—both onshore and offshore wind power plants. However, assuming the useful life of the wind turbines at approximately 20 years, different solutions should be discussed to overcome the turbine’s aging problem. In the coming years, some countries within the wind sector will face the decision of partially or totally repowering or dismantling their turbines. This paper reviews different repowering strategies and contributions from a multifactorial perspective. A set of categories is defined by the authors and those multifactorial parameters are then classified according to such categories: technical, economic, environmental, social, and political. From each category, the most relevant factors to be considered for repowering decision-making purposes are identified and discussed. According to the specific literature, more than 90% of the reviewed contributions are focused on onshore wind power plant repowering actions. This percentage is in line with onshore and offshore wind generation units installed in recent decades. The reviewed studies show that Germany has a major number of contributions. Regarding offshore repowering strategies, all contributions propose a multifactorial analysis, in contrast to onshore repowering strategies where only 68% of the authors carry out a multifactorial analysis. The revised repowering methodologies and the categorization of factors can also be used by the repowering market, as a useful tool in the near future.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/19/6280/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14196280&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/19/6280/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14196280&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 SpainPublisher:MDPI AG Authors: Isabel C. Gil-García; Mª Socorro García-Cascales; Habib Dagher; Angel Molina-García;doi: 10.3390/su13063430
handle: 10317/9395
Energy transition requires actions from different sectors and levels, mainly focused on achieving a low-carbon and high-renewable integration society. Among the different sectors, the transport sector is responsible for more than 20% of global greenhouse gas emissions, mostly emitted in cities. Therefore, initiatives and analysis focused on electric vehicles integration powered by renewables is currently a desirable solution to mitigate climate change and promote energy transition. Under this framework, this paper proposes a multi-indicator analysis for the estimation of CO2 emissions combining renewable integration targets, reduction emission targets and realistic renewable resource potentials. Four scenarios are identified and analyzed: (i) current situation with conventional vehicles, (ii) replacement of such conventional by electric vehicles without renewable integration, (iii) and (iv) integration of renewables to fulfill emission reduction targets for 2030 and 2050 respectively. The analysis is evaluated in the state of Maine (United States). From the results, a minimum renewable penetration of 39% and 82%, respectively, is needed to fulfill the emission reduction targets for 2030 and 2050 by considering 100% conventional vehicle replacement. Different combinations of available renewable resources can reduce emissions by more than 35%.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/6/3430/pdfData sources: Multidisciplinary Digital Publishing InstituteRepositorio Digital de la Universidad Politécnica de CartagenaArticleFull-Text: http://hdl.handle.net/10317/9395Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13063430&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/6/3430/pdfData sources: Multidisciplinary Digital Publishing InstituteRepositorio Digital de la Universidad Politécnica de CartagenaArticleFull-Text: http://hdl.handle.net/10317/9395Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13063430&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 SpainPublisher:Springer Science and Business Media LLC Authors: Gil García, Isabel Cristina; Fernández-Guillamón, Ana; Molina-García, Ángel;The need to reduce global emissions leads us to look for various sources of clean energy. In recent decades, wind technology has advanced significantly, enabling large-scale power generation in both marine and terrestrial environments, as well as the development of mini-wind solutions. However, we often underestimate the capacity of certain human activities and production processes to generate clean energy, wasting their true potential. This work focuses on using artificially generated wind gusts to transform them into clean electricity through small wind turbines. The proposal is developed in four phases: (1) identify activities that generate wind, (2) collect data on wind speed and direction, (3) perform a descriptive statistical analysis of the wind resource, and (4) select the appropriate technology to calculate the electricity generation. The proposal is evaluated using the air flow produced by the air conditioning systems of a data center in Colombia. The results are analyzed from technical, economic, environmental, and political perspectives. Through small wind power, an annual production of approximately 468 MWh is estimated, avoiding the emission of 300 metric tons of CO 2 .
Scientific Reports arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-024-74141-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Scientific Reports arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-024-74141-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SpainPublisher:Elsevier BV Authors: Ramos Escudero, Adela; Gil García, Isabel Cristina; García-Cascales, M. Socorro; Molina-García, Ángel;During the last decades, both population growth and increasingly concentration in cities turn these areas into major consumers of energy, mainly due to heating and cooling energy demanded by residential and commercial sectors. In parallel, the promotion of renewables and policies aimed to decrease fossil fuel dependence and save emissions have addressed mostly solutions based on renewable energy resources. Under this scenario, this paper evaluates the feasibility of vertical Ground Source Heat Pump systems based on the spatial study of the site–specific parameters affecting their performance at a local scale. A GIS–based energy, economic and environmental multidimensional approach is then proposed to analyze the heating and cooling energy demand by considering the urban pattern and the real space available for the installations. The paper explores and compares different Borehole Heat Exchanger Ground Source Heat Pump systems by using the G.POT method applied to residential customers. Two Spanish residential locations are included as case study. From the results, geothermal resource gives highly beneficial results also for cooling energy demand, which is not usually considered in geothermal analysis. The proposed renewable system can be also evaluated from this multidimensional perspective on both commercial and tertiary sector, as well as in other locations with a diversity of heating and cooling energy demand profiles. 2020-21
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTASustainable Cities and SocietyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scs.2021.103267&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTASustainable Cities and SocietyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scs.2021.103267&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 SpainPublisher:MDPI AG Authors: Isabel C. Gil-García; M. Socorro García-Cascales; Ana Fernández-Guillamón; Angel Molina-García;doi: 10.3390/jmse7110391
handle: 10317/9383
Wind power is widely considered to be a qualified renewable, clean, ecological and inexhaustible resource that is becoming a leader in the current energy transition process. It is a mature technology solution that was quickly developed and has been massively integrated into power systems in recent years. Indeed, a remarkable number of renewable integration policies have been promoted by different governments and countries. With the aim of maximizing the power given by wind resources, the locations of both onshore and offshore wind power plants must be optimized following a sort of different criteria. Under this scenario, a number of factors and decision criteria in the evaluation and selection of locations can be identified. Moreover, the relevant wind power increasing in the power generation mix is addressed, along with a standardization of factors and decision criteria in the optimization and selection of such optimal locations. In this context, this paper describes a systematic review and meta-analysis combining most of the contributions and studies proposed during the last decade. Thus, our aim is focused on reviewing and categorizing all factors to be considered for optimal location estimation, pointing out the differences among the selected factors and the decision criteria for onshore and offshore wind power plants. In addition, our review also includes an analysis of the representative key indicators for the contributions, such as the annual frequency of publications, geographical classification, analysis by category, evaluation method and determining factors.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2077-1312/7/11/391/pdfData sources: Multidisciplinary Digital Publishing InstituteRepositorio Digital de la Universidad Politécnica de CartagenaArticleLicense: CC BY NC NDFull-Text: https://www.mdpi.com/2077-1312/7/11/391Data sources: Bielefeld Academic Search Engine (BASE)Journal of Marine Science and EngineeringArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse7110391&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2077-1312/7/11/391/pdfData sources: Multidisciplinary Digital Publishing InstituteRepositorio Digital de la Universidad Politécnica de CartagenaArticleLicense: CC BY NC NDFull-Text: https://www.mdpi.com/2077-1312/7/11/391Data sources: Bielefeld Academic Search Engine (BASE)Journal of Marine Science and EngineeringArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse7110391&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 SpainPublisher:MDPI AG Authors: Andrés Rodriguez-Caviedes; Isabel C. Gil-García;doi: 10.3390/wind2020020
Colombia has an energy matrix that is mostly hydroelectric and includes renewable energies such as wind power, which represents a minor contribution. The only operational wind farm is in the northern part of the country, where more projects will be implemented in the future in search of increasing the installed capacity and electricity generation. However, the wind potential and behavior of other areas of the national territory have been little reviewed. The most recommended method to characterize the potential in different areas of Colombia is to use real data, generating vertical extrapolations and respecting the good practices of the wind industry. The foregoing not only allows the generation of statistical and descriptive characterizations but also, together with the climatological, geographical, and technological variables (turbines), an estimate of the generable energy that can be obtained. In the described study, we applied specialized software to generate a rating matrix, from which it was possible to issue an opinion on five possible locations obtained from the theoretical development of micrositing, where 14 factors were reviewed. There is no published research of this nature for the country, so it is relevant in terms of novelty. Finally, it can be concluded that in Colombia, the wind potential should not be associated with a specific region, since there are data throughout the territory where this type of research can be replicated.
Wind arrow_drop_down WindOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2674-032X/2/2/20/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/wind2020020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Wind arrow_drop_down WindOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2674-032X/2/2/20/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/wind2020020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022 SpainPublisher:Elsevier BV Isabel C. Gil-García; Adela Ramos-Escudero; M.S. García-Cascales; Habib Dagher; A. Molina-García;This paper describes a multi-criterion decision-making approach for optimal off-shore wind location assessment by including fuzzy geographical information systems to prioritize the different locations and alternatives. The multi-objective framework involves a variety of elements, such as climatic, geographic, social, environmental, location, and economic factors. The proposed decision-making solution is based on a multicriteria evaluation method divided into two steps: an analytic hierarchy process and a prioritization of the alternatives in comparison to a parallel approach based on a fuzzy geographical information system solution. The Gulf of Maine (USA) is considered as a case example, owing to the relevant offshore wind potential of such an area. A descriptive statistical evaluation of the wind resource was previously carried out to characterize this area with wind speed field measurements for 10 years (2010–2019). A design proposal for a 1 GW offshore wind power plant is used in a case study based on a 15 MW variable speed wind turbine prototype recently proposed by the IEA Wind Task 37. The results include prioritization of optimal offshore wind power plant sites, levelized cost of electricity estimation, and avoided emissions in comparison to traditional supply side scenarios, mainly based on fossil fuel generation units. 2021-22
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.10.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 61 citations 61 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.10.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2023 SpainPublisher:IATED Authors: Javier Ureña Jorquera; Isabel Cristina Gil García; Ángel Molina García;New environmental technologies are designed and implemented exponentially, in order to mitigate climate change. This fact brings with it that engineering students and specialized technicians from different sectors of renewable energy such as wind, solar, geothermal energy, etc., need to have access to different types of technological educational materials and simulation programs for free. In this ambit, this paper discusses the results obtained with Scilab free software as an application for modeling wind turbines within the subjects of wind energy. The use of Scilab, as an open-source software, helps to disseminate the results and simulations and, at the same time, provides the students a more detailed and low-level study of wind turbine control strategies. The application is based on a 1.5 MW Doubly Fed Induction Generators (DFIG) modeling, which allows us to estimate the electric performance and dynamics under different wind conditions. Simulations and modeling were tested in the wind subjects of the Official Master of Renewable Energies, Universidad Politécnica de Cartagena, Spain. 2022-23
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21125/edulearn.2023.0359&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21125/edulearn.2023.0359&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 SpainPublisher:Elsevier BV Authors: Isabel C. Gil-García; Ana Fernández-Guillamón; M. Socorro García-Cascales; Angel Molina-García; +1 AuthorsIsabel C. Gil-García; Ana Fernández-Guillamón; M. Socorro García-Cascales; Angel Molina-García; Habib Dagher;handle: 10578/43026
Nowadays, climate change is a major global societal challenge that significantly increases environmental stress. Most international organizations and policies have promoted initiatives to minimize emissions, reduce fossil fuel dependence and increase renewable energy resource integration into different sectors. An energy transformation toward more renewable systems is thus a priority. Under this scenario, the present paper describes and evaluates an alternative energy conversion matrix–based model to combine sector electrification, power generation units from renewables, and new clean technologies. The proposed green matrix-based model allows analysing future scenarios, including electricity participation in end–use consumption and electric power generated by renewables —potentially integrated into different sectors—. The proposed model is evaluated in the state of Maine (United States). This case study is focused on decarbonizing both residential heating and transport sector through the integration of large offshore wind power plant. Results and discussion is also included in the paper, providing expected energy demand reductions and decreasing emissions through the integration of renewables. This energy transition integration case study is proposed in three road-maps with different penetration rates and time scales. The proposed green matrix–based model can be also applied to other areas and energy resources, as an alternative way to analyse and estimate renewable integration into different sectors. 2023-24
Energy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2024.130246&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2024.130246&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:EC | STOREandGOEC| STOREandGOAuthors: Isabel C. Gil-García; Ana Fernández-Guillamón; Ángel Molina-García;A key obstacle to achieving a fully renewable energy system is energy storage. A promising solution involves generating green hydrogen by using wind power. In parallel, as some wind power plants near the end of their operational life, crucial decisions about their future must be made. In this context, hybrid solutions emerge as promising renewable systems, offering resilient and cost-effective approaches. This paper provides a methodology for the optimal selection of wind-hydrogen hybrid systems, combining repowered wind power plants and green hydrogen production. The methodology aims to maximize the power and hydrogen generation; promoting the industrial sector cooperation and minimizing costs and emissions in line with Sustainable Development Goals 7, 9, and 13. The methodology is evaluated in three scenarios considering a real case study: (i) only repowering, (ii) repowering with energy surplus for hydrogen production purposes, and (iii) repowering with specific wind turbines focused on hydrogen production. From the results, the third scenario achieves the objectives of the previous Sustainable Development Goals, maximizing the clean energy generation (160—240 GWh/year of electricity, and 1500—3000 ton H2/year), CO2 emissions (up to 15%), and minimizing the hybrid solution costs up to 130,000e. Further successful hybrid solutions and implementations require significant additional investments in research, development, and deployment on a global scale, along with supportive policies and regulatory frameworks to encourage adoption and development.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2024.3471912&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2024.3471912&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 SpainPublisher:MDPI AG Authors: Isabel C. Gil-García; Ana Fernández-Guillamón; M. Socorro García-Cascales; Angel Molina-García;doi: 10.3390/en14196280
The integration of renewables into power systems is a key transformation for mitigating climate change and reducing fossil-fuel dependence. Among the different resources, wind participation has become crucial in recent decades—both onshore and offshore wind power plants. However, assuming the useful life of the wind turbines at approximately 20 years, different solutions should be discussed to overcome the turbine’s aging problem. In the coming years, some countries within the wind sector will face the decision of partially or totally repowering or dismantling their turbines. This paper reviews different repowering strategies and contributions from a multifactorial perspective. A set of categories is defined by the authors and those multifactorial parameters are then classified according to such categories: technical, economic, environmental, social, and political. From each category, the most relevant factors to be considered for repowering decision-making purposes are identified and discussed. According to the specific literature, more than 90% of the reviewed contributions are focused on onshore wind power plant repowering actions. This percentage is in line with onshore and offshore wind generation units installed in recent decades. The reviewed studies show that Germany has a major number of contributions. Regarding offshore repowering strategies, all contributions propose a multifactorial analysis, in contrast to onshore repowering strategies where only 68% of the authors carry out a multifactorial analysis. The revised repowering methodologies and the categorization of factors can also be used by the repowering market, as a useful tool in the near future.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/19/6280/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14196280&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/19/6280/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14196280&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu