- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021 Japan, NetherlandsPublisher:Elsevier BV Funded by:EC | SRec BIPVEC| SRec BIPVTakao Onoye; Ittetsu Taniguchi; Francky Catthoor; Francky Catthoor; Hans Goverde; Hans Goverde; Daichi Watari; Patrizio Manganiello; Patrizio Manganiello; Elham Shirazi; Elham Shirazi;Abstract We propose a multi-time scale energy management framework for a smart photovoltaic (PV) system that can calculate optimized schedules for battery operation, power purchases, and appliance usage. A smart PV system is a local energy community that includes several buildings and households equipped with PV panels and batteries. However, due to the unpredictability and fast variation of PV generation, maintaining energy balance and reducing electricity costs in the system is challenging. Our proposed framework employs a model predictive control approach with a physics-based PV forecasting model and an accurately parameterized battery model. We also introduce a multi-time scale structure composed of two-time scales: a longer coarse-grained time scale for daily horizon with 15-minutes resolution and a shorter fine-grained time scale for 15-minutes horizon with 1-second resolution. In contrast to the current single-time scale approaches, this alternative structure enables the management of a necessary mix of fast and slow system dynamics with reasonable computational times while maintaining high accuracy. Simulation results show that the proposed framework reduces electricity costs up 48.1% compared with baseline methods. The necessity of a multi-time scale and the impact on accurate system modeling in terms of PV forecasting and batteries are also demonstrated.
Osaka University Kno... arrow_drop_down Osaka University Knowledge Archive (OUKA)ArticleLicense: CC BYData sources: Bielefeld Academic Search Engine (BASE)Delft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116671&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 39 citations 39 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 13visibility views 13 download downloads 15 Powered bymore_vert Osaka University Kno... arrow_drop_down Osaka University Knowledge Archive (OUKA)ArticleLicense: CC BYData sources: Bielefeld Academic Search Engine (BASE)Delft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116671&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Elham Shirazi; Shahram Jadid;Abstract With the development of home area network, residents have the opportunity to schedule their power usage at the home by themselves aiming at reducing electricity expenses. Moreover, as renewable energy sources are deployed in home, an energy management system needs to consider both energy consumption and generation simultaneously to minimize the energy cost. In this paper, a smart home energy management model has been presented that considers both energy consumption and generation simultaneously. The proposed model arranges the household electrical and thermal appliances for operation such that the monetary expense of a customer is minimized based on the time-varying pricing model. In this model, the home gateway receives the electricity price information as well as the resident desired options in order to efficiently schedule the appliances and shave the peak as well. The scheduling approach is tested on a typical home including variety of home appliances, a small wind turbine, PV panel and a battery over a 24-h period.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.01.148&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu100 citations 100 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.01.148&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 FinlandPublisher:MDPI AG Abessi, Ahad; Shirazi, Elham; Jadid, Shahram; Shafie-khah; Miadreza;doi: 10.3390/su12156046
Nowadays, due to the increasing number of disasters, improving distribution system resiliency is a new challenging issue for researchers. One of the main methods for improving the resiliency in distribution systems is to supply critical loads after disasters during the power outage and before system restorations. In this paper, a “Sustainable and resilient smart house” is introduced for the first time by using plug-in hybrid electric vehicles (PHEVs). PHEVs have the ability to use their fuel for generating electricity in emergency situations as the Vehicle to Grid (V2G) scheme. This ability, besides smart house control management, provides an opportunity for distribution system operators to use their extra energy for supplying a critical load in the system. The proposed control strategy in this paper is dedicated to a short duration power outage, which includes a large percent of the events. Then, improvement of the resiliency of distribution systems is investigated through supplying smart residential customers and injecting extra power to the main grid. A novel formulation is proposed for increasing the injected power of the smart house to the main grid using PHEVs. The effectiveness of the proposed method in increasing power injection during power outages is shown in simulation results.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/15/6046/pdfData sources: Multidisciplinary Digital Publishing InstituteOsuva (University of Vaasa)Article . 2020License: CC BYFull-Text: https://doi.org/10.3390/su12156046Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12156046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/15/6046/pdfData sources: Multidisciplinary Digital Publishing InstituteOsuva (University of Vaasa)Article . 2020License: CC BYFull-Text: https://doi.org/10.3390/su12156046Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12156046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 NetherlandsPublisher:Elsevier BV Koki Iwabuchi; Kenshiro Kato; Daichi Watari; Ittetsu Taniguchi; Francky Catthoor; Elham Shirazi; Takao Onoye;Under dynamic pricing, stable and accurate electricity price forecasting on the demand side is essential for efficient energy management. We have developed a new electricity price forecasting model that provides consistently accurate forecasts. The base prediction model decomposes the time series using wavelet transform and then predicts it by Long Short-Term Memory. Previous studies using this model have always decomposed time series in the same way without changing the mother wavelet. However, this makes it difficult to respond to changes in time series that vary daily or seasonally. Therefore, we periodically switch the mother wavelet, i.e., flexibly change the time series decomposition method, to achieve stable and highly accurate electricity price forecasting. In an experiment, the model improved prediction accuracy by up to 42.8% compared to prediction with a fixed mother wavelet. Experimental results show that the proposed flexible forecasting method can consistently provide highly accurate forecasts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyai.2022.100192&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyai.2022.100192&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2021Publisher:IEEE Daichi Watari; Ittetsu Taniguchi; Francky Catthoor; Kostas Siozios; Takao Onoye; Charalampos Marantos; Dimitrios Soudris; Elham Shirazi;Energy management in buildings equipped with renewable energy is vital for reducing electricity costs and maximizing occupant comfort. Despite several studies on the scheduling of appliances, a battery, and heating, ventilating, and air-conditioning (HVAC), there is a lack of a comprehensive and time-scalable approach that integrates predictive information such as renewable generation and thermal comfort. In this paper, we propose an online energy management framework to incorporate the optimal energy scheduling and prediction model of PV generation and thermal comfort by the model predictive control (MPC) approach. The energy management problem is formulated as coordinated three optimization problems covering a fast and slow time-scale.This reduces the time complexity without a significant negative impact on the global nature and quality of the result. Experimental results show that the proposed framework achieves optimal energy management that takes into account the trade-off between the electricity bill and thermal comfort.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.23919/date51398.2021.9473922&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.23919/date51398.2021.9473922&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2022 NetherlandsPublisher:IEEE Authors: Khoubseresht, Omid; Rajabinezhad, Mohamadamin; Ahmadi, Bahman; Shirazi, Elham;The benefits of renewable energy sources (RES) are undeniable, despite the fact that controlling their output power is complicated due to their intermittent nature. In this paper, a new set of analytical formulations has been proposed for simultaneous integration and control of wind turbine (WT) and battery energy storage system (BESS) considering the time-varying load models, and resources uncertainty. The objective functions of this method include smoothing the output power of the WT unit, balancing demand and generation, increasing WT shares as well as decreasing the automatic generation control (AGC) reserve capacity which is essential in the gird. In addition, the modification of BESS reference current is considered to prolong the BESS effective lifetime and guarantee the prevention of BESS from over-charge and discharge. The results show that simultaneous integration of WT and BESS in the grid will smooth WT output power, balance load and WT generation, thereby reducing AGC required capacity and increasing the hosting capacity of grids effectively.
University of Twente... arrow_drop_down University of Twente Research InformationConference object . 2022Data sources: University of Twente Research Informationhttps://doi.org/10.1109/isgt-e...Conference object . 2022 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/isgt-europe54678.2022.9960469&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert University of Twente... arrow_drop_down University of Twente Research InformationConference object . 2022Data sources: University of Twente Research Informationhttps://doi.org/10.1109/isgt-e...Conference object . 2022 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/isgt-europe54678.2022.9960469&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Elham Shirazi; Shahram Jadid;Abstract With the emergence of smart grid which has advanced metering infrastructure (AMI) and microgrid running as a local energy provider for dwellings through distributed energy resources (DERs), dwellers have the opportunity to schedule their in-home energy usage by themselves to reduce energy expense. Household tasks along with DER operation are scheduled according to electricity real-time price (RTP) and natural gas fixed price. Various studies have shown that the lack of effective home automation systems and the lack of awareness among users to respond to time-varying prices are two chief obstacles in order to fully exploit the potential benefits of dynamic pricing schemes. This paper drives to handle these problems by proposing an automatic and optimal residential energy consumption scheduling technique which tries to achieve a favorable trade-off between minimizing the energy costs as well as the inconvenience for the operation of both electrical and thermal in a smart home environment. Simulation results show that the proposed scheduling method leads to significant reduction in energy costs for diverse load scenarios with the electricity demand from the grid. Therefore, the deployment of the proposed method is advantageous for both users and utilities.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2015.01.061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu156 citations 156 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2015.01.061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 NetherlandsPublisher:MDPI AG Funded by:EC | SERENEEC| SERENEAuthors: Bahman Ahmadi; Elham Shirazi;doi: 10.3390/en16196959
The widespread adoption of electric vehicles (EVs) poses challenges associated with charging infrastructures and their impact on the electrical grid. To address these challenges, smart charging approaches have emerged as a key solution that optimizes charging processes and contributes to a smarter and more efficient grid. This paper presents an innovative multi-objective optimization framework for EV smart charging (EVSC) using the Dynamic Hunting Leadership (DHL) method. The framework aims to improve the voltage profile of the system in addition to eliminating voltage violations and energy not supplied (ENS) to EVs within the network. The proposed approach considers both residential EV chargers and parking stations, incorporating realistic EV charger behaviors based on constant current charging and addressing the problem as a mixed integer non-linear programming (MINLP) problem. The performance of the optimization method is evaluated on a distribution network with varying levels of EV penetration connected to the chargers in the grid. The results demonstrate the effectiveness of the DHL algorithm in minimizing conflicting objectives and improving the grid’s voltage profile while considering operational constraints. This study provides a road map for EV aggregators and EV owners, guiding them on how to charge EVs based on preferences while minimizing adverse technical impacts on the grid.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16196959&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16196959&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 NetherlandsPublisher:Wiley Amrita Raghoebarsing; Istvan Farkas; Divine Atsu; Simon Boddaert; David Moser; Elham Shirazi; Angèle Reinders;doi: 10.1002/pip.3613
AbstractThis paper gives an overview of the status of implementation of photovoltaic (PV) systems among 34 member countries involved in the COST Action PEARL PV in the year 2018. Besides this, influencing factors that have an impact on the implementation of PV systems in each country have been assessed. The implementation of PV systems varies in European countries due to differences in solar irradiation and weather conditions, electricity consumption, national economic situation, and governmental approaches to promote PV. For this paper, data sets covering, among others, numbers installed PV systems, and the variables mentioned above, were collected, processed, and synchronized. Subsequently, relations between data were analyzed by geographic mapping and mutual correlations. The 34 countries evaluated produced together 120 TWh of PV electricity in 2018. It was notable that Germany produced the highest amount (45 TWh) and has the highest share (8.4%) of PV in its electricity generation. Weak correlations were found between the different variables and the gross domestic product, annual global irradiation, number of subsidy schemes, cumulative installed capacity, annual electricity generated by PV, the share of RE, and share of PV. Logically, as expected, strong correlations (R2 = 0.9) were found between the number of inhabitants and the annual electricity production and consumption. From our analysis, we conclude that four different groups of countries can be identified to categorize the usability of PV. One type covers countries with a significant unused PV potential while local–global irradiation is redundantly available, such as Turkey, Spain, Cyprus, Portugal, and Israel.
Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefProgress in Photovoltaics Research and ApplicationsArticle . 2022Data sources: University of Twente Research Informationadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefProgress in Photovoltaics Research and ApplicationsArticle . 2022Data sources: University of Twente Research Informationadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Institution of Engineering and Technology (IET) Authors: Elham Shirazi; Shahram Jadid;This study proposes an agent‐based approach to have a reliable service restoration scheme, which is vital to restore as many loads as possible after a permanent fault. The proposed multi‐agent system (MAS) has four different types of agents: feeder agents, zone agents, switch agents and DG agents. The agents can communicate and cooperate with each other in order to supply services to out‐of‐service customers. An artificial neural network has been considered to handle DG uncertainties. The restoration plan is built in a distributed manner, based on local data considering system conditions, operational constraints and fault location. The result of the proposed MAS is a switching sequence. After defining this sequence, the command for opening will be received by circuit breaker agents. In case of one switch failure, the plan cannot be implemented, and hence the restoration plan will fail. To have a reliable restoration plan, the main feeder agent has to handle malfunction in order to operate the system at an acceptable range without violating system constraints. Different loading conditions have been considered under different scenarios and the results of the proposed approach for each scenario have been compared. Simulation results show the efficiency of the proposed agent architecture.
IET Generation, Tran... arrow_drop_down IET Generation, Transmission & DistributionArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/iet-gtd.2018.6774&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold Published in a Diamond OA journal 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert IET Generation, Tran... arrow_drop_down IET Generation, Transmission & DistributionArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/iet-gtd.2018.6774&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021 Japan, NetherlandsPublisher:Elsevier BV Funded by:EC | SRec BIPVEC| SRec BIPVTakao Onoye; Ittetsu Taniguchi; Francky Catthoor; Francky Catthoor; Hans Goverde; Hans Goverde; Daichi Watari; Patrizio Manganiello; Patrizio Manganiello; Elham Shirazi; Elham Shirazi;Abstract We propose a multi-time scale energy management framework for a smart photovoltaic (PV) system that can calculate optimized schedules for battery operation, power purchases, and appliance usage. A smart PV system is a local energy community that includes several buildings and households equipped with PV panels and batteries. However, due to the unpredictability and fast variation of PV generation, maintaining energy balance and reducing electricity costs in the system is challenging. Our proposed framework employs a model predictive control approach with a physics-based PV forecasting model and an accurately parameterized battery model. We also introduce a multi-time scale structure composed of two-time scales: a longer coarse-grained time scale for daily horizon with 15-minutes resolution and a shorter fine-grained time scale for 15-minutes horizon with 1-second resolution. In contrast to the current single-time scale approaches, this alternative structure enables the management of a necessary mix of fast and slow system dynamics with reasonable computational times while maintaining high accuracy. Simulation results show that the proposed framework reduces electricity costs up 48.1% compared with baseline methods. The necessity of a multi-time scale and the impact on accurate system modeling in terms of PV forecasting and batteries are also demonstrated.
Osaka University Kno... arrow_drop_down Osaka University Knowledge Archive (OUKA)ArticleLicense: CC BYData sources: Bielefeld Academic Search Engine (BASE)Delft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116671&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 39 citations 39 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 13visibility views 13 download downloads 15 Powered bymore_vert Osaka University Kno... arrow_drop_down Osaka University Knowledge Archive (OUKA)ArticleLicense: CC BYData sources: Bielefeld Academic Search Engine (BASE)Delft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116671&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Elham Shirazi; Shahram Jadid;Abstract With the development of home area network, residents have the opportunity to schedule their power usage at the home by themselves aiming at reducing electricity expenses. Moreover, as renewable energy sources are deployed in home, an energy management system needs to consider both energy consumption and generation simultaneously to minimize the energy cost. In this paper, a smart home energy management model has been presented that considers both energy consumption and generation simultaneously. The proposed model arranges the household electrical and thermal appliances for operation such that the monetary expense of a customer is minimized based on the time-varying pricing model. In this model, the home gateway receives the electricity price information as well as the resident desired options in order to efficiently schedule the appliances and shave the peak as well. The scheduling approach is tested on a typical home including variety of home appliances, a small wind turbine, PV panel and a battery over a 24-h period.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.01.148&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu100 citations 100 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.01.148&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 FinlandPublisher:MDPI AG Abessi, Ahad; Shirazi, Elham; Jadid, Shahram; Shafie-khah; Miadreza;doi: 10.3390/su12156046
Nowadays, due to the increasing number of disasters, improving distribution system resiliency is a new challenging issue for researchers. One of the main methods for improving the resiliency in distribution systems is to supply critical loads after disasters during the power outage and before system restorations. In this paper, a “Sustainable and resilient smart house” is introduced for the first time by using plug-in hybrid electric vehicles (PHEVs). PHEVs have the ability to use their fuel for generating electricity in emergency situations as the Vehicle to Grid (V2G) scheme. This ability, besides smart house control management, provides an opportunity for distribution system operators to use their extra energy for supplying a critical load in the system. The proposed control strategy in this paper is dedicated to a short duration power outage, which includes a large percent of the events. Then, improvement of the resiliency of distribution systems is investigated through supplying smart residential customers and injecting extra power to the main grid. A novel formulation is proposed for increasing the injected power of the smart house to the main grid using PHEVs. The effectiveness of the proposed method in increasing power injection during power outages is shown in simulation results.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/15/6046/pdfData sources: Multidisciplinary Digital Publishing InstituteOsuva (University of Vaasa)Article . 2020License: CC BYFull-Text: https://doi.org/10.3390/su12156046Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12156046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/15/6046/pdfData sources: Multidisciplinary Digital Publishing InstituteOsuva (University of Vaasa)Article . 2020License: CC BYFull-Text: https://doi.org/10.3390/su12156046Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12156046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 NetherlandsPublisher:Elsevier BV Koki Iwabuchi; Kenshiro Kato; Daichi Watari; Ittetsu Taniguchi; Francky Catthoor; Elham Shirazi; Takao Onoye;Under dynamic pricing, stable and accurate electricity price forecasting on the demand side is essential for efficient energy management. We have developed a new electricity price forecasting model that provides consistently accurate forecasts. The base prediction model decomposes the time series using wavelet transform and then predicts it by Long Short-Term Memory. Previous studies using this model have always decomposed time series in the same way without changing the mother wavelet. However, this makes it difficult to respond to changes in time series that vary daily or seasonally. Therefore, we periodically switch the mother wavelet, i.e., flexibly change the time series decomposition method, to achieve stable and highly accurate electricity price forecasting. In an experiment, the model improved prediction accuracy by up to 42.8% compared to prediction with a fixed mother wavelet. Experimental results show that the proposed flexible forecasting method can consistently provide highly accurate forecasts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyai.2022.100192&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyai.2022.100192&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2021Publisher:IEEE Daichi Watari; Ittetsu Taniguchi; Francky Catthoor; Kostas Siozios; Takao Onoye; Charalampos Marantos; Dimitrios Soudris; Elham Shirazi;Energy management in buildings equipped with renewable energy is vital for reducing electricity costs and maximizing occupant comfort. Despite several studies on the scheduling of appliances, a battery, and heating, ventilating, and air-conditioning (HVAC), there is a lack of a comprehensive and time-scalable approach that integrates predictive information such as renewable generation and thermal comfort. In this paper, we propose an online energy management framework to incorporate the optimal energy scheduling and prediction model of PV generation and thermal comfort by the model predictive control (MPC) approach. The energy management problem is formulated as coordinated three optimization problems covering a fast and slow time-scale.This reduces the time complexity without a significant negative impact on the global nature and quality of the result. Experimental results show that the proposed framework achieves optimal energy management that takes into account the trade-off between the electricity bill and thermal comfort.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.23919/date51398.2021.9473922&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.23919/date51398.2021.9473922&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2022 NetherlandsPublisher:IEEE Authors: Khoubseresht, Omid; Rajabinezhad, Mohamadamin; Ahmadi, Bahman; Shirazi, Elham;The benefits of renewable energy sources (RES) are undeniable, despite the fact that controlling their output power is complicated due to their intermittent nature. In this paper, a new set of analytical formulations has been proposed for simultaneous integration and control of wind turbine (WT) and battery energy storage system (BESS) considering the time-varying load models, and resources uncertainty. The objective functions of this method include smoothing the output power of the WT unit, balancing demand and generation, increasing WT shares as well as decreasing the automatic generation control (AGC) reserve capacity which is essential in the gird. In addition, the modification of BESS reference current is considered to prolong the BESS effective lifetime and guarantee the prevention of BESS from over-charge and discharge. The results show that simultaneous integration of WT and BESS in the grid will smooth WT output power, balance load and WT generation, thereby reducing AGC required capacity and increasing the hosting capacity of grids effectively.
University of Twente... arrow_drop_down University of Twente Research InformationConference object . 2022Data sources: University of Twente Research Informationhttps://doi.org/10.1109/isgt-e...Conference object . 2022 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/isgt-europe54678.2022.9960469&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert University of Twente... arrow_drop_down University of Twente Research InformationConference object . 2022Data sources: University of Twente Research Informationhttps://doi.org/10.1109/isgt-e...Conference object . 2022 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/isgt-europe54678.2022.9960469&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Elham Shirazi; Shahram Jadid;Abstract With the emergence of smart grid which has advanced metering infrastructure (AMI) and microgrid running as a local energy provider for dwellings through distributed energy resources (DERs), dwellers have the opportunity to schedule their in-home energy usage by themselves to reduce energy expense. Household tasks along with DER operation are scheduled according to electricity real-time price (RTP) and natural gas fixed price. Various studies have shown that the lack of effective home automation systems and the lack of awareness among users to respond to time-varying prices are two chief obstacles in order to fully exploit the potential benefits of dynamic pricing schemes. This paper drives to handle these problems by proposing an automatic and optimal residential energy consumption scheduling technique which tries to achieve a favorable trade-off between minimizing the energy costs as well as the inconvenience for the operation of both electrical and thermal in a smart home environment. Simulation results show that the proposed scheduling method leads to significant reduction in energy costs for diverse load scenarios with the electricity demand from the grid. Therefore, the deployment of the proposed method is advantageous for both users and utilities.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2015.01.061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu156 citations 156 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2015.01.061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 NetherlandsPublisher:MDPI AG Funded by:EC | SERENEEC| SERENEAuthors: Bahman Ahmadi; Elham Shirazi;doi: 10.3390/en16196959
The widespread adoption of electric vehicles (EVs) poses challenges associated with charging infrastructures and their impact on the electrical grid. To address these challenges, smart charging approaches have emerged as a key solution that optimizes charging processes and contributes to a smarter and more efficient grid. This paper presents an innovative multi-objective optimization framework for EV smart charging (EVSC) using the Dynamic Hunting Leadership (DHL) method. The framework aims to improve the voltage profile of the system in addition to eliminating voltage violations and energy not supplied (ENS) to EVs within the network. The proposed approach considers both residential EV chargers and parking stations, incorporating realistic EV charger behaviors based on constant current charging and addressing the problem as a mixed integer non-linear programming (MINLP) problem. The performance of the optimization method is evaluated on a distribution network with varying levels of EV penetration connected to the chargers in the grid. The results demonstrate the effectiveness of the DHL algorithm in minimizing conflicting objectives and improving the grid’s voltage profile while considering operational constraints. This study provides a road map for EV aggregators and EV owners, guiding them on how to charge EVs based on preferences while minimizing adverse technical impacts on the grid.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16196959&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16196959&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 NetherlandsPublisher:Wiley Amrita Raghoebarsing; Istvan Farkas; Divine Atsu; Simon Boddaert; David Moser; Elham Shirazi; Angèle Reinders;doi: 10.1002/pip.3613
AbstractThis paper gives an overview of the status of implementation of photovoltaic (PV) systems among 34 member countries involved in the COST Action PEARL PV in the year 2018. Besides this, influencing factors that have an impact on the implementation of PV systems in each country have been assessed. The implementation of PV systems varies in European countries due to differences in solar irradiation and weather conditions, electricity consumption, national economic situation, and governmental approaches to promote PV. For this paper, data sets covering, among others, numbers installed PV systems, and the variables mentioned above, were collected, processed, and synchronized. Subsequently, relations between data were analyzed by geographic mapping and mutual correlations. The 34 countries evaluated produced together 120 TWh of PV electricity in 2018. It was notable that Germany produced the highest amount (45 TWh) and has the highest share (8.4%) of PV in its electricity generation. Weak correlations were found between the different variables and the gross domestic product, annual global irradiation, number of subsidy schemes, cumulative installed capacity, annual electricity generated by PV, the share of RE, and share of PV. Logically, as expected, strong correlations (R2 = 0.9) were found between the number of inhabitants and the annual electricity production and consumption. From our analysis, we conclude that four different groups of countries can be identified to categorize the usability of PV. One type covers countries with a significant unused PV potential while local–global irradiation is redundantly available, such as Turkey, Spain, Cyprus, Portugal, and Israel.
Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefProgress in Photovoltaics Research and ApplicationsArticle . 2022Data sources: University of Twente Research Informationadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefProgress in Photovoltaics Research and ApplicationsArticle . 2022Data sources: University of Twente Research Informationadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Institution of Engineering and Technology (IET) Authors: Elham Shirazi; Shahram Jadid;This study proposes an agent‐based approach to have a reliable service restoration scheme, which is vital to restore as many loads as possible after a permanent fault. The proposed multi‐agent system (MAS) has four different types of agents: feeder agents, zone agents, switch agents and DG agents. The agents can communicate and cooperate with each other in order to supply services to out‐of‐service customers. An artificial neural network has been considered to handle DG uncertainties. The restoration plan is built in a distributed manner, based on local data considering system conditions, operational constraints and fault location. The result of the proposed MAS is a switching sequence. After defining this sequence, the command for opening will be received by circuit breaker agents. In case of one switch failure, the plan cannot be implemented, and hence the restoration plan will fail. To have a reliable restoration plan, the main feeder agent has to handle malfunction in order to operate the system at an acceptable range without violating system constraints. Different loading conditions have been considered under different scenarios and the results of the proposed approach for each scenario have been compared. Simulation results show the efficiency of the proposed agent architecture.
IET Generation, Tran... arrow_drop_down IET Generation, Transmission & DistributionArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/iet-gtd.2018.6774&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold Published in a Diamond OA journal 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert IET Generation, Tran... arrow_drop_down IET Generation, Transmission & DistributionArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/iet-gtd.2018.6774&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu