- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Magdalena Szymańska; Ewa Szara; Tomasz Sosulski; Adam Wąs; Gijs W. P. Van Pruissen; René L. Cornelissen; Mieczysław Borowik; Marcin Konkol;doi: 10.3390/en12010155
Biogas is an alternative source of energy for fossil fuels. In the process of transforming organic materials into biogas significant amounts of valuable digestate are produced. In order to make the whole process sustainable digestate should be utilized this is a constraining factor in the development of the biogas industry. Consequently, there is an on-going search for new technologies to process digestate, allowing to broaden the range of possible ways of digestate utilization. One of such possibilities is technology of nitrogen (N) and phosphorus (P) recovery from the anaerobic digestate. In this study results of physicochemical analysis of materials flowing through the farm-scale bio-refinery producing struvite (STR) and ammonium sulphate (AS) are presented. Struvite was precipitated from the liquid fraction of digestate (LFDS). Ammonia was bound by sulphuric acid resulting in obtaining ammonium sulphate. The STR obtained was of medium purity and contained other macronutrients and micronutrients that further enhanced its agronomic value. The P recovery effectiveness, counted as the difference between the Ptot content in the material before and after STR precipitation was 43.8%. The AS was characterized by relatively low Ntot and Stot content. The Ntot recovery efficiency reached 43.2%. The study showed that struvite precipitation and ammonia stripping technologies can be used for processing digestate however, the processes efficiency should be improved.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/1/155/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12010155&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/1/155/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12010155&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Piotr Sulewski; Wiktor Ignaciuk; Magdalena Szymańska; Adam Wąs;doi: 10.3390/en16042001
The challenges related to climate policy and the energy crisis caused the search for alternative ways of obtaining energy, one of the essential tasks faced by scientists and political decision-makers. Recently, much attention has been paid to biomethane, which is perceived as a substitute for natural gas. Compared to the traditional combustion of biogas in cogeneration units (CHP), upgrading it to the form of biomethane can bring both environmental benefits (reduction in GHG emissions) and economic benefits (higher efficiency of energy use contained in biomass). The purpose of this review was a comprehensive assessment of the conditions and opportunities for developing the biomethane sector in the EU in the face of challenges generated by the energy and climate crisis. The article reviews the condition of the biomethane market in the European Union, focusing on such issues as biomethane production technologies, current and future supply and demand for biomethane, and biomethane production costs with particular emphasis on upgrading processes and financial support systems used in the EU countries. The review showed that the market situation in biomethane production has recently begun to change rapidly. However, the share of biomethane in meeting the needs for natural gas remains small. Moreover, the available expert studies indicate a significant development potential, which is desirable because of the need to increase energy security and environmental and economic reasons. However, this will require organizing the legal environment and creating a transparent system of incentives.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16042001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 35 citations 35 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16042001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Tomasz Sosulski; Amit Kumar Srivastava; Hella Ellen Ahrends; Bożena Smreczak; Magdalena Szymańska;doi: 10.3390/app13074620
Two important goals of sustainable agriculture are food production and preserving and improving soil health. The soil organic carbon content is considered an indicator of soil health. The evaluation of the methods to increase the soil organic carbon content in long-term experiments is usually carried out without considering its environmental effects, (e.g., CO2–C soil emission). This study hypothesized that sandy soils have a low carbon storage potential, and that the carbon accumulation in the soil is accompanied by increased CO2–C emissions into the atmosphere. The study was carried out as a long-term fertilization experiment in Central Poland using a rye monoculture. The changes in the soil organic carbon content (SOC), CO2–C emissions from soil, and plant yields were examined for two soil treatments: one treated only with mineral fertilizers (CaNPK) and one annually fertilized with manure (Ca + M). Over the 91 years of the experiment, the SOC content of the manure-fertilized treatment increased almost two-fold, reaching 10.625 g C kg−1 in the topsoil, while the content of the SOC in the soil fertilized with CaNPK did not change (5.685 g C kg−1 in the topsoil). Unlike mineral fertilization, soil manuring reduced the plant yields by approximately 15.5–28.3% and increased the CO2–C emissions from arable land. The CO2–C emissions of the manured soil (5365.0 and 5159.2 kg CO2–C ha−1 in the first and second year of the study, respectively) were significantly higher (by 1431.9–2174.2 kg CO2–C ha−1) than those in the soils that only received mineral fertilizers (3933.1 and 2975.0 kg CO2–C ha−1 in the first and second year of the study, respectively). The results from this experiment suggest that only long-term fertilization with manure might increase the carbon storage in the sandy soil, but it is also associated with higher CO2–C emissions into the atmosphere. The replacement of mineral fertilizers with manure, predicted as a result of rising mineral fertilizer prices, will make it challenging to achieve the ambitious European goal of carbon neutrality in agriculture. The increase in CO2–C emissions due to manure fertilization of loamy sand soil in Central Poland also suggests the need to research the emissivity of organic farming.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2076-3417/13/7/4620/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app13074620&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2076-3417/13/7/4620/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app13074620&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2016Publisher:Instytut Ekonomiki Rolnictwa i Gospodarki Zywnosciowej Panstwowy Instytut Badawczy Magdalena Szymańska; Piotr Sulewski; Adam Wąs; Edward Majewski; Andrzej Wiszniewski; Aleksandra Fraj; Agata Malak-Rawlikowska; Marek Amrozy; Adrian Trząski;W artykule przeanalizowano opłacalność biogazowni rolniczych, które mogą być uruchamiane w polskich gospodarstwach prowadzących produkcję zwierzęcą. Ze względu na wysokie nakłady inwestycyjne, kluczową - z perspektywy rolników - jest kwestia mechanizmu wsparcia finansowego. Analizę efektywności inwestycji przeprowadzono przy założeniu trzech wariantów mocy jednostki kogeneracyjnej zainstalowanej w biogazowni. Dodatkowo rozpatrzono dwa scenariusze wsparcia finansowego odnoszą- ce się do starego "systemu zielonych certyfikatów" oraz nowego mechanizmu wynikającego z "Ustawy o odnawialnych źródłach energii". Nowy mechanizm, który powinien obowiązywać od 2016 r., zakłada wsparcie odnawialnych źródeł energii poprzez ceny gwarantowane (najmniejsze instalacje) oraz system akcji i gwarancje odkupu energii (większe instalacje). Wyniki analiz wskazują na silną zależność efektów finansowych od mechanizmu wsparcia. Przy przyjętych założeniach można stwierdzić, że inwestycje w biogazownie rolnicze na obecnym etapie rozwoju rynku charakteryzują się w zasadzie brakiem opłacalności. (abstrakt oryginalny) In the paper profitability of biogas production in livestock farms in Poland has been analyzed with a focus on micro biogas plants. Due to the high value of investments a crucial issue from the farmers point of view us a mechanism of financial support. The efficiency of investments has been measured assuming three variants of power of CHP installations. In addition two scenarios of financial support have been taken into consideration: the "old" mechanism of green certificates and a forthcoming mechanism based on the new "Law on Renewable Energy Resources" which is currently subject to the legislative procedure. The new system introduces feed-in tarrifs for small plants and auctions and guarantees of purchase for larger biogas plants. The results of the analyses indicate a strong dependence of the financial effects of microbiogas plants on subsidies. It can be concluded that under the current state of market development and financial support offered to microscale biogas production investments in biogas plants are in general not profitable.(original abstract)
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.30858/zer/83043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.30858/zer/83043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019Publisher:MDPI AG Magdalena Szymańska; Tomasz Sosulski; Ewa Szara; Adam Wąs; Piotr Sulewski; Gijs W.P. van Pruissen; René L. Cornelissen;doi: 10.3390/en12244721
This paper presents the results of a pot experiment aimed at the assessment of the agronomic and economic effectiveness of ammonium sulphate from an agro bio-refinery (Bio-AS). The Bio-AS was obtained by means of the ammonia stripping process from effluent after struvite precipitation from a liquid fraction of digestate. The agronomic effectiveness of Bio-AS in a pot experiment with maize and grass in two different soils, silty loam (SL) and loamy sand (LS), was investigated. The fertilising effect of Bio-AS was compared to commercial ammonium sulphate fertilizer (Com-AS) and control treatment (without fertilisation). The crop yields were found to depend on both soil type and nitrogen treatment. Crop yields produced under Bio-AS and Com-AS exceeded those under control treatments, respectively for SL and LS soils, by 88% and 125% for maize and 73% and 94% for grass. Crop yields under Bio-AS were similar to those under the Com-AS treatment. The fertilizer use of Bio-AS affected the chemical composition of plants and soil properties similarly as Com-AS. This suggests that Bio-AS from a bio-refinery can replace industrial ammonium sulphate, resulting in both economic and environmental benefits.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/24/4721/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12244721&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/24/4721/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12244721&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:MDPI AG Marcin Sońta; Andrzej Łozicki; Magdalena Szymańska; Tomasz Sosulski; Ewa Szara; Adam Wąs; Gijs W. P. van Pruissen; René L. Cornelissen;doi: 10.3390/en13205261
This paper presents the results of an interdisciplinary study aimed at assessing the possibility of using duckweed to purify and recover nutrients from the effluent remaining after struvite precipitation and ammonia stripping from a liquid fraction of anaerobic digestate in a biorefinery located at a Dutch dairy cattle production farm. The nutritional value of duckweed obtained in a biorefinery was assessed as well. Duckweed (Lemna minuta) was cultured on a growth medium with various concentrations of effluent from a biorefinery (EFL) and digested slurry (DS) not subjected to the nutrient recovery process. The study’s results showed that duckweed culture on the media with high contents of DS or EFL was impossible because they both inhibited its growth. After 15 days of culture, the highest duckweed yield was obtained from the ponds with DS or EFL contents in the medium reaching 0.39% (37.8 g fresh matter (FM) and 16.8 g FM per 8500 mL of the growth medium, respectively). The recovery of N by duckweed was approximately 75% and 81%, whereas that of P was approximately 45% and 55% of the growth media with EFL0.39% and DS0.39%, respectively. Duckweed obtained from the biorefinery proved to be a valuable high-protein feedstuff with high contents of α-tocopherol and carotenoids. With a protein content in duckweed approximating 35.4–36.1%, it is possible to obtain 2–4 t of protein per 1 ha from EFL0.39% and DS0.39% ponds, respectively.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/20/5261/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13205261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/20/5261/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13205261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Adam Wąs; Piotr Sulewski; Vitaliy Krupin; Nazariy Popadynets; Agata Malak-Rawlikowska; Magdalena Szymańska; Iryna Skorokhod; Marcin Wysokiński;doi: 10.3390/en13215755
Renewable energy production is gaining importance in the context of global climate changes. However, in some countries other aspects increasing the role of renewable energy production are also present. Such a country is Ukraine, which is not self-sufficient in energy supply and whose dependency on poorly diversified import of energy carriers regularly leads to political tensions and has socio-economic implications. Production of agricultural biogas seems to be a way to both slow down climatic changes and increase energy self-sufficiency by replacing or complementing conventional sources of energy. One of the most substantial barriers to agricultural biogas production is the low level of agricultural concentration and significant economies of scale in constructing biogas plants. The aim of the paper was thus to assess the potential of agricultural biogas production in Ukraine, including its impact on energy self-sufficiency, mitigation of greenhouse gas (GHG) emissions and the economic performance of biogas plants. The results show that due to the prevailing fragmentation of farms, most manure cannot be processed in an economically viable way. However, in some regions utilization of technically available manure for agricultural biogas production could cover up to 11% of natural gas or up to 19% of electricity demand. While the theoretical potential for reducing greenhouse gas emissions could reach 5% to 6.14%, the achievable technical potential varies between 2.3% and 2.8% of total emissions. The economic performance of agricultural biogas plants correlates closely with their size and bioenergy generation potential.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/21/5755/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13215755&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 35 citations 35 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/21/5755/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13215755&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Magdalena Szymańska; Ewa Szara; Adam Wąs; Tomasz Sosulski; Gijs W.P. van Pruissen; René L. Cornelissen;doi: 10.3390/en12020296
This paper presents the results of a pot experiment aimed at the assessment of the fertilizer value of struvite, a precipitation product obtained from a liquid fraction of the digestate. The effects of struvite (STR), struvite + ammonium sulphate (STR + N) and ammonium phosphate (AP) treatments were examined on maize and grass cultivation on silty loam and loamy sand soil. The crop yields were found to depend on both the soil type and experimental treatment. Crop yields produced under STR and STR + N exceeded those under the control treatments by respectively 66% and 108% for maize, and 94% and 110% for grass. Crop yields under STR + N were similar or greater than those under the AP treatment. The nitrogen recovery by maize and grass reached respectively 68% and 62% from the struvite and 78% and 52% from AP. The phosphorus recovery by maize and grass reached 7.3% and 4.8%, respectively, from struvite (i.e., STR and STR + N), which was lower than that from the AP (18.4% by maize and 8.1% by grass).
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/2/296/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12020296&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/2/296/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12020296&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:MDPI AG Magdalena Szymańska; Tomasz Sosulski; Adriana Bożętka; Urszula Dawidowicz; Adam Wąs; Ewa Szara; Agata Malak-Rawlikowska; Piotr Sulewski; Gijs W. P. van Pruissen; René L. Cornelissen;doi: 10.3390/en13205342
Biogas production in agricultural biogas plants generates digestate—liquid waste containing organic matter and mineral nutrients. Utilisation of the digestate on farm fields adjacent to the biogas plants is limited. Therefore, bio-refineries implement advanced forms of digestate processing, including precipitation of struvite (MgNH4PO4.6H2O). Struvite can be transported over long distances and dosed precisely to meet the nutritional needs of the plants. Divergent opinions on the fertilising value of struvite and its function over time call for further research on its effects on crop yields in the first and subsequent years after application. This study investigates the effects of struvite (STR), struvite with ammonium sulphate (STR + N), and commercial ammonium phosphate (AP) on the yields, nutrient concentration in the crops, nutrient uptake by the crops, and soil N, P, and Mg content in the second growing period after the application of fertilisers to silty loam (SL) and loamy sand (LS) soils under grass cultivation. Struvite was recovered from the liquid fraction of digestate obtained from a bio-refinery on the De Marke farm (Netherlands). The soils investigated in the pot experiment originated from Obory (SL) and Skierniewice (LS) (Central Poland). The results obtained over the first growing period following fertilisation were published earlier. In our prior work, we showed that the majority of the struvite phosphorus remains in the soil. We hypothesised that, in the second year, the yield potential of the struvite might be higher than that of commercial P fertiliser. Currently, we have demonstrated that, in the second growing period following the application, struvite causes an increase in grass yield, nutrient uptake by the crops, and P and Mg content in the soil. On SL and LS soils, the yields of the four grass harvests from the STR and STR + N treatments were higher than those from AP by approximately 8% and 16.5%, respectively. Our results confirm that struvite is more effective as a fertiliser compared to commercial ammonium phosphate. Struvite can be, therefore, recommended for fertilising grasslands at higher doses once every two years.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/20/5342/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13205342&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/20/5342/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13205342&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Magdalena Szymańska; Ewa Szara; Tomasz Sosulski; Adam Wąs; Gijs W. P. Van Pruissen; René L. Cornelissen; Mieczysław Borowik; Marcin Konkol;doi: 10.3390/en12010155
Biogas is an alternative source of energy for fossil fuels. In the process of transforming organic materials into biogas significant amounts of valuable digestate are produced. In order to make the whole process sustainable digestate should be utilized this is a constraining factor in the development of the biogas industry. Consequently, there is an on-going search for new technologies to process digestate, allowing to broaden the range of possible ways of digestate utilization. One of such possibilities is technology of nitrogen (N) and phosphorus (P) recovery from the anaerobic digestate. In this study results of physicochemical analysis of materials flowing through the farm-scale bio-refinery producing struvite (STR) and ammonium sulphate (AS) are presented. Struvite was precipitated from the liquid fraction of digestate (LFDS). Ammonia was bound by sulphuric acid resulting in obtaining ammonium sulphate. The STR obtained was of medium purity and contained other macronutrients and micronutrients that further enhanced its agronomic value. The P recovery effectiveness, counted as the difference between the Ptot content in the material before and after STR precipitation was 43.8%. The AS was characterized by relatively low Ntot and Stot content. The Ntot recovery efficiency reached 43.2%. The study showed that struvite precipitation and ammonia stripping technologies can be used for processing digestate however, the processes efficiency should be improved.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/1/155/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12010155&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/1/155/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12010155&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Piotr Sulewski; Wiktor Ignaciuk; Magdalena Szymańska; Adam Wąs;doi: 10.3390/en16042001
The challenges related to climate policy and the energy crisis caused the search for alternative ways of obtaining energy, one of the essential tasks faced by scientists and political decision-makers. Recently, much attention has been paid to biomethane, which is perceived as a substitute for natural gas. Compared to the traditional combustion of biogas in cogeneration units (CHP), upgrading it to the form of biomethane can bring both environmental benefits (reduction in GHG emissions) and economic benefits (higher efficiency of energy use contained in biomass). The purpose of this review was a comprehensive assessment of the conditions and opportunities for developing the biomethane sector in the EU in the face of challenges generated by the energy and climate crisis. The article reviews the condition of the biomethane market in the European Union, focusing on such issues as biomethane production technologies, current and future supply and demand for biomethane, and biomethane production costs with particular emphasis on upgrading processes and financial support systems used in the EU countries. The review showed that the market situation in biomethane production has recently begun to change rapidly. However, the share of biomethane in meeting the needs for natural gas remains small. Moreover, the available expert studies indicate a significant development potential, which is desirable because of the need to increase energy security and environmental and economic reasons. However, this will require organizing the legal environment and creating a transparent system of incentives.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16042001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 35 citations 35 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16042001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Tomasz Sosulski; Amit Kumar Srivastava; Hella Ellen Ahrends; Bożena Smreczak; Magdalena Szymańska;doi: 10.3390/app13074620
Two important goals of sustainable agriculture are food production and preserving and improving soil health. The soil organic carbon content is considered an indicator of soil health. The evaluation of the methods to increase the soil organic carbon content in long-term experiments is usually carried out without considering its environmental effects, (e.g., CO2–C soil emission). This study hypothesized that sandy soils have a low carbon storage potential, and that the carbon accumulation in the soil is accompanied by increased CO2–C emissions into the atmosphere. The study was carried out as a long-term fertilization experiment in Central Poland using a rye monoculture. The changes in the soil organic carbon content (SOC), CO2–C emissions from soil, and plant yields were examined for two soil treatments: one treated only with mineral fertilizers (CaNPK) and one annually fertilized with manure (Ca + M). Over the 91 years of the experiment, the SOC content of the manure-fertilized treatment increased almost two-fold, reaching 10.625 g C kg−1 in the topsoil, while the content of the SOC in the soil fertilized with CaNPK did not change (5.685 g C kg−1 in the topsoil). Unlike mineral fertilization, soil manuring reduced the plant yields by approximately 15.5–28.3% and increased the CO2–C emissions from arable land. The CO2–C emissions of the manured soil (5365.0 and 5159.2 kg CO2–C ha−1 in the first and second year of the study, respectively) were significantly higher (by 1431.9–2174.2 kg CO2–C ha−1) than those in the soils that only received mineral fertilizers (3933.1 and 2975.0 kg CO2–C ha−1 in the first and second year of the study, respectively). The results from this experiment suggest that only long-term fertilization with manure might increase the carbon storage in the sandy soil, but it is also associated with higher CO2–C emissions into the atmosphere. The replacement of mineral fertilizers with manure, predicted as a result of rising mineral fertilizer prices, will make it challenging to achieve the ambitious European goal of carbon neutrality in agriculture. The increase in CO2–C emissions due to manure fertilization of loamy sand soil in Central Poland also suggests the need to research the emissivity of organic farming.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2076-3417/13/7/4620/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app13074620&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2076-3417/13/7/4620/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app13074620&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2016Publisher:Instytut Ekonomiki Rolnictwa i Gospodarki Zywnosciowej Panstwowy Instytut Badawczy Magdalena Szymańska; Piotr Sulewski; Adam Wąs; Edward Majewski; Andrzej Wiszniewski; Aleksandra Fraj; Agata Malak-Rawlikowska; Marek Amrozy; Adrian Trząski;W artykule przeanalizowano opłacalność biogazowni rolniczych, które mogą być uruchamiane w polskich gospodarstwach prowadzących produkcję zwierzęcą. Ze względu na wysokie nakłady inwestycyjne, kluczową - z perspektywy rolników - jest kwestia mechanizmu wsparcia finansowego. Analizę efektywności inwestycji przeprowadzono przy założeniu trzech wariantów mocy jednostki kogeneracyjnej zainstalowanej w biogazowni. Dodatkowo rozpatrzono dwa scenariusze wsparcia finansowego odnoszą- ce się do starego "systemu zielonych certyfikatów" oraz nowego mechanizmu wynikającego z "Ustawy o odnawialnych źródłach energii". Nowy mechanizm, który powinien obowiązywać od 2016 r., zakłada wsparcie odnawialnych źródeł energii poprzez ceny gwarantowane (najmniejsze instalacje) oraz system akcji i gwarancje odkupu energii (większe instalacje). Wyniki analiz wskazują na silną zależność efektów finansowych od mechanizmu wsparcia. Przy przyjętych założeniach można stwierdzić, że inwestycje w biogazownie rolnicze na obecnym etapie rozwoju rynku charakteryzują się w zasadzie brakiem opłacalności. (abstrakt oryginalny) In the paper profitability of biogas production in livestock farms in Poland has been analyzed with a focus on micro biogas plants. Due to the high value of investments a crucial issue from the farmers point of view us a mechanism of financial support. The efficiency of investments has been measured assuming three variants of power of CHP installations. In addition two scenarios of financial support have been taken into consideration: the "old" mechanism of green certificates and a forthcoming mechanism based on the new "Law on Renewable Energy Resources" which is currently subject to the legislative procedure. The new system introduces feed-in tarrifs for small plants and auctions and guarantees of purchase for larger biogas plants. The results of the analyses indicate a strong dependence of the financial effects of microbiogas plants on subsidies. It can be concluded that under the current state of market development and financial support offered to microscale biogas production investments in biogas plants are in general not profitable.(original abstract)
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.30858/zer/83043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.30858/zer/83043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019Publisher:MDPI AG Magdalena Szymańska; Tomasz Sosulski; Ewa Szara; Adam Wąs; Piotr Sulewski; Gijs W.P. van Pruissen; René L. Cornelissen;doi: 10.3390/en12244721
This paper presents the results of a pot experiment aimed at the assessment of the agronomic and economic effectiveness of ammonium sulphate from an agro bio-refinery (Bio-AS). The Bio-AS was obtained by means of the ammonia stripping process from effluent after struvite precipitation from a liquid fraction of digestate. The agronomic effectiveness of Bio-AS in a pot experiment with maize and grass in two different soils, silty loam (SL) and loamy sand (LS), was investigated. The fertilising effect of Bio-AS was compared to commercial ammonium sulphate fertilizer (Com-AS) and control treatment (without fertilisation). The crop yields were found to depend on both soil type and nitrogen treatment. Crop yields produced under Bio-AS and Com-AS exceeded those under control treatments, respectively for SL and LS soils, by 88% and 125% for maize and 73% and 94% for grass. Crop yields under Bio-AS were similar to those under the Com-AS treatment. The fertilizer use of Bio-AS affected the chemical composition of plants and soil properties similarly as Com-AS. This suggests that Bio-AS from a bio-refinery can replace industrial ammonium sulphate, resulting in both economic and environmental benefits.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/24/4721/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12244721&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/24/4721/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12244721&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:MDPI AG Marcin Sońta; Andrzej Łozicki; Magdalena Szymańska; Tomasz Sosulski; Ewa Szara; Adam Wąs; Gijs W. P. van Pruissen; René L. Cornelissen;doi: 10.3390/en13205261
This paper presents the results of an interdisciplinary study aimed at assessing the possibility of using duckweed to purify and recover nutrients from the effluent remaining after struvite precipitation and ammonia stripping from a liquid fraction of anaerobic digestate in a biorefinery located at a Dutch dairy cattle production farm. The nutritional value of duckweed obtained in a biorefinery was assessed as well. Duckweed (Lemna minuta) was cultured on a growth medium with various concentrations of effluent from a biorefinery (EFL) and digested slurry (DS) not subjected to the nutrient recovery process. The study’s results showed that duckweed culture on the media with high contents of DS or EFL was impossible because they both inhibited its growth. After 15 days of culture, the highest duckweed yield was obtained from the ponds with DS or EFL contents in the medium reaching 0.39% (37.8 g fresh matter (FM) and 16.8 g FM per 8500 mL of the growth medium, respectively). The recovery of N by duckweed was approximately 75% and 81%, whereas that of P was approximately 45% and 55% of the growth media with EFL0.39% and DS0.39%, respectively. Duckweed obtained from the biorefinery proved to be a valuable high-protein feedstuff with high contents of α-tocopherol and carotenoids. With a protein content in duckweed approximating 35.4–36.1%, it is possible to obtain 2–4 t of protein per 1 ha from EFL0.39% and DS0.39% ponds, respectively.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/20/5261/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13205261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/20/5261/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13205261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Adam Wąs; Piotr Sulewski; Vitaliy Krupin; Nazariy Popadynets; Agata Malak-Rawlikowska; Magdalena Szymańska; Iryna Skorokhod; Marcin Wysokiński;doi: 10.3390/en13215755
Renewable energy production is gaining importance in the context of global climate changes. However, in some countries other aspects increasing the role of renewable energy production are also present. Such a country is Ukraine, which is not self-sufficient in energy supply and whose dependency on poorly diversified import of energy carriers regularly leads to political tensions and has socio-economic implications. Production of agricultural biogas seems to be a way to both slow down climatic changes and increase energy self-sufficiency by replacing or complementing conventional sources of energy. One of the most substantial barriers to agricultural biogas production is the low level of agricultural concentration and significant economies of scale in constructing biogas plants. The aim of the paper was thus to assess the potential of agricultural biogas production in Ukraine, including its impact on energy self-sufficiency, mitigation of greenhouse gas (GHG) emissions and the economic performance of biogas plants. The results show that due to the prevailing fragmentation of farms, most manure cannot be processed in an economically viable way. However, in some regions utilization of technically available manure for agricultural biogas production could cover up to 11% of natural gas or up to 19% of electricity demand. While the theoretical potential for reducing greenhouse gas emissions could reach 5% to 6.14%, the achievable technical potential varies between 2.3% and 2.8% of total emissions. The economic performance of agricultural biogas plants correlates closely with their size and bioenergy generation potential.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/21/5755/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13215755&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 35 citations 35 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/21/5755/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13215755&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Magdalena Szymańska; Ewa Szara; Adam Wąs; Tomasz Sosulski; Gijs W.P. van Pruissen; René L. Cornelissen;doi: 10.3390/en12020296
This paper presents the results of a pot experiment aimed at the assessment of the fertilizer value of struvite, a precipitation product obtained from a liquid fraction of the digestate. The effects of struvite (STR), struvite + ammonium sulphate (STR + N) and ammonium phosphate (AP) treatments were examined on maize and grass cultivation on silty loam and loamy sand soil. The crop yields were found to depend on both the soil type and experimental treatment. Crop yields produced under STR and STR + N exceeded those under the control treatments by respectively 66% and 108% for maize, and 94% and 110% for grass. Crop yields under STR + N were similar or greater than those under the AP treatment. The nitrogen recovery by maize and grass reached respectively 68% and 62% from the struvite and 78% and 52% from AP. The phosphorus recovery by maize and grass reached 7.3% and 4.8%, respectively, from struvite (i.e., STR and STR + N), which was lower than that from the AP (18.4% by maize and 8.1% by grass).
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/2/296/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12020296&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/2/296/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12020296&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:MDPI AG Magdalena Szymańska; Tomasz Sosulski; Adriana Bożętka; Urszula Dawidowicz; Adam Wąs; Ewa Szara; Agata Malak-Rawlikowska; Piotr Sulewski; Gijs W. P. van Pruissen; René L. Cornelissen;doi: 10.3390/en13205342
Biogas production in agricultural biogas plants generates digestate—liquid waste containing organic matter and mineral nutrients. Utilisation of the digestate on farm fields adjacent to the biogas plants is limited. Therefore, bio-refineries implement advanced forms of digestate processing, including precipitation of struvite (MgNH4PO4.6H2O). Struvite can be transported over long distances and dosed precisely to meet the nutritional needs of the plants. Divergent opinions on the fertilising value of struvite and its function over time call for further research on its effects on crop yields in the first and subsequent years after application. This study investigates the effects of struvite (STR), struvite with ammonium sulphate (STR + N), and commercial ammonium phosphate (AP) on the yields, nutrient concentration in the crops, nutrient uptake by the crops, and soil N, P, and Mg content in the second growing period after the application of fertilisers to silty loam (SL) and loamy sand (LS) soils under grass cultivation. Struvite was recovered from the liquid fraction of digestate obtained from a bio-refinery on the De Marke farm (Netherlands). The soils investigated in the pot experiment originated from Obory (SL) and Skierniewice (LS) (Central Poland). The results obtained over the first growing period following fertilisation were published earlier. In our prior work, we showed that the majority of the struvite phosphorus remains in the soil. We hypothesised that, in the second year, the yield potential of the struvite might be higher than that of commercial P fertiliser. Currently, we have demonstrated that, in the second growing period following the application, struvite causes an increase in grass yield, nutrient uptake by the crops, and P and Mg content in the soil. On SL and LS soils, the yields of the four grass harvests from the STR and STR + N treatments were higher than those from AP by approximately 8% and 16.5%, respectively. Our results confirm that struvite is more effective as a fertiliser compared to commercial ammonium phosphate. Struvite can be, therefore, recommended for fertilising grasslands at higher doses once every two years.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/20/5342/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13205342&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/20/5342/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13205342&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu