- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2017 NorwayPublisher:Elsevier BV Funded by:RCN | Environmental Sustainabil..., RCN | CenSES- Centre for Sustai...RCN| Environmental Sustainability Benchmarking of Low-Carbon Energy Technologies ,RCN| CenSES- Centre for Sustainable Energy Studies-Authors: Anders Arvesen; Edgar G. Hertwich; Edgar G. Hertwich; Thomas Gibon;handle: 11250/2467220
Abstract The targeted transition towards an electricity system with low or even negative greenhouse gas emissions affords a chance to address other environmental concerns as well, but may potentially have to adjust to the limited availability of assorted non-fossil resources. Life cycle assessment (LCA) is widely recognized as a method appropriate to assess and compare product systems taking into account a wide range of environmental impacts. Yet, LCA could not inform the latest assessment of co-benefits and trade-offs of climate change mitigation by the Intergovernmental Panel on Climate Change due to the lack of comparative assessments of different electricity generation technologies addressing a wide range of environmental impacts and using a consistent set of methods. This paper contributes to filling this gap. A consistent set of life cycle inventories of a wide range of electricity generation technologies is assessed using the Recipe midpoint methods. The life-cycle inventory modeling addresses the production and deployment of the technologies in nine different regions. The analysis shows that even though low-carbon power requires a larger amount of metals than conventional fossil power, renewable and nuclear power leads to a reduction of a wide range of environmental impacts, while CO 2 capture and storage leads to increased non-GHG impacts. Biomass has relatively modest co-benefits, if at all. The manufacturing of low-carbon technologies is important compared to their operation, indicating that it is important to choose the most desirable technologies from the outset.
Norwegian Open Resea... arrow_drop_down Norwegian Open Research ArchivesArticle . 2017Full-Text: http://doi.org/10.1016/j.rser.2017.03.078.Data sources: Norwegian Open Research ArchivesRenewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.03.078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 83 citations 83 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Norwegian Open Resea... arrow_drop_down Norwegian Open Research ArchivesArticle . 2017Full-Text: http://doi.org/10.1016/j.rser.2017.03.078.Data sources: Norwegian Open Research ArchivesRenewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.03.078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 NorwayPublisher:Elsevier BV Funded by:RCN | Environmental Sustainabil..., RCN | CenSES- Centre for Sustai...RCN| Environmental Sustainability Benchmarking of Low-Carbon Energy Technologies ,RCN| CenSES- Centre for Sustainable Energy Studies-Authors: Anders Arvesen; Edgar G. Hertwich; Edgar G. Hertwich; Thomas Gibon;handle: 11250/2467220
Abstract The targeted transition towards an electricity system with low or even negative greenhouse gas emissions affords a chance to address other environmental concerns as well, but may potentially have to adjust to the limited availability of assorted non-fossil resources. Life cycle assessment (LCA) is widely recognized as a method appropriate to assess and compare product systems taking into account a wide range of environmental impacts. Yet, LCA could not inform the latest assessment of co-benefits and trade-offs of climate change mitigation by the Intergovernmental Panel on Climate Change due to the lack of comparative assessments of different electricity generation technologies addressing a wide range of environmental impacts and using a consistent set of methods. This paper contributes to filling this gap. A consistent set of life cycle inventories of a wide range of electricity generation technologies is assessed using the Recipe midpoint methods. The life-cycle inventory modeling addresses the production and deployment of the technologies in nine different regions. The analysis shows that even though low-carbon power requires a larger amount of metals than conventional fossil power, renewable and nuclear power leads to a reduction of a wide range of environmental impacts, while CO 2 capture and storage leads to increased non-GHG impacts. Biomass has relatively modest co-benefits, if at all. The manufacturing of low-carbon technologies is important compared to their operation, indicating that it is important to choose the most desirable technologies from the outset.
Norwegian Open Resea... arrow_drop_down Norwegian Open Research ArchivesArticle . 2017Full-Text: http://doi.org/10.1016/j.rser.2017.03.078.Data sources: Norwegian Open Research ArchivesRenewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.03.078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 83 citations 83 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Norwegian Open Resea... arrow_drop_down Norwegian Open Research ArchivesArticle . 2017Full-Text: http://doi.org/10.1016/j.rser.2017.03.078.Data sources: Norwegian Open Research ArchivesRenewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.03.078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 GermanyPublisher:Springer Science and Business Media LLC Funded by:RCN | CenSES- Centre for Sustai...RCN| CenSES- Centre for Sustainable Energy Studies-Authors: Stefan Pauliuk; Anders Arvesen; Konstantin Stadler; Edgar G. Hertwich;doi: 10.1038/nclimate3148
An in-depth review of five major integrated assessment models from an industrial ecology perspective reveals differences between the fields regarding the modelling of linkages in the industrial system. Technology-rich integrated assessment models (IAMs) address possible technology mixes and future costs of climate change mitigation by generating scenarios for the future industrial system. Industrial ecology (IE) focuses on the empirical analysis of this system. We conduct an in-depth review of five major IAMs from an IE perspective and reveal differences between the two fields regarding the modelling of linkages in the industrial system, focussing on AIM/CGE, GCAM, IMAGE, MESSAGE, and REMIND. IAMs ignore material cycles and recycling, incoherently describe the life-cycle impacts of technology, and miss linkages regarding buildings and infrastructure. Adding IE system linkages to IAMs adds new constraints and allows for studying new mitigation options, both of which may lead to more robust and policy-relevant mitigation scenarios.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nclimate3148&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 202 citations 202 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nclimate3148&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 GermanyPublisher:Springer Science and Business Media LLC Funded by:RCN | CenSES- Centre for Sustai...RCN| CenSES- Centre for Sustainable Energy Studies-Authors: Stefan Pauliuk; Anders Arvesen; Konstantin Stadler; Edgar G. Hertwich;doi: 10.1038/nclimate3148
An in-depth review of five major integrated assessment models from an industrial ecology perspective reveals differences between the fields regarding the modelling of linkages in the industrial system. Technology-rich integrated assessment models (IAMs) address possible technology mixes and future costs of climate change mitigation by generating scenarios for the future industrial system. Industrial ecology (IE) focuses on the empirical analysis of this system. We conduct an in-depth review of five major IAMs from an IE perspective and reveal differences between the two fields regarding the modelling of linkages in the industrial system, focussing on AIM/CGE, GCAM, IMAGE, MESSAGE, and REMIND. IAMs ignore material cycles and recycling, incoherently describe the life-cycle impacts of technology, and miss linkages regarding buildings and infrastructure. Adding IE system linkages to IAMs adds new constraints and allows for studying new mitigation options, both of which may lead to more robust and policy-relevant mitigation scenarios.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nclimate3148&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 202 citations 202 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nclimate3148&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 NorwayPublisher:Elsevier BV Authors: Arvesen, Anders; Hertwich, Edgar G.;handle: 11250/2367846
Abstract Cumulative energy demand (CED) estimates from life cycle assessments (LCAs) are increasingly used to determine energy return on investment (EROI), but the difference in indicators can lead to a misclassification of energy flows in the assessment. The core idea of EROI is to measure the relation of energy diverted from society to make energy available to society. CED, on the other hand, includes forms of energy that are not appropriated by society, such as fugitive methane emissions from oil wells as well as losses of heating value of coal during transport and storage. Such energy forms should be excluded from EROI; failure to do so leads to results that are inconsistent with the intention of EROI and potentially misleading. We demonstrate how this problem is at least partially rectifiable by adopting consistent energy accounting, but also note that among the energy flows not appropriated by society occurring in CED, not all flows can easily be removed. Further, we point to inconsistencies in heating value assumptions in a widely used database that have misled analysts. Finally, we argue that the differential weighting of primary energy forms in published CED-based EROI work is unsubstantiated and should be reconsidered.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2014.11.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 58 citations 58 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2014.11.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 NorwayPublisher:Elsevier BV Authors: Arvesen, Anders; Hertwich, Edgar G.;handle: 11250/2367846
Abstract Cumulative energy demand (CED) estimates from life cycle assessments (LCAs) are increasingly used to determine energy return on investment (EROI), but the difference in indicators can lead to a misclassification of energy flows in the assessment. The core idea of EROI is to measure the relation of energy diverted from society to make energy available to society. CED, on the other hand, includes forms of energy that are not appropriated by society, such as fugitive methane emissions from oil wells as well as losses of heating value of coal during transport and storage. Such energy forms should be excluded from EROI; failure to do so leads to results that are inconsistent with the intention of EROI and potentially misleading. We demonstrate how this problem is at least partially rectifiable by adopting consistent energy accounting, but also note that among the energy flows not appropriated by society occurring in CED, not all flows can easily be removed. Further, we point to inconsistencies in heating value assumptions in a widely used database that have misled analysts. Finally, we argue that the differential weighting of primary energy forms in published CED-based EROI work is unsubstantiated and should be reconsidered.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2014.11.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 58 citations 58 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2014.11.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 GermanyPublisher:Elsevier BV Funded by:EC | SIM4NEXUSEC| SIM4NEXUSBenjamin Leon Bodirsky; Gunnar Luderer; Michaja Pehl; Anders Arvesen; Edgar G. Hertwich; Edgar G. Hertwich;handle: 11250/2585375
Abstract The fields of life cycle assessment (LCA) and integrated assessment (IA) modelling today have similar interests in assessing macro-level transformation pathways with a broad view of environmental concerns. Prevailing IA models lack a life cycle perspective, while LCA has traditionally been static- and micro-oriented. We develop a general method for deriving coefficients from detailed, bottom-up LCA suitable for application in IA models, thus allowing IA analysts to explore the life cycle impacts of technology and scenario alternatives. The method decomposes LCA coefficients into life cycle phases and energy carrier use by industries, thus facilitating attribution of life cycle effects to appropriate years, and consistent and comprehensive use of IA model-specific scenario data when the LCA coefficients are applied in IA scenario modelling. We demonstrate the application of the method for global electricity supply to 2050 and provide numerical results (as supplementary material) for future use by IA analysts.
Publication Database... arrow_drop_down Environmental Modelling & SoftwareArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEnvironmental Modelling & SoftwareArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsoft.2017.09.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 68 citations 68 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Publication Database... arrow_drop_down Environmental Modelling & SoftwareArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEnvironmental Modelling & SoftwareArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsoft.2017.09.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 GermanyPublisher:Elsevier BV Funded by:EC | SIM4NEXUSEC| SIM4NEXUSBenjamin Leon Bodirsky; Gunnar Luderer; Michaja Pehl; Anders Arvesen; Edgar G. Hertwich; Edgar G. Hertwich;handle: 11250/2585375
Abstract The fields of life cycle assessment (LCA) and integrated assessment (IA) modelling today have similar interests in assessing macro-level transformation pathways with a broad view of environmental concerns. Prevailing IA models lack a life cycle perspective, while LCA has traditionally been static- and micro-oriented. We develop a general method for deriving coefficients from detailed, bottom-up LCA suitable for application in IA models, thus allowing IA analysts to explore the life cycle impacts of technology and scenario alternatives. The method decomposes LCA coefficients into life cycle phases and energy carrier use by industries, thus facilitating attribution of life cycle effects to appropriate years, and consistent and comprehensive use of IA model-specific scenario data when the LCA coefficients are applied in IA scenario modelling. We demonstrate the application of the method for global electricity supply to 2050 and provide numerical results (as supplementary material) for future use by IA analysts.
Publication Database... arrow_drop_down Environmental Modelling & SoftwareArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEnvironmental Modelling & SoftwareArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsoft.2017.09.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 68 citations 68 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Publication Database... arrow_drop_down Environmental Modelling & SoftwareArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEnvironmental Modelling & SoftwareArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsoft.2017.09.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Norway, United States, NetherlandsPublisher:Proceedings of the National Academy of Sciences Edgar G. Hertwich; Thomas Gibon; Evert A. Bouman; Anders Arvesen; Sangwon Suh; Garvin A. Heath; Joseph D. Bergesen; Andrea Ramirez; Mabel I. Vega; Lei Shi;Significance Life-cycle assessments commonly used to analyze the environmental costs and benefits of climate-mitigation options are usually static in nature and address individual power plants. Our paper presents, to our knowledge, the first life-cycle assessment of the large-scale implementation of climate-mitigation technologies, addressing the feedback of the electricity system onto itself and using scenario-consistent assumptions of technical improvements in key energy and material production technologies.
Norwegian Open Resea... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/52t3d90pData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2015License: taverneData sources: Pure Utrecht UniversityProceedings of the National Academy of SciencesArticle . 2014 . Peer-reviewedData sources: CrossrefeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1312753111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 588 citations 588 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Norwegian Open Resea... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/52t3d90pData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2015License: taverneData sources: Pure Utrecht UniversityProceedings of the National Academy of SciencesArticle . 2014 . Peer-reviewedData sources: CrossrefeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1312753111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Norway, United States, NetherlandsPublisher:Proceedings of the National Academy of Sciences Edgar G. Hertwich; Thomas Gibon; Evert A. Bouman; Anders Arvesen; Sangwon Suh; Garvin A. Heath; Joseph D. Bergesen; Andrea Ramirez; Mabel I. Vega; Lei Shi;Significance Life-cycle assessments commonly used to analyze the environmental costs and benefits of climate-mitigation options are usually static in nature and address individual power plants. Our paper presents, to our knowledge, the first life-cycle assessment of the large-scale implementation of climate-mitigation technologies, addressing the feedback of the electricity system onto itself and using scenario-consistent assumptions of technical improvements in key energy and material production technologies.
Norwegian Open Resea... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/52t3d90pData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2015License: taverneData sources: Pure Utrecht UniversityProceedings of the National Academy of SciencesArticle . 2014 . Peer-reviewedData sources: CrossrefeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1312753111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 588 citations 588 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Norwegian Open Resea... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/52t3d90pData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2015License: taverneData sources: Pure Utrecht UniversityProceedings of the National Academy of SciencesArticle . 2014 . Peer-reviewedData sources: CrossrefeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1312753111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 NorwayPublisher:Elsevier BV Authors: Arvesen, Anders; Hertwich, Edgar G.;handle: 11250/297942
(C) 2012 Elsevier Ltd. All rights reserved. This is the authors' accepted and refereed manuscript to the article.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2012.06.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 179 citations 179 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2012.06.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 NorwayPublisher:Elsevier BV Authors: Arvesen, Anders; Hertwich, Edgar G.;handle: 11250/297942
(C) 2012 Elsevier Ltd. All rights reserved. This is the authors' accepted and refereed manuscript to the article.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2012.06.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 179 citations 179 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2012.06.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 GermanyPublisher:Springer Science and Business Media LLC Funded by:EC | ADVANCEEC| ADVANCEMichaja Pehl; Anders Arvesen; Florian Humpenöder; Alexander Popp; Edgar G. Hertwich; Gunnar Luderer;Both fossil-fuel and non-fossil-fuel power technologies induce life-cycle greenhouse gas emissions, mainly due to their embodied energy requirements for construction and operation, and upstream CH4 emissions. Here, we integrate prospective life-cycle assessment with global integrated energy–economy–land-use–climate modelling to explore life-cycle emissions of future low-carbon power supply systems and implications for technology choice. Future per-unit life-cycle emissions differ substantially across technologies. For a climate protection scenario, we project life-cycle emissions from fossil fuel carbon capture and sequestration plants of 78–110 gCO2eq kWh−1, compared with 3.5–12 gCO2eq kWh−1 for nuclear, wind and solar power for 2050. Life-cycle emissions from hydropower and bioenergy are substantial (∼100 gCO2eq kWh−1), but highly uncertain. We find that cumulative emissions attributable to upscaling low-carbon power other than hydropower are small compared with direct sectoral fossil fuel emissions and the total carbon budget. Fully considering life-cycle greenhouse gas emissions has only modest effects on the scale and structure of power production in cost-optimal mitigation scenarios. All energy generation technologies emit greenhouse gases during their life cycle as a result of construction and operation. Pehl et al. integrate life-cycle assessment and energy modelling to analyse the emissions contributions of different technologies across their lifespan in future low-carbon power systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-017-0032-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu399 citations 399 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-017-0032-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 GermanyPublisher:Springer Science and Business Media LLC Funded by:EC | ADVANCEEC| ADVANCEMichaja Pehl; Anders Arvesen; Florian Humpenöder; Alexander Popp; Edgar G. Hertwich; Gunnar Luderer;Both fossil-fuel and non-fossil-fuel power technologies induce life-cycle greenhouse gas emissions, mainly due to their embodied energy requirements for construction and operation, and upstream CH4 emissions. Here, we integrate prospective life-cycle assessment with global integrated energy–economy–land-use–climate modelling to explore life-cycle emissions of future low-carbon power supply systems and implications for technology choice. Future per-unit life-cycle emissions differ substantially across technologies. For a climate protection scenario, we project life-cycle emissions from fossil fuel carbon capture and sequestration plants of 78–110 gCO2eq kWh−1, compared with 3.5–12 gCO2eq kWh−1 for nuclear, wind and solar power for 2050. Life-cycle emissions from hydropower and bioenergy are substantial (∼100 gCO2eq kWh−1), but highly uncertain. We find that cumulative emissions attributable to upscaling low-carbon power other than hydropower are small compared with direct sectoral fossil fuel emissions and the total carbon budget. Fully considering life-cycle greenhouse gas emissions has only modest effects on the scale and structure of power production in cost-optimal mitigation scenarios. All energy generation technologies emit greenhouse gases during their life cycle as a result of construction and operation. Pehl et al. integrate life-cycle assessment and energy modelling to analyse the emissions contributions of different technologies across their lifespan in future low-carbon power systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-017-0032-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu399 citations 399 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-017-0032-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 NorwayPublisher:Elsevier BV Authors: Arvesen, Anders; Bright, Ryan M.; Hertwich, Edgar G.;handle: 11250/297973
This article challenges the notion that energy efficiency and 'clean' energy technologies can deliver sufficient degrees of climate change mitigation. By six arguments not widely recognized in the ...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2011.09.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 55 citations 55 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2011.09.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 NorwayPublisher:Elsevier BV Authors: Arvesen, Anders; Bright, Ryan M.; Hertwich, Edgar G.;handle: 11250/297973
This article challenges the notion that energy efficiency and 'clean' energy technologies can deliver sufficient degrees of climate change mitigation. By six arguments not widely recognized in the ...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2011.09.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 55 citations 55 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2011.09.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 NorwayPublisher:Elsevier BV Authors: Arvesen, Anders; Hauan, Ingrid Bjerke; Bolsøy, Bernhard Mikal; Hertwich, Edgar G.;handle: 11250/2382660
Abstract Electricity transmission and distribution (TD this is true regardless of what electricity mix is assumed when modelling power losses.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.08.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.08.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 NorwayPublisher:Elsevier BV Authors: Arvesen, Anders; Hauan, Ingrid Bjerke; Bolsøy, Bernhard Mikal; Hertwich, Edgar G.;handle: 11250/2382660
Abstract Electricity transmission and distribution (TD this is true regardless of what electricity mix is assumed when modelling power losses.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.08.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.08.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Embargo end date: 03 Feb 2025 NorwayPublisher:IOP Publishing Arvesen, Anders; Hansen, Ole Martin; Harby, Atle; Härtel, Philipp; Korpås, Magnus; Mo, Birger; Naversen, Christian Øyn; Schmitz, Richard;handle: 11250/3187728
Abstract Previous research has identified flexible Norwegian hydropower as one potential key resource for managing variations in wind and solar power in Northern Europe. There is, however, a need for further detailed examination of this potential role of Norwegian hydropower based on updated future scenarios and using the latest data and model tools available. We analyze potential power system impacts of expanding Norwegian hydropower flexibility and Norway-Europe transmission, considering renewable energy variability based on a simulation for the historical weather years 1991-2020. The simulations are performed using FanSi, a stochastic optimization model for analyzing large-scale power systems with significant shares of hydropower combined with high shares of wind/solar power. A year 2050 scenario for Europe from the integrated energy system model SCOPE SD is used as framework for our analysis with FanSi. Our results highlight how expanded hydropower and transmission can potentially reduce price spikes during periods of low wind/solar output, reduce wind/solar energy curtailment during periods of high wind/solar output; and reduce price differences between interconnected areas during periods of either low or high wind/solar output. We demonstrate that these effects are attributable to more dynamic operation and expanded operational ranges of hydropower and transmission in the simulations assuming expanded hydropower and transmission capacities. We acknowledge high fundamental uncertainty in modelling a future system for the year 2050.
IOP Conference Serie... arrow_drop_down IOP Conference Series : Earth and Environmental ScienceArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1755-1315/1442/1/012003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert IOP Conference Serie... arrow_drop_down IOP Conference Series : Earth and Environmental ScienceArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1755-1315/1442/1/012003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Embargo end date: 03 Feb 2025 NorwayPublisher:IOP Publishing Arvesen, Anders; Hansen, Ole Martin; Harby, Atle; Härtel, Philipp; Korpås, Magnus; Mo, Birger; Naversen, Christian Øyn; Schmitz, Richard;handle: 11250/3187728
Abstract Previous research has identified flexible Norwegian hydropower as one potential key resource for managing variations in wind and solar power in Northern Europe. There is, however, a need for further detailed examination of this potential role of Norwegian hydropower based on updated future scenarios and using the latest data and model tools available. We analyze potential power system impacts of expanding Norwegian hydropower flexibility and Norway-Europe transmission, considering renewable energy variability based on a simulation for the historical weather years 1991-2020. The simulations are performed using FanSi, a stochastic optimization model for analyzing large-scale power systems with significant shares of hydropower combined with high shares of wind/solar power. A year 2050 scenario for Europe from the integrated energy system model SCOPE SD is used as framework for our analysis with FanSi. Our results highlight how expanded hydropower and transmission can potentially reduce price spikes during periods of low wind/solar output, reduce wind/solar energy curtailment during periods of high wind/solar output; and reduce price differences between interconnected areas during periods of either low or high wind/solar output. We demonstrate that these effects are attributable to more dynamic operation and expanded operational ranges of hydropower and transmission in the simulations assuming expanded hydropower and transmission capacities. We acknowledge high fundamental uncertainty in modelling a future system for the year 2050.
IOP Conference Serie... arrow_drop_down IOP Conference Series : Earth and Environmental ScienceArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1755-1315/1442/1/012003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert IOP Conference Serie... arrow_drop_down IOP Conference Series : Earth and Environmental ScienceArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1755-1315/1442/1/012003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2017 NorwayPublisher:Elsevier BV Funded by:RCN | Environmental Sustainabil..., RCN | CenSES- Centre for Sustai...RCN| Environmental Sustainability Benchmarking of Low-Carbon Energy Technologies ,RCN| CenSES- Centre for Sustainable Energy Studies-Authors: Anders Arvesen; Edgar G. Hertwich; Edgar G. Hertwich; Thomas Gibon;handle: 11250/2467220
Abstract The targeted transition towards an electricity system with low or even negative greenhouse gas emissions affords a chance to address other environmental concerns as well, but may potentially have to adjust to the limited availability of assorted non-fossil resources. Life cycle assessment (LCA) is widely recognized as a method appropriate to assess and compare product systems taking into account a wide range of environmental impacts. Yet, LCA could not inform the latest assessment of co-benefits and trade-offs of climate change mitigation by the Intergovernmental Panel on Climate Change due to the lack of comparative assessments of different electricity generation technologies addressing a wide range of environmental impacts and using a consistent set of methods. This paper contributes to filling this gap. A consistent set of life cycle inventories of a wide range of electricity generation technologies is assessed using the Recipe midpoint methods. The life-cycle inventory modeling addresses the production and deployment of the technologies in nine different regions. The analysis shows that even though low-carbon power requires a larger amount of metals than conventional fossil power, renewable and nuclear power leads to a reduction of a wide range of environmental impacts, while CO 2 capture and storage leads to increased non-GHG impacts. Biomass has relatively modest co-benefits, if at all. The manufacturing of low-carbon technologies is important compared to their operation, indicating that it is important to choose the most desirable technologies from the outset.
Norwegian Open Resea... arrow_drop_down Norwegian Open Research ArchivesArticle . 2017Full-Text: http://doi.org/10.1016/j.rser.2017.03.078.Data sources: Norwegian Open Research ArchivesRenewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.03.078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 83 citations 83 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Norwegian Open Resea... arrow_drop_down Norwegian Open Research ArchivesArticle . 2017Full-Text: http://doi.org/10.1016/j.rser.2017.03.078.Data sources: Norwegian Open Research ArchivesRenewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.03.078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 NorwayPublisher:Elsevier BV Funded by:RCN | Environmental Sustainabil..., RCN | CenSES- Centre for Sustai...RCN| Environmental Sustainability Benchmarking of Low-Carbon Energy Technologies ,RCN| CenSES- Centre for Sustainable Energy Studies-Authors: Anders Arvesen; Edgar G. Hertwich; Edgar G. Hertwich; Thomas Gibon;handle: 11250/2467220
Abstract The targeted transition towards an electricity system with low or even negative greenhouse gas emissions affords a chance to address other environmental concerns as well, but may potentially have to adjust to the limited availability of assorted non-fossil resources. Life cycle assessment (LCA) is widely recognized as a method appropriate to assess and compare product systems taking into account a wide range of environmental impacts. Yet, LCA could not inform the latest assessment of co-benefits and trade-offs of climate change mitigation by the Intergovernmental Panel on Climate Change due to the lack of comparative assessments of different electricity generation technologies addressing a wide range of environmental impacts and using a consistent set of methods. This paper contributes to filling this gap. A consistent set of life cycle inventories of a wide range of electricity generation technologies is assessed using the Recipe midpoint methods. The life-cycle inventory modeling addresses the production and deployment of the technologies in nine different regions. The analysis shows that even though low-carbon power requires a larger amount of metals than conventional fossil power, renewable and nuclear power leads to a reduction of a wide range of environmental impacts, while CO 2 capture and storage leads to increased non-GHG impacts. Biomass has relatively modest co-benefits, if at all. The manufacturing of low-carbon technologies is important compared to their operation, indicating that it is important to choose the most desirable technologies from the outset.
Norwegian Open Resea... arrow_drop_down Norwegian Open Research ArchivesArticle . 2017Full-Text: http://doi.org/10.1016/j.rser.2017.03.078.Data sources: Norwegian Open Research ArchivesRenewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.03.078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 83 citations 83 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Norwegian Open Resea... arrow_drop_down Norwegian Open Research ArchivesArticle . 2017Full-Text: http://doi.org/10.1016/j.rser.2017.03.078.Data sources: Norwegian Open Research ArchivesRenewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.03.078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 GermanyPublisher:Springer Science and Business Media LLC Funded by:RCN | CenSES- Centre for Sustai...RCN| CenSES- Centre for Sustainable Energy Studies-Authors: Stefan Pauliuk; Anders Arvesen; Konstantin Stadler; Edgar G. Hertwich;doi: 10.1038/nclimate3148
An in-depth review of five major integrated assessment models from an industrial ecology perspective reveals differences between the fields regarding the modelling of linkages in the industrial system. Technology-rich integrated assessment models (IAMs) address possible technology mixes and future costs of climate change mitigation by generating scenarios for the future industrial system. Industrial ecology (IE) focuses on the empirical analysis of this system. We conduct an in-depth review of five major IAMs from an IE perspective and reveal differences between the two fields regarding the modelling of linkages in the industrial system, focussing on AIM/CGE, GCAM, IMAGE, MESSAGE, and REMIND. IAMs ignore material cycles and recycling, incoherently describe the life-cycle impacts of technology, and miss linkages regarding buildings and infrastructure. Adding IE system linkages to IAMs adds new constraints and allows for studying new mitigation options, both of which may lead to more robust and policy-relevant mitigation scenarios.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nclimate3148&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 202 citations 202 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nclimate3148&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 GermanyPublisher:Springer Science and Business Media LLC Funded by:RCN | CenSES- Centre for Sustai...RCN| CenSES- Centre for Sustainable Energy Studies-Authors: Stefan Pauliuk; Anders Arvesen; Konstantin Stadler; Edgar G. Hertwich;doi: 10.1038/nclimate3148
An in-depth review of five major integrated assessment models from an industrial ecology perspective reveals differences between the fields regarding the modelling of linkages in the industrial system. Technology-rich integrated assessment models (IAMs) address possible technology mixes and future costs of climate change mitigation by generating scenarios for the future industrial system. Industrial ecology (IE) focuses on the empirical analysis of this system. We conduct an in-depth review of five major IAMs from an IE perspective and reveal differences between the two fields regarding the modelling of linkages in the industrial system, focussing on AIM/CGE, GCAM, IMAGE, MESSAGE, and REMIND. IAMs ignore material cycles and recycling, incoherently describe the life-cycle impacts of technology, and miss linkages regarding buildings and infrastructure. Adding IE system linkages to IAMs adds new constraints and allows for studying new mitigation options, both of which may lead to more robust and policy-relevant mitigation scenarios.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nclimate3148&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 202 citations 202 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nclimate3148&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 NorwayPublisher:Elsevier BV Authors: Arvesen, Anders; Hertwich, Edgar G.;handle: 11250/2367846
Abstract Cumulative energy demand (CED) estimates from life cycle assessments (LCAs) are increasingly used to determine energy return on investment (EROI), but the difference in indicators can lead to a misclassification of energy flows in the assessment. The core idea of EROI is to measure the relation of energy diverted from society to make energy available to society. CED, on the other hand, includes forms of energy that are not appropriated by society, such as fugitive methane emissions from oil wells as well as losses of heating value of coal during transport and storage. Such energy forms should be excluded from EROI; failure to do so leads to results that are inconsistent with the intention of EROI and potentially misleading. We demonstrate how this problem is at least partially rectifiable by adopting consistent energy accounting, but also note that among the energy flows not appropriated by society occurring in CED, not all flows can easily be removed. Further, we point to inconsistencies in heating value assumptions in a widely used database that have misled analysts. Finally, we argue that the differential weighting of primary energy forms in published CED-based EROI work is unsubstantiated and should be reconsidered.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2014.11.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 58 citations 58 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2014.11.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 NorwayPublisher:Elsevier BV Authors: Arvesen, Anders; Hertwich, Edgar G.;handle: 11250/2367846
Abstract Cumulative energy demand (CED) estimates from life cycle assessments (LCAs) are increasingly used to determine energy return on investment (EROI), but the difference in indicators can lead to a misclassification of energy flows in the assessment. The core idea of EROI is to measure the relation of energy diverted from society to make energy available to society. CED, on the other hand, includes forms of energy that are not appropriated by society, such as fugitive methane emissions from oil wells as well as losses of heating value of coal during transport and storage. Such energy forms should be excluded from EROI; failure to do so leads to results that are inconsistent with the intention of EROI and potentially misleading. We demonstrate how this problem is at least partially rectifiable by adopting consistent energy accounting, but also note that among the energy flows not appropriated by society occurring in CED, not all flows can easily be removed. Further, we point to inconsistencies in heating value assumptions in a widely used database that have misled analysts. Finally, we argue that the differential weighting of primary energy forms in published CED-based EROI work is unsubstantiated and should be reconsidered.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2014.11.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 58 citations 58 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2014.11.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 GermanyPublisher:Elsevier BV Funded by:EC | SIM4NEXUSEC| SIM4NEXUSBenjamin Leon Bodirsky; Gunnar Luderer; Michaja Pehl; Anders Arvesen; Edgar G. Hertwich; Edgar G. Hertwich;handle: 11250/2585375
Abstract The fields of life cycle assessment (LCA) and integrated assessment (IA) modelling today have similar interests in assessing macro-level transformation pathways with a broad view of environmental concerns. Prevailing IA models lack a life cycle perspective, while LCA has traditionally been static- and micro-oriented. We develop a general method for deriving coefficients from detailed, bottom-up LCA suitable for application in IA models, thus allowing IA analysts to explore the life cycle impacts of technology and scenario alternatives. The method decomposes LCA coefficients into life cycle phases and energy carrier use by industries, thus facilitating attribution of life cycle effects to appropriate years, and consistent and comprehensive use of IA model-specific scenario data when the LCA coefficients are applied in IA scenario modelling. We demonstrate the application of the method for global electricity supply to 2050 and provide numerical results (as supplementary material) for future use by IA analysts.
Publication Database... arrow_drop_down Environmental Modelling & SoftwareArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEnvironmental Modelling & SoftwareArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsoft.2017.09.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 68 citations 68 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Publication Database... arrow_drop_down Environmental Modelling & SoftwareArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEnvironmental Modelling & SoftwareArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsoft.2017.09.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 GermanyPublisher:Elsevier BV Funded by:EC | SIM4NEXUSEC| SIM4NEXUSBenjamin Leon Bodirsky; Gunnar Luderer; Michaja Pehl; Anders Arvesen; Edgar G. Hertwich; Edgar G. Hertwich;handle: 11250/2585375
Abstract The fields of life cycle assessment (LCA) and integrated assessment (IA) modelling today have similar interests in assessing macro-level transformation pathways with a broad view of environmental concerns. Prevailing IA models lack a life cycle perspective, while LCA has traditionally been static- and micro-oriented. We develop a general method for deriving coefficients from detailed, bottom-up LCA suitable for application in IA models, thus allowing IA analysts to explore the life cycle impacts of technology and scenario alternatives. The method decomposes LCA coefficients into life cycle phases and energy carrier use by industries, thus facilitating attribution of life cycle effects to appropriate years, and consistent and comprehensive use of IA model-specific scenario data when the LCA coefficients are applied in IA scenario modelling. We demonstrate the application of the method for global electricity supply to 2050 and provide numerical results (as supplementary material) for future use by IA analysts.
Publication Database... arrow_drop_down Environmental Modelling & SoftwareArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEnvironmental Modelling & SoftwareArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsoft.2017.09.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 68 citations 68 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Publication Database... arrow_drop_down Environmental Modelling & SoftwareArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEnvironmental Modelling & SoftwareArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsoft.2017.09.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Norway, United States, NetherlandsPublisher:Proceedings of the National Academy of Sciences Edgar G. Hertwich; Thomas Gibon; Evert A. Bouman; Anders Arvesen; Sangwon Suh; Garvin A. Heath; Joseph D. Bergesen; Andrea Ramirez; Mabel I. Vega; Lei Shi;Significance Life-cycle assessments commonly used to analyze the environmental costs and benefits of climate-mitigation options are usually static in nature and address individual power plants. Our paper presents, to our knowledge, the first life-cycle assessment of the large-scale implementation of climate-mitigation technologies, addressing the feedback of the electricity system onto itself and using scenario-consistent assumptions of technical improvements in key energy and material production technologies.
Norwegian Open Resea... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/52t3d90pData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2015License: taverneData sources: Pure Utrecht UniversityProceedings of the National Academy of SciencesArticle . 2014 . Peer-reviewedData sources: CrossrefeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1312753111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 588 citations 588 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Norwegian Open Resea... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/52t3d90pData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2015License: taverneData sources: Pure Utrecht UniversityProceedings of the National Academy of SciencesArticle . 2014 . Peer-reviewedData sources: CrossrefeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1312753111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Norway, United States, NetherlandsPublisher:Proceedings of the National Academy of Sciences Edgar G. Hertwich; Thomas Gibon; Evert A. Bouman; Anders Arvesen; Sangwon Suh; Garvin A. Heath; Joseph D. Bergesen; Andrea Ramirez; Mabel I. Vega; Lei Shi;Significance Life-cycle assessments commonly used to analyze the environmental costs and benefits of climate-mitigation options are usually static in nature and address individual power plants. Our paper presents, to our knowledge, the first life-cycle assessment of the large-scale implementation of climate-mitigation technologies, addressing the feedback of the electricity system onto itself and using scenario-consistent assumptions of technical improvements in key energy and material production technologies.
Norwegian Open Resea... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/52t3d90pData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2015License: taverneData sources: Pure Utrecht UniversityProceedings of the National Academy of SciencesArticle . 2014 . Peer-reviewedData sources: CrossrefeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1312753111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 588 citations 588 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Norwegian Open Resea... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/52t3d90pData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2015License: taverneData sources: Pure Utrecht UniversityProceedings of the National Academy of SciencesArticle . 2014 . Peer-reviewedData sources: CrossrefeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1312753111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 NorwayPublisher:Elsevier BV Authors: Arvesen, Anders; Hertwich, Edgar G.;handle: 11250/297942
(C) 2012 Elsevier Ltd. All rights reserved. This is the authors' accepted and refereed manuscript to the article.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2012.06.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 179 citations 179 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2012.06.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 NorwayPublisher:Elsevier BV Authors: Arvesen, Anders; Hertwich, Edgar G.;handle: 11250/297942
(C) 2012 Elsevier Ltd. All rights reserved. This is the authors' accepted and refereed manuscript to the article.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2012.06.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 179 citations 179 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2012.06.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 GermanyPublisher:Springer Science and Business Media LLC Funded by:EC | ADVANCEEC| ADVANCEMichaja Pehl; Anders Arvesen; Florian Humpenöder; Alexander Popp; Edgar G. Hertwich; Gunnar Luderer;Both fossil-fuel and non-fossil-fuel power technologies induce life-cycle greenhouse gas emissions, mainly due to their embodied energy requirements for construction and operation, and upstream CH4 emissions. Here, we integrate prospective life-cycle assessment with global integrated energy–economy–land-use–climate modelling to explore life-cycle emissions of future low-carbon power supply systems and implications for technology choice. Future per-unit life-cycle emissions differ substantially across technologies. For a climate protection scenario, we project life-cycle emissions from fossil fuel carbon capture and sequestration plants of 78–110 gCO2eq kWh−1, compared with 3.5–12 gCO2eq kWh−1 for nuclear, wind and solar power for 2050. Life-cycle emissions from hydropower and bioenergy are substantial (∼100 gCO2eq kWh−1), but highly uncertain. We find that cumulative emissions attributable to upscaling low-carbon power other than hydropower are small compared with direct sectoral fossil fuel emissions and the total carbon budget. Fully considering life-cycle greenhouse gas emissions has only modest effects on the scale and structure of power production in cost-optimal mitigation scenarios. All energy generation technologies emit greenhouse gases during their life cycle as a result of construction and operation. Pehl et al. integrate life-cycle assessment and energy modelling to analyse the emissions contributions of different technologies across their lifespan in future low-carbon power systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-017-0032-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu399 citations 399 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-017-0032-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 GermanyPublisher:Springer Science and Business Media LLC Funded by:EC | ADVANCEEC| ADVANCEMichaja Pehl; Anders Arvesen; Florian Humpenöder; Alexander Popp; Edgar G. Hertwich; Gunnar Luderer;Both fossil-fuel and non-fossil-fuel power technologies induce life-cycle greenhouse gas emissions, mainly due to their embodied energy requirements for construction and operation, and upstream CH4 emissions. Here, we integrate prospective life-cycle assessment with global integrated energy–economy–land-use–climate modelling to explore life-cycle emissions of future low-carbon power supply systems and implications for technology choice. Future per-unit life-cycle emissions differ substantially across technologies. For a climate protection scenario, we project life-cycle emissions from fossil fuel carbon capture and sequestration plants of 78–110 gCO2eq kWh−1, compared with 3.5–12 gCO2eq kWh−1 for nuclear, wind and solar power for 2050. Life-cycle emissions from hydropower and bioenergy are substantial (∼100 gCO2eq kWh−1), but highly uncertain. We find that cumulative emissions attributable to upscaling low-carbon power other than hydropower are small compared with direct sectoral fossil fuel emissions and the total carbon budget. Fully considering life-cycle greenhouse gas emissions has only modest effects on the scale and structure of power production in cost-optimal mitigation scenarios. All energy generation technologies emit greenhouse gases during their life cycle as a result of construction and operation. Pehl et al. integrate life-cycle assessment and energy modelling to analyse the emissions contributions of different technologies across their lifespan in future low-carbon power systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-017-0032-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu399 citations 399 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-017-0032-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 NorwayPublisher:Elsevier BV Authors: Arvesen, Anders; Bright, Ryan M.; Hertwich, Edgar G.;handle: 11250/297973
This article challenges the notion that energy efficiency and 'clean' energy technologies can deliver sufficient degrees of climate change mitigation. By six arguments not widely recognized in the ...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2011.09.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 55 citations 55 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2011.09.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 NorwayPublisher:Elsevier BV Authors: Arvesen, Anders; Bright, Ryan M.; Hertwich, Edgar G.;handle: 11250/297973
This article challenges the notion that energy efficiency and 'clean' energy technologies can deliver sufficient degrees of climate change mitigation. By six arguments not widely recognized in the ...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2011.09.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 55 citations 55 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2011.09.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 NorwayPublisher:Elsevier BV Authors: Arvesen, Anders; Hauan, Ingrid Bjerke; Bolsøy, Bernhard Mikal; Hertwich, Edgar G.;handle: 11250/2382660
Abstract Electricity transmission and distribution (TD this is true regardless of what electricity mix is assumed when modelling power losses.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.08.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.08.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 NorwayPublisher:Elsevier BV Authors: Arvesen, Anders; Hauan, Ingrid Bjerke; Bolsøy, Bernhard Mikal; Hertwich, Edgar G.;handle: 11250/2382660
Abstract Electricity transmission and distribution (TD this is true regardless of what electricity mix is assumed when modelling power losses.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.08.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.08.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Embargo end date: 03 Feb 2025 NorwayPublisher:IOP Publishing Arvesen, Anders; Hansen, Ole Martin; Harby, Atle; Härtel, Philipp; Korpås, Magnus; Mo, Birger; Naversen, Christian Øyn; Schmitz, Richard;handle: 11250/3187728
Abstract Previous research has identified flexible Norwegian hydropower as one potential key resource for managing variations in wind and solar power in Northern Europe. There is, however, a need for further detailed examination of this potential role of Norwegian hydropower based on updated future scenarios and using the latest data and model tools available. We analyze potential power system impacts of expanding Norwegian hydropower flexibility and Norway-Europe transmission, considering renewable energy variability based on a simulation for the historical weather years 1991-2020. The simulations are performed using FanSi, a stochastic optimization model for analyzing large-scale power systems with significant shares of hydropower combined with high shares of wind/solar power. A year 2050 scenario for Europe from the integrated energy system model SCOPE SD is used as framework for our analysis with FanSi. Our results highlight how expanded hydropower and transmission can potentially reduce price spikes during periods of low wind/solar output, reduce wind/solar energy curtailment during periods of high wind/solar output; and reduce price differences between interconnected areas during periods of either low or high wind/solar output. We demonstrate that these effects are attributable to more dynamic operation and expanded operational ranges of hydropower and transmission in the simulations assuming expanded hydropower and transmission capacities. We acknowledge high fundamental uncertainty in modelling a future system for the year 2050.
IOP Conference Serie... arrow_drop_down IOP Conference Series : Earth and Environmental ScienceArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1755-1315/1442/1/012003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert IOP Conference Serie... arrow_drop_down IOP Conference Series : Earth and Environmental ScienceArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1755-1315/1442/1/012003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Embargo end date: 03 Feb 2025 NorwayPublisher:IOP Publishing Arvesen, Anders; Hansen, Ole Martin; Harby, Atle; Härtel, Philipp; Korpås, Magnus; Mo, Birger; Naversen, Christian Øyn; Schmitz, Richard;handle: 11250/3187728
Abstract Previous research has identified flexible Norwegian hydropower as one potential key resource for managing variations in wind and solar power in Northern Europe. There is, however, a need for further detailed examination of this potential role of Norwegian hydropower based on updated future scenarios and using the latest data and model tools available. We analyze potential power system impacts of expanding Norwegian hydropower flexibility and Norway-Europe transmission, considering renewable energy variability based on a simulation for the historical weather years 1991-2020. The simulations are performed using FanSi, a stochastic optimization model for analyzing large-scale power systems with significant shares of hydropower combined with high shares of wind/solar power. A year 2050 scenario for Europe from the integrated energy system model SCOPE SD is used as framework for our analysis with FanSi. Our results highlight how expanded hydropower and transmission can potentially reduce price spikes during periods of low wind/solar output, reduce wind/solar energy curtailment during periods of high wind/solar output; and reduce price differences between interconnected areas during periods of either low or high wind/solar output. We demonstrate that these effects are attributable to more dynamic operation and expanded operational ranges of hydropower and transmission in the simulations assuming expanded hydropower and transmission capacities. We acknowledge high fundamental uncertainty in modelling a future system for the year 2050.
IOP Conference Serie... arrow_drop_down IOP Conference Series : Earth and Environmental ScienceArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1755-1315/1442/1/012003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert IOP Conference Serie... arrow_drop_down IOP Conference Series : Earth and Environmental ScienceArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1755-1315/1442/1/012003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu