- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2017 Korea (Republic of)Publisher:Wiley Lee, Un-Hak; Azmi, Randi; Sinaga, Septy; Hwang, Sunbin; Eom, Seung Hun; Kim, Tae-Wook; Yoon, Sung Cheol; Jang, Sung-Yeon; Jung, In Hwan;pmid: 28875552
AbstractThe susceptibility of porphyrin derivatives to light‐harvesting and charge‐transport operations have enabled these materials to be employed in solar cell applications. The potential of porphyrin derivatives as hole‐transporting materials (HTMs) for perovskite solar cells (PSCs) has recently been demonstrated, but knowledge of the relationships between the porphyrin structure and device performance remains insufficient. In this work, a series of novel zinc porphyrin (PZn) derivatives has been developed and employed as HTMs for low‐temperature processed PSCs. Key to the design strategy is the incorporation of an electron‐deficient pyridine moiety to down‐shift the HOMO levels of porphyrin HTMs. The porphyrin HTMs incorporating diphenyl‐2‐pyridylamine (DPPA) have HOMO levels that are in good agreement with the perovskite active layers, thus facilitating hole transfers from the perovskite to the HTMs. The DPPA‐containing zinc porphyrin‐based PSCs gave the best performance, with efficiency levels comparable to those of PSCs using spiro‐OMeTAD, a current state‐of‐the‐art HTM. In particular, PZn–DPPA‐based PSCs show superior air stability, in both doped and undoped forms, to spiro‐OMeTAD based devices.
ChemSusChem arrow_drop_down ChemSusChemArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefScholarWorks@UNIST (Ulsan National Institute of Science and Technology)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.201701526&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert ChemSusChem arrow_drop_down ChemSusChemArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefScholarWorks@UNIST (Ulsan National Institute of Science and Technology)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.201701526&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2017 Korea (Republic of)Publisher:Wiley Lee, Un-Hak; Azmi, Randi; Sinaga, Septy; Hwang, Sunbin; Eom, Seung Hun; Kim, Tae-Wook; Yoon, Sung Cheol; Jang, Sung-Yeon; Jung, In Hwan;pmid: 28875552
AbstractThe susceptibility of porphyrin derivatives to light‐harvesting and charge‐transport operations have enabled these materials to be employed in solar cell applications. The potential of porphyrin derivatives as hole‐transporting materials (HTMs) for perovskite solar cells (PSCs) has recently been demonstrated, but knowledge of the relationships between the porphyrin structure and device performance remains insufficient. In this work, a series of novel zinc porphyrin (PZn) derivatives has been developed and employed as HTMs for low‐temperature processed PSCs. Key to the design strategy is the incorporation of an electron‐deficient pyridine moiety to down‐shift the HOMO levels of porphyrin HTMs. The porphyrin HTMs incorporating diphenyl‐2‐pyridylamine (DPPA) have HOMO levels that are in good agreement with the perovskite active layers, thus facilitating hole transfers from the perovskite to the HTMs. The DPPA‐containing zinc porphyrin‐based PSCs gave the best performance, with efficiency levels comparable to those of PSCs using spiro‐OMeTAD, a current state‐of‐the‐art HTM. In particular, PZn–DPPA‐based PSCs show superior air stability, in both doped and undoped forms, to spiro‐OMeTAD based devices.
ChemSusChem arrow_drop_down ChemSusChemArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefScholarWorks@UNIST (Ulsan National Institute of Science and Technology)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.201701526&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert ChemSusChem arrow_drop_down ChemSusChemArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefScholarWorks@UNIST (Ulsan National Institute of Science and Technology)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.201701526&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu