- home
- Advanced Search
- Energy Research
- Energy Research
Research data keyboard_double_arrow_right Dataset 2022Publisher:PANGAEA Authors: Venn, Alexander A; Tambutté, Eric; Steeve, Comeau; Tambutté, Sylvie;Internal pH measurements made in the extracellular calcifying medium (ECM), calcifying (calicoblastic) epithelium and mesoglea of the coral Stylophora pistillata using the fluorescent dye SNARF-1 and confocal microscopy. The measurements were made in light and darkness three experiments. Experiment 1 involved using coral samples maintained at pH 8 seawater. Experiment 2 involved placing samples in 4 seawater acidification conditions: pH 8, 7.8, 7.4 and 7.2 for 1 week. Experiment 3 involved placing samples in 4 levels of dissolved inorganic carbon concentration: elevated; ambient, low and very low for one week. The research was carried out at the Centre Scientifique de Monaco between 2014-2017. The aim of the experiment was to determine the pH gradient across the calcifying cell layer and determine how it responded to the three experiments. The experiments were done in the lab on coral samples that have been held in culture in Monaco for the last 30 years. The data file contains pH data from 3 experiments. In experiment 1corals were kept at seawater pH 8. In experiment 2. Corals were exposed to seawater acidification. In experiment 3 corals were exposed to manipulated DIC concentrations. The data are pH measurements taken from 3 internal compartments of the coral Stylophora pistillata: the mesoglea, the calcifying cells and the ECM.
PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2022License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.949400&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2022License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.949400&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:PANGAEA Barreto, Marcelle; Ziegler, Maren; Venn, Alexander A; Tambutté, Eric; Zoccola, Didier; Tambutté, Sylvie; Allemand, Denis; Antony, Chakkiath Paul; Voolstra, Christian R; Aranda, Manuel;Ocean warming and ocean acidification (OA) are direct consequences of climate change and affect coral reefs worldwide. While the effect of ocean warming manifests itself in increased frequency and severity of coral bleaching, the effects of ocean acidification on corals are less clear. In particular, long-term effects of OA on the bacterial communities associated with corals are largely unknown. In this study, we investigated the effects of ocean acidification on the resident and active microbiome of long-term aquaria-maintained Stylophora pistillata colonies by assessing 16S rRNA gene diversity on the DNA (resident community) and RNA level (active community). Coral colony fragments of S. pistillata were kept in aquaria for 2 years at four different pCO2 levels ranging from current pH conditions to increased acidification scenarios (i.e., pH 7.2, 7.4, 7.8, and 8). We identified 154 bacterial families encompassing 2,047 taxa (OTUs) in the resident and 89 bacterial families including 1,659 OTUs in the active communities. Resident communities were dominated by members of Alteromonadaceae, Flavobacteriaceae, and Colwelliaceae, while active communities were dominated by families Cyclobacteriacea and Amoebophilaceae. Besides the overall differences between resident and active community composition, significant differences were seen between the control (pH 8) and the two lower pH treatments (7.2 and 7.4) in the active community, but only between pH 8 and 7.2 in the resident community. Our analyses revealed profound differences between the resident and active microbial communities, and we found that OA exerted stronger effects on the active community. Further, our results suggest that rDNA- and rRNA-based sequencing should be considered complementary tools to investigate the effects of environmental change on microbial assemblage structure and activity. In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2021) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2022-09-14.
PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2022License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.948416&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2022License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.948416&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Frontiers Media SA Authors: Mélanie Billaud; François Seneca; Eric Tambutté; Dorota Czerucka;Climate change driven seawater temperature (SWT) increases results in greater abundance and geographical expansion of marine pathogens, among which Vibrio parahaemolyticus (Vp) causes serious economic and health issues. In addition, plastic pollution in the ocean constitutes a vector for harmful pathogens dissemination. We investigate the effect of elevated SWT on the expression of genes implicated in adhesion and biofilm formation on abiotic surfaces in the clinical Vp strain RIMD2210633, which expresses hemolysins. Among the genes studied, the multivalent adhesion molecule-7 and the GlcNAc-binding protein A were involved in the adhesion of Vp to abiotic and biotic surfaces, whereas the type IV pili, the mannose-sensitive hemagglutinin, and the chitin-regulated pilins facilitate attachment and biofilm formation. Data presented here show that at 21°C, Vp is still viable but does not either proliferate or express the virulence factors studied. Interestingly, at 27°C and as early as 1 h of incubation, all factors are transiently expressed in free-living bacteria only and even more upregulated at 31°C. These results clearly show that increased SWT has an important impact on the adhesion properties of free-living Vp to plastic support and thus emphasize the role of climate change in the spread of this pathogenic bacteria.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmicb.2022.840628&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 31 citations 31 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmicb.2022.840628&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint 2017 Saudi Arabia, Australia, Finland, Netherlands, Saudi ArabiaPublisher:American Association for the Advancement of Science (AAAS) Yi Jin Liew; Didier Zoccola; Yong Li; Eric Tambutté; Alexander A. Venn; Craig T. Michell; Guoxin Cui; Eva S. Deutekom; Jaap A. Kaandorp; Christian R. Voolstra; Sylvain Forêt; Denis Allemand; Sylvie Tambutté; Manuel Aranda;pmid: 29881778
pmc: PMC5990304
Changes in gene body methylation predict phenotypic acclimatization of the coral Stylophora pistillata to ocean acidification.
bioRxiv arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2018License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)UEF eRepository (University of Eastern Finland)Article . 2018License: CC BY NCFull-Text: http://dx.doi.org/10.1126/sciadv.aar8028Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleLicense: CC BY NCFull-Text: http://hdl.handle.net/1885/157190Data sources: Bielefeld Academic Search Engine (BASE)Science AdvancesArticle . 2018License: CC BY NCData sources: Universiteit van Amsterdam Digital Academic RepositoryUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.aar8028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 133 citations 133 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert bioRxiv arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2018License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)UEF eRepository (University of Eastern Finland)Article . 2018License: CC BY NCFull-Text: http://dx.doi.org/10.1126/sciadv.aar8028Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleLicense: CC BY NCFull-Text: http://hdl.handle.net/1885/157190Data sources: Bielefeld Academic Search Engine (BASE)Science AdvancesArticle . 2018License: CC BY NCData sources: Universiteit van Amsterdam Digital Academic RepositoryUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.aar8028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 France, ItalyPublisher:MDPI AG Didier Zoccola; Alessio Innocenti; Anthony Bertucci; Eric Tambutté; Claudiu Supuran; Sylvie Tambutté;Global change is a major threat to the oceans, as it implies temperature increase and acidification. Ocean acidification (OA) involving decreasing pH and changes in seawater carbonate chemistry challenges the capacity of corals to form their skeletons. Despite the large number of studies that have investigated how rates of calcification respond to ocean acidification scenarios, comparatively few studies tackle how ocean acidification impacts the physiological mechanisms that drive calcification itself. The aim of our paper was to determine how the carbonic anhydrases, which play a major role in calcification, are potentially regulated by ocean acidification. For this we measured the effect of pH on enzyme activity of two carbonic anhydrase isoforms that have been previously characterized in the scleractinian coral Stylophora pistillata. In addition we looked at gene expression of these enzymes in vivo. For both isoforms, our results show (1) a change in gene expression under OA (2) an effect of OA and temperature on carbonic anhydrase activity. We suggest that temperature increase could counterbalance the effect of OA on enzyme activity. Finally we point out that caution must, thus, be taken when interpreting transcriptomic data on carbonic anhydrases in ocean acidification and temperature stress experiments, as the effect of these stressors on the physiological function of CA will depend both on gene expression and enzyme activity.
Marine Drugs arrow_drop_down Marine DrugsOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1660-3397/14/6/109/pdfData sources: Multidisciplinary Digital Publishing InstituteFlore (Florence Research Repository)Article . 2016Data sources: Flore (Florence Research Repository)ArchiMer - Institutional Archive of IfremerOther literature type . 2016Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/md14060109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 37 citations 37 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Marine Drugs arrow_drop_down Marine DrugsOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1660-3397/14/6/109/pdfData sources: Multidisciplinary Digital Publishing InstituteFlore (Florence Research Repository)Article . 2016Data sources: Flore (Florence Research Repository)ArchiMer - Institutional Archive of IfremerOther literature type . 2016Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/md14060109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 FrancePublisher:Copernicus GmbH M. Gómez Batista; M. Metian; F. Oberhänsli; S. Pouil; P. W. Swarzenski; E. Tambutté; J.-P. Gattuso; J.-P. Gattuso; C. M. Alonso Hernández; F. Gazeau;Abstract. Coral reefs are constructed by calcifiers that precipitate calcium carbonate to build their shells or skeletons through the process of calcification. Accurately assessing coral calcification rates is crucial to determine the health of these ecosystems and their response to major environmental changes such as ocean warming and acidification. Several approaches have been used to assess rates of coral calcification, but there is a real need to compare these approaches in order to ascertain that high-quality and intercomparable results can be produced. Here, we assessed four methods (total alkalinity anomaly, calcium anomaly, 45Ca incorporation, and 13C incorporation) to determine coral calcification of the reef-building coral Stylophora pistillata. Given the importance of environmental conditions for this process, the study was performed under two starting pH levels (ambient: 8.05 and low: 7.2) and two light (light and dark) conditions. Under all conditions, calcification rates estimated using the alkalinity and calcium anomaly techniques as well as 45Ca incorporation were highly correlated. Such a strong correlation between the alkalinity anomaly and 45Ca incorporation techniques has not been observed in previous studies and most probably results from improvements described in the present paper. The only method which provided calcification rates significantly different from the other three techniques was 13C incorporation. Calcification rates based on this method were consistently higher than those measured using the other techniques. Although reasons for these discrepancies remain unclear, the use of this technique for assessing calcification rates in corals is not recommended without further investigations.
Hyper Article en Lig... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2020License: CC BY NDFull-Text: https://hal.science/hal-02502639Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/bg-201...Article . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-17-887-2020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2020License: CC BY NDFull-Text: https://hal.science/hal-02502639Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/bg-201...Article . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-17-887-2020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 France, SpainPublisher:The Royal Society Funded by:NSF | OCE PRF: Track 2 (Interna..., EC | EVOMANSF| OCE PRF: Track 2 (International) Indirect effects in a changing ocean: a case study of seagrass photosynthesis and mussel physiology ,EC| EVOMALydia Kapsenberg; Mark C. Bitter; Jean-Pierre Gattuso; Rémi Dumollard; Eric Tambutté; A. Miglioli; A. Miglioli;Coastal marine ecosystems experience dynamic fluctuations in seawater carbonate chemistry. The importance of this variation in the context of ocean acidification requires knowing what aspect of variability biological processes respond to. We conducted four experiments (ranging from 3 to 22 days) with different variability regimes (pHT7.4–8.1) assessing the impact of diel fluctuations in carbonate chemistry on the early development of the musselMytilus galloprovincialis. Larval shell growth was consistently correlated to mean exposures, regardless of variability regimes, indicating that calcification responds instantaneously to seawater chemistry. Larval development was impacted by timing of exposure, revealing sensitivity of two developmental processes: development of the shell field, and transition from the first to the second larval shell. Fluorescent staining revealed developmental delay of the shell field at low pH, and abnormal development thereof was correlated with hinge defects in D-veligers. This study shows, for the first time, that ocean acidification affects larval soft-tissue development, independent from calcification. Multiple developmental processes additively underpin the teratogenic effect of ocean acidification on bivalve larvae. These results explain why trochophores are the most sensitive life-history stage in marine bivalves and suggest that short-term variability in carbonate chemistry can impact early larval development.
Hyper Article en Lig... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallRecolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the Royal Society B Biological SciencesArticle . 2018 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticleLicense: Royal Society Data Sharing and AccessibilityData sources: SygmaProceedings of the Royal Society B Biological SciencesArticle . 2019Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphProceedings of the Royal Society B Biological SciencesArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2018.2381&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 56 citations 56 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 48visibility views 48 download downloads 61 Powered bymore_vert Hyper Article en Lig... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallRecolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the Royal Society B Biological SciencesArticle . 2018 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticleLicense: Royal Society Data Sharing and AccessibilityData sources: SygmaProceedings of the Royal Society B Biological SciencesArticle . 2019Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphProceedings of the Royal Society B Biological SciencesArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2018.2381&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019Publisher:Springer Science and Business Media LLC Sylvie Tambutté; Denis Allemand; Eric Tambutté; Alexander A. Venn; Natacha Caminiti-Segonds; N. Techer;AbstractThe resilience of corals to ocean acidification has been proposed to rely on regulation of extracellular calcifying medium pH (pHECM), but few studies have compared the capacity of coral species to control this parameter at elevated pCO2. Furthermore, exposure to light and darkness influences both pH regulation and calcification in corals, but little is known about its effect under conditions of seawater acidification. Here we investigated the effect of acidification in light and darkness on pHECM, calcifying cell intracellular pH (pHI), calcification, photosynthesis and respiration in three coral species:Stylophora pistillata,Pocillopora damicornisandAcropora hyacinthus. We show thatS. pistillatawas able to maintain pHECMunder acidification in light and darkness, but pHECMdecreased inP. damicornisandA. hyacinthusto a much greater extent in darkness than in the light. Acidification depressed calcifying cell pHIin all three species, but we identified an unexpected positive effect of light on pHI. Calcification rate and pHECMdecreased together under acidification, but there are inconsistencies in their relationship indicating that other physiological parameters are likely to shape how coral calcification responds to acidification. Overall our study reveals interspecies differences in coral regulation of pHECMand pHIwhen exposed to acidification, influenced by exposure to light and darkness.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-018-38168-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 37 citations 37 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-018-38168-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 Saudi Arabia, Saudi Arabia, GermanyPublisher:Frontiers Media SA Maren Ziegler; Sylvie Tambutté; Denis Allemand; Christian R. Voolstra; Christian R. Voolstra; Chakkiath Paul Antony; Marcelle Muniz Barreto; Alexander A. Venn; Didier Zoccola; Eric Tambutté; Manuel Aranda;Ocean warming and ocean acidification (OA) are direct consequences of climate change and affect coral reefs worldwide. While the effect of ocean warming manifests itself in increased frequency and severity of coral bleaching, the effects of ocean acidification on corals are less clear. In particular, long-term effects of OA on the bacterial communities associated with corals are largely unknown. In this study, we investigated the effects of ocean acidification on the resident and active microbiome of long-term aquaria-maintained Stylophora pistillata colonies by assessing 16S rRNA gene diversity on the DNA (resident community) and RNA level (active community). Coral colony fragments of S. pistillata were kept in aquaria for 2 years at four different pCO2 levels ranging from current pH conditions to increased acidification scenarios (i.e., pH 7.2, 7.4, 7.8, and 8). We identified 154 bacterial families encompassing 2,047 taxa (OTUs) in the resident and 89 bacterial families including 1,659 OTUs in the active communities. Resident communities were dominated by members of Alteromonadaceae, Flavobacteriaceae, and Colwelliaceae, while active communities were dominated by families Cyclobacteriacea and Amoebophilaceae. Besides the overall differences between resident and active community composition, significant differences were seen between the control (pH 8) and the two lower pH treatments (7.2 and 7.4) in the active community, but only between pH 8 and 7.2 in the resident community. Our analyses revealed profound differences between the resident and active microbial communities, and we found that OA exerted stronger effects on the active community. Further, our results suggest that rDNA- and rRNA-based sequencing should be considered complementary tools to investigate the effects of environmental change on microbial assemblage structure and activity.
King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Konstanzer Online-Publikations-SystemArticle . 2021Data sources: Konstanzer Online-Publikations-Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmicb.2021.707674&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Konstanzer Online-Publikations-SystemArticle . 2021Data sources: Konstanzer Online-Publikations-Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmicb.2021.707674&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:PANGAEA Liew, Yi Jin; Zoccola, Didier; Li, Yong; Tambutté, Eric; Venn, Alexander A; Michell, Craig T; Cui, Guoxin; Deutekom, Eva S; Kaandorp, Jaap A; Voolstra, Christian R; Forêt, S; Allemand, Denis; Tambutté, Sylvie; Aranda, Manuel;There are increasing concerns that the current rate of climate change might outpace the ability of reef-building corals to adapt to future conditions. Work on model systems has shown that environmentally induced alterations in DNA methylation can lead to phenotypic acclimatization. While DNA methylation has been reported in corals and is thought to associate with phenotypic plasticity, potential mechanisms linked to changes in whole-genome methylation have yet to be elucidated. We show that DNA methylation significantly reduces spurious transcription in the coral Stylophora pistillata. Furthermore, we find that DNA methylation also reduces transcriptional noise by fine-tuning the expression of highly expressed genes. Analysis of DNA methylation patterns of corals subjected to long-term pH stress showed widespread changes in pathways regulating cell cycle and body size. Correspondingly, we found significant increases in cell and polyp sizes that resulted in more porous skeletons, supporting the hypothesis that linear extension rates are maintained under conditions of reduced calcification. These findings suggest an epigenetic component in phenotypic acclimatization that provides corals with an additional mechanism to cope with environmental change. In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2022) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2023-05-23.
PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2023License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.959452&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2023License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.959452&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2022Publisher:PANGAEA Authors: Venn, Alexander A; Tambutté, Eric; Steeve, Comeau; Tambutté, Sylvie;Internal pH measurements made in the extracellular calcifying medium (ECM), calcifying (calicoblastic) epithelium and mesoglea of the coral Stylophora pistillata using the fluorescent dye SNARF-1 and confocal microscopy. The measurements were made in light and darkness three experiments. Experiment 1 involved using coral samples maintained at pH 8 seawater. Experiment 2 involved placing samples in 4 seawater acidification conditions: pH 8, 7.8, 7.4 and 7.2 for 1 week. Experiment 3 involved placing samples in 4 levels of dissolved inorganic carbon concentration: elevated; ambient, low and very low for one week. The research was carried out at the Centre Scientifique de Monaco between 2014-2017. The aim of the experiment was to determine the pH gradient across the calcifying cell layer and determine how it responded to the three experiments. The experiments were done in the lab on coral samples that have been held in culture in Monaco for the last 30 years. The data file contains pH data from 3 experiments. In experiment 1corals were kept at seawater pH 8. In experiment 2. Corals were exposed to seawater acidification. In experiment 3 corals were exposed to manipulated DIC concentrations. The data are pH measurements taken from 3 internal compartments of the coral Stylophora pistillata: the mesoglea, the calcifying cells and the ECM.
PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2022License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.949400&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2022License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.949400&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:PANGAEA Barreto, Marcelle; Ziegler, Maren; Venn, Alexander A; Tambutté, Eric; Zoccola, Didier; Tambutté, Sylvie; Allemand, Denis; Antony, Chakkiath Paul; Voolstra, Christian R; Aranda, Manuel;Ocean warming and ocean acidification (OA) are direct consequences of climate change and affect coral reefs worldwide. While the effect of ocean warming manifests itself in increased frequency and severity of coral bleaching, the effects of ocean acidification on corals are less clear. In particular, long-term effects of OA on the bacterial communities associated with corals are largely unknown. In this study, we investigated the effects of ocean acidification on the resident and active microbiome of long-term aquaria-maintained Stylophora pistillata colonies by assessing 16S rRNA gene diversity on the DNA (resident community) and RNA level (active community). Coral colony fragments of S. pistillata were kept in aquaria for 2 years at four different pCO2 levels ranging from current pH conditions to increased acidification scenarios (i.e., pH 7.2, 7.4, 7.8, and 8). We identified 154 bacterial families encompassing 2,047 taxa (OTUs) in the resident and 89 bacterial families including 1,659 OTUs in the active communities. Resident communities were dominated by members of Alteromonadaceae, Flavobacteriaceae, and Colwelliaceae, while active communities were dominated by families Cyclobacteriacea and Amoebophilaceae. Besides the overall differences between resident and active community composition, significant differences were seen between the control (pH 8) and the two lower pH treatments (7.2 and 7.4) in the active community, but only between pH 8 and 7.2 in the resident community. Our analyses revealed profound differences between the resident and active microbial communities, and we found that OA exerted stronger effects on the active community. Further, our results suggest that rDNA- and rRNA-based sequencing should be considered complementary tools to investigate the effects of environmental change on microbial assemblage structure and activity. In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2021) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2022-09-14.
PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2022License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.948416&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2022License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.948416&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Frontiers Media SA Authors: Mélanie Billaud; François Seneca; Eric Tambutté; Dorota Czerucka;Climate change driven seawater temperature (SWT) increases results in greater abundance and geographical expansion of marine pathogens, among which Vibrio parahaemolyticus (Vp) causes serious economic and health issues. In addition, plastic pollution in the ocean constitutes a vector for harmful pathogens dissemination. We investigate the effect of elevated SWT on the expression of genes implicated in adhesion and biofilm formation on abiotic surfaces in the clinical Vp strain RIMD2210633, which expresses hemolysins. Among the genes studied, the multivalent adhesion molecule-7 and the GlcNAc-binding protein A were involved in the adhesion of Vp to abiotic and biotic surfaces, whereas the type IV pili, the mannose-sensitive hemagglutinin, and the chitin-regulated pilins facilitate attachment and biofilm formation. Data presented here show that at 21°C, Vp is still viable but does not either proliferate or express the virulence factors studied. Interestingly, at 27°C and as early as 1 h of incubation, all factors are transiently expressed in free-living bacteria only and even more upregulated at 31°C. These results clearly show that increased SWT has an important impact on the adhesion properties of free-living Vp to plastic support and thus emphasize the role of climate change in the spread of this pathogenic bacteria.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmicb.2022.840628&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 31 citations 31 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmicb.2022.840628&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint 2017 Saudi Arabia, Australia, Finland, Netherlands, Saudi ArabiaPublisher:American Association for the Advancement of Science (AAAS) Yi Jin Liew; Didier Zoccola; Yong Li; Eric Tambutté; Alexander A. Venn; Craig T. Michell; Guoxin Cui; Eva S. Deutekom; Jaap A. Kaandorp; Christian R. Voolstra; Sylvain Forêt; Denis Allemand; Sylvie Tambutté; Manuel Aranda;pmid: 29881778
pmc: PMC5990304
Changes in gene body methylation predict phenotypic acclimatization of the coral Stylophora pistillata to ocean acidification.
bioRxiv arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2018License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)UEF eRepository (University of Eastern Finland)Article . 2018License: CC BY NCFull-Text: http://dx.doi.org/10.1126/sciadv.aar8028Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleLicense: CC BY NCFull-Text: http://hdl.handle.net/1885/157190Data sources: Bielefeld Academic Search Engine (BASE)Science AdvancesArticle . 2018License: CC BY NCData sources: Universiteit van Amsterdam Digital Academic RepositoryUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.aar8028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 133 citations 133 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert bioRxiv arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2018License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)UEF eRepository (University of Eastern Finland)Article . 2018License: CC BY NCFull-Text: http://dx.doi.org/10.1126/sciadv.aar8028Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleLicense: CC BY NCFull-Text: http://hdl.handle.net/1885/157190Data sources: Bielefeld Academic Search Engine (BASE)Science AdvancesArticle . 2018License: CC BY NCData sources: Universiteit van Amsterdam Digital Academic RepositoryUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.aar8028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 France, ItalyPublisher:MDPI AG Didier Zoccola; Alessio Innocenti; Anthony Bertucci; Eric Tambutté; Claudiu Supuran; Sylvie Tambutté;Global change is a major threat to the oceans, as it implies temperature increase and acidification. Ocean acidification (OA) involving decreasing pH and changes in seawater carbonate chemistry challenges the capacity of corals to form their skeletons. Despite the large number of studies that have investigated how rates of calcification respond to ocean acidification scenarios, comparatively few studies tackle how ocean acidification impacts the physiological mechanisms that drive calcification itself. The aim of our paper was to determine how the carbonic anhydrases, which play a major role in calcification, are potentially regulated by ocean acidification. For this we measured the effect of pH on enzyme activity of two carbonic anhydrase isoforms that have been previously characterized in the scleractinian coral Stylophora pistillata. In addition we looked at gene expression of these enzymes in vivo. For both isoforms, our results show (1) a change in gene expression under OA (2) an effect of OA and temperature on carbonic anhydrase activity. We suggest that temperature increase could counterbalance the effect of OA on enzyme activity. Finally we point out that caution must, thus, be taken when interpreting transcriptomic data on carbonic anhydrases in ocean acidification and temperature stress experiments, as the effect of these stressors on the physiological function of CA will depend both on gene expression and enzyme activity.
Marine Drugs arrow_drop_down Marine DrugsOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1660-3397/14/6/109/pdfData sources: Multidisciplinary Digital Publishing InstituteFlore (Florence Research Repository)Article . 2016Data sources: Flore (Florence Research Repository)ArchiMer - Institutional Archive of IfremerOther literature type . 2016Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/md14060109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 37 citations 37 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Marine Drugs arrow_drop_down Marine DrugsOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1660-3397/14/6/109/pdfData sources: Multidisciplinary Digital Publishing InstituteFlore (Florence Research Repository)Article . 2016Data sources: Flore (Florence Research Repository)ArchiMer - Institutional Archive of IfremerOther literature type . 2016Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/md14060109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 FrancePublisher:Copernicus GmbH M. Gómez Batista; M. Metian; F. Oberhänsli; S. Pouil; P. W. Swarzenski; E. Tambutté; J.-P. Gattuso; J.-P. Gattuso; C. M. Alonso Hernández; F. Gazeau;Abstract. Coral reefs are constructed by calcifiers that precipitate calcium carbonate to build their shells or skeletons through the process of calcification. Accurately assessing coral calcification rates is crucial to determine the health of these ecosystems and their response to major environmental changes such as ocean warming and acidification. Several approaches have been used to assess rates of coral calcification, but there is a real need to compare these approaches in order to ascertain that high-quality and intercomparable results can be produced. Here, we assessed four methods (total alkalinity anomaly, calcium anomaly, 45Ca incorporation, and 13C incorporation) to determine coral calcification of the reef-building coral Stylophora pistillata. Given the importance of environmental conditions for this process, the study was performed under two starting pH levels (ambient: 8.05 and low: 7.2) and two light (light and dark) conditions. Under all conditions, calcification rates estimated using the alkalinity and calcium anomaly techniques as well as 45Ca incorporation were highly correlated. Such a strong correlation between the alkalinity anomaly and 45Ca incorporation techniques has not been observed in previous studies and most probably results from improvements described in the present paper. The only method which provided calcification rates significantly different from the other three techniques was 13C incorporation. Calcification rates based on this method were consistently higher than those measured using the other techniques. Although reasons for these discrepancies remain unclear, the use of this technique for assessing calcification rates in corals is not recommended without further investigations.
Hyper Article en Lig... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2020License: CC BY NDFull-Text: https://hal.science/hal-02502639Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/bg-201...Article . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-17-887-2020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2020License: CC BY NDFull-Text: https://hal.science/hal-02502639Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/bg-201...Article . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-17-887-2020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 France, SpainPublisher:The Royal Society Funded by:NSF | OCE PRF: Track 2 (Interna..., EC | EVOMANSF| OCE PRF: Track 2 (International) Indirect effects in a changing ocean: a case study of seagrass photosynthesis and mussel physiology ,EC| EVOMALydia Kapsenberg; Mark C. Bitter; Jean-Pierre Gattuso; Rémi Dumollard; Eric Tambutté; A. Miglioli; A. Miglioli;Coastal marine ecosystems experience dynamic fluctuations in seawater carbonate chemistry. The importance of this variation in the context of ocean acidification requires knowing what aspect of variability biological processes respond to. We conducted four experiments (ranging from 3 to 22 days) with different variability regimes (pHT7.4–8.1) assessing the impact of diel fluctuations in carbonate chemistry on the early development of the musselMytilus galloprovincialis. Larval shell growth was consistently correlated to mean exposures, regardless of variability regimes, indicating that calcification responds instantaneously to seawater chemistry. Larval development was impacted by timing of exposure, revealing sensitivity of two developmental processes: development of the shell field, and transition from the first to the second larval shell. Fluorescent staining revealed developmental delay of the shell field at low pH, and abnormal development thereof was correlated with hinge defects in D-veligers. This study shows, for the first time, that ocean acidification affects larval soft-tissue development, independent from calcification. Multiple developmental processes additively underpin the teratogenic effect of ocean acidification on bivalve larvae. These results explain why trochophores are the most sensitive life-history stage in marine bivalves and suggest that short-term variability in carbonate chemistry can impact early larval development.
Hyper Article en Lig... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallRecolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the Royal Society B Biological SciencesArticle . 2018 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticleLicense: Royal Society Data Sharing and AccessibilityData sources: SygmaProceedings of the Royal Society B Biological SciencesArticle . 2019Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphProceedings of the Royal Society B Biological SciencesArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2018.2381&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 56 citations 56 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 48visibility views 48 download downloads 61 Powered bymore_vert Hyper Article en Lig... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallRecolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the Royal Society B Biological SciencesArticle . 2018 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticleLicense: Royal Society Data Sharing and AccessibilityData sources: SygmaProceedings of the Royal Society B Biological SciencesArticle . 2019Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphProceedings of the Royal Society B Biological SciencesArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2018.2381&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019Publisher:Springer Science and Business Media LLC Sylvie Tambutté; Denis Allemand; Eric Tambutté; Alexander A. Venn; Natacha Caminiti-Segonds; N. Techer;AbstractThe resilience of corals to ocean acidification has been proposed to rely on regulation of extracellular calcifying medium pH (pHECM), but few studies have compared the capacity of coral species to control this parameter at elevated pCO2. Furthermore, exposure to light and darkness influences both pH regulation and calcification in corals, but little is known about its effect under conditions of seawater acidification. Here we investigated the effect of acidification in light and darkness on pHECM, calcifying cell intracellular pH (pHI), calcification, photosynthesis and respiration in three coral species:Stylophora pistillata,Pocillopora damicornisandAcropora hyacinthus. We show thatS. pistillatawas able to maintain pHECMunder acidification in light and darkness, but pHECMdecreased inP. damicornisandA. hyacinthusto a much greater extent in darkness than in the light. Acidification depressed calcifying cell pHIin all three species, but we identified an unexpected positive effect of light on pHI. Calcification rate and pHECMdecreased together under acidification, but there are inconsistencies in their relationship indicating that other physiological parameters are likely to shape how coral calcification responds to acidification. Overall our study reveals interspecies differences in coral regulation of pHECMand pHIwhen exposed to acidification, influenced by exposure to light and darkness.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-018-38168-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 37 citations 37 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-018-38168-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 Saudi Arabia, Saudi Arabia, GermanyPublisher:Frontiers Media SA Maren Ziegler; Sylvie Tambutté; Denis Allemand; Christian R. Voolstra; Christian R. Voolstra; Chakkiath Paul Antony; Marcelle Muniz Barreto; Alexander A. Venn; Didier Zoccola; Eric Tambutté; Manuel Aranda;Ocean warming and ocean acidification (OA) are direct consequences of climate change and affect coral reefs worldwide. While the effect of ocean warming manifests itself in increased frequency and severity of coral bleaching, the effects of ocean acidification on corals are less clear. In particular, long-term effects of OA on the bacterial communities associated with corals are largely unknown. In this study, we investigated the effects of ocean acidification on the resident and active microbiome of long-term aquaria-maintained Stylophora pistillata colonies by assessing 16S rRNA gene diversity on the DNA (resident community) and RNA level (active community). Coral colony fragments of S. pistillata were kept in aquaria for 2 years at four different pCO2 levels ranging from current pH conditions to increased acidification scenarios (i.e., pH 7.2, 7.4, 7.8, and 8). We identified 154 bacterial families encompassing 2,047 taxa (OTUs) in the resident and 89 bacterial families including 1,659 OTUs in the active communities. Resident communities were dominated by members of Alteromonadaceae, Flavobacteriaceae, and Colwelliaceae, while active communities were dominated by families Cyclobacteriacea and Amoebophilaceae. Besides the overall differences between resident and active community composition, significant differences were seen between the control (pH 8) and the two lower pH treatments (7.2 and 7.4) in the active community, but only between pH 8 and 7.2 in the resident community. Our analyses revealed profound differences between the resident and active microbial communities, and we found that OA exerted stronger effects on the active community. Further, our results suggest that rDNA- and rRNA-based sequencing should be considered complementary tools to investigate the effects of environmental change on microbial assemblage structure and activity.
King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Konstanzer Online-Publikations-SystemArticle . 2021Data sources: Konstanzer Online-Publikations-Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmicb.2021.707674&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Konstanzer Online-Publikations-SystemArticle . 2021Data sources: Konstanzer Online-Publikations-Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmicb.2021.707674&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:PANGAEA Liew, Yi Jin; Zoccola, Didier; Li, Yong; Tambutté, Eric; Venn, Alexander A; Michell, Craig T; Cui, Guoxin; Deutekom, Eva S; Kaandorp, Jaap A; Voolstra, Christian R; Forêt, S; Allemand, Denis; Tambutté, Sylvie; Aranda, Manuel;There are increasing concerns that the current rate of climate change might outpace the ability of reef-building corals to adapt to future conditions. Work on model systems has shown that environmentally induced alterations in DNA methylation can lead to phenotypic acclimatization. While DNA methylation has been reported in corals and is thought to associate with phenotypic plasticity, potential mechanisms linked to changes in whole-genome methylation have yet to be elucidated. We show that DNA methylation significantly reduces spurious transcription in the coral Stylophora pistillata. Furthermore, we find that DNA methylation also reduces transcriptional noise by fine-tuning the expression of highly expressed genes. Analysis of DNA methylation patterns of corals subjected to long-term pH stress showed widespread changes in pathways regulating cell cycle and body size. Correspondingly, we found significant increases in cell and polyp sizes that resulted in more porous skeletons, supporting the hypothesis that linear extension rates are maintained under conditions of reduced calcification. These findings suggest an epigenetic component in phenotypic acclimatization that provides corals with an additional mechanism to cope with environmental change. In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2022) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2023-05-23.
PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2023License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.959452&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2023License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.959452&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu