- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 Australia, Germany, United States, Australia, Australia, GermanyPublisher:Wiley Funded by:DFG, ARC | Discovery Projects - Gran..., ARC | Discovery Projects - Gran... +1 projectsDFG ,ARC| Discovery Projects - Grant ID: DP160104835 ,ARC| Discovery Projects - Grant ID: DP150104365 ,EC| HiPowARKyle S. Brinkman; Shaomin Liu; Jaka Sunarso; Weishen Yang; Weishen Yang; Ahmed F. Ghoniem; Zongping Shao; Zongping Shao; Jian Xue; Guoxing Chen; Kaspar Andreas Friedrich; Claudia Li; Xiaoyao Tan; Haihui Wang; Ralf Kriegel; Xue-Feng Zhu; Xue-Feng Zhu; Armin Feldhoff; Jack H. Duffy; Xiao-Yu Wu; Anke Weidenkaff; Rémi Costa; Heqing Jiang; Yan Zhang; Kevin Huang;handle: 1721.1/152435 , 20.500.11937/90613 , 1959.3/463997
AbstractMixed ionic‐electronic conducting (MIEC) membranes have gained growing interest recently for various promising environmental and energy applications, such as H2and O2production, CO2reduction, O2and H2separation, CO2separation, membrane reactors for production of chemicals, cathode development for solid oxide fuel cells, solar‐driven evaporation and energy‐saving regeneration as well as electrolyzer cells for power‐to‐X technologies. The purpose of this roadmap, written by international specialists in their fields, is to present a snapshot of the state‐of‐the‐art, and provide opinions on the future challenges and opportunities in this complex multidisciplinary research field. As the fundamentals of using MIEC membranes for various applications become increasingly challenging tasks, particularly in view of the growing interdisciplinary nature of this field, a better understanding of the underlying physical and chemical processes is also crucial to enable the career advancement of the next generation of researchers. As an integrated and combined article, it is hoped that this roadmap, covering all these aspects, will be informative to support further progress in academics as well as in the industry‐oriented research toward commercialization of MIEC membranes for different applications.
Curtin University: e... arrow_drop_down Curtin University: espaceArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Advanced Functional MaterialsArticle . 2021 . Peer-reviewedLicense: CC BY NCData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adfm.202105702&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 74 citations 74 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Curtin University: e... arrow_drop_down Curtin University: espaceArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Advanced Functional MaterialsArticle . 2021 . Peer-reviewedLicense: CC BY NCData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adfm.202105702&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 AustraliaPublisher:Elsevier BV Funded by:EC | ColdSpark, UKRI | ColdSpark Driven Energy a...EC| ColdSpark ,UKRI| ColdSpark Driven Energy and Cost-efficient Methane Cracking for Hydrogen ProductionChen, Guoxing; Yu, Xiao; Ostrikov, Kostya (Ken); Liu, Bowen; Harding, Jonathan; Homm, Gert; Guo, Heng; Andreas Schunk, Stephan; Zhou, Ying; Tu, Xin; Weidenkaff, Anke;A global transition to a hydrogen economy requires widespread adoption of clean hydrogen energy. Methane cracking is one of the most viable technologies for producing clean hydrogen, nearing the ultimate zero-carbon-emissions targets. While major progress has been made in the lab-scale development of high-performance reactors and catalysts for methane pyrolysis, research focusing on industry-relevant scale and process conditions is in its infancy. Herein, recent advances in fundamental and applied research in methane pyrolysis are critically examined, focusing on physico-chemical mechanisms to achieve energy-efficient, low-carbon emission, scalable processes. The highlighted recent efforts to bridge the gap between laboratory research and industrial applications reveal rapid advances in practical applications based on synergistic chemical engineering, catalysis, and materials science research. Perspectives, challenges, and opportunities for translational research towards commercial applications of methane cracking are discussed aiming at clean hydrogen production.
Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2023License: CC BYFull-Text: https://eprints.qut.edu.au/246649/1/AAM.pdfData sources: Bielefeld Academic Search Engine (BASE)Chemical Engineering JournalArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2023.146335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2023License: CC BYFull-Text: https://eprints.qut.edu.au/246649/1/AAM.pdfData sources: Bielefeld Academic Search Engine (BASE)Chemical Engineering JournalArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2023.146335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 BelgiumPublisher:Elsevier BV Rony Snyders; Guoxing Chen; Guoxing Chen; Guoxing Chen; N Britun; N Britun;Abstract The up to date progress, present status and future directions of CO2 conversion in various gaseous discharges are critically overviewed. The main theoretical aspects alongside with the resent achievements in the field, mainly related to non-thermal discharges, are discussed. A special accent is made on the advantages of the catalytic CO2 decomposition in the plasma phase (plasma catalysis). The promising candidates among the different plasma processes and the available catalytic materials are systematically analyzed, which is of a great importance for further progress in the field as well as for potential applications.
Journal of CO2 Utili... arrow_drop_down Journal of CO2 UtilizationArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jcou.2021.101557&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu82 citations 82 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of CO2 Utili... arrow_drop_down Journal of CO2 UtilizationArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jcou.2021.101557&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Elsevier BV Funded by:EC | BIOMASS-CCUEC| BIOMASS-CCUYuxuan Zeng; Guoxing Chen; Qianyun Bai; Li Wang; Renbing Wu; Xin Tu;Le reformage catalytique du biogaz amélioré par plasma pour la production de gaz de synthèse riche en hydrogène sur un catalyseur Ni-K/Al2O3 a été étudié à l'aide d'un réacteur à plasma non thermique à décharge à barrière diélectrique tabulaire. Pour mieux comprendre la synergie de la catalyse plasma à des températures élevées, nous avons comparé différents modes de réaction : catalyse plasma, plasma seul et catalyse seule dans une plage de température de réaction de 160–400 °C. La combinaison de Ni-K/Al2O3 et de plasma a produit des effets synergiques. Notamment, la synergie plasma-catalytique était dépendante de la température et variait à différentes températures de réaction. En utilisant la catalyse plasma, la conversion maximale du CH4 et du CO2 (31,6 % et 22,8 %, respectivement) a été atteinte sur Ni–K/Al2O3 à 160 °C, tout en augmentant la température de réaction à 340 °C, ce qui a considérablement amélioré le rapport H2/CO à 2,71. De plus, par rapport au reformage du biogaz catalytique au plasma à 160 °C, l'augmentation de la température de réaction à 400 °C a supprimé la conversion du biogaz avec une réduction spectaculaire de la formation de coke sur la surface Ni-K/Al2O3 de 6,81 % en poids à 3,37 % en poids. Se investigó el reformado catalítico de biogás mejorado con plasma para la producción de gas de síntesis rico en hidrógeno sobre un catalizador de Ni-K/Al2O3 utilizando un reactor de plasma no térmico de descarga de barrera dieléctrica tabular. Para comprender mejor la sinergia de la catálisis plasmática a temperaturas elevadas, comparamos diferentes modos de reacción: catálisis plasmática, plasma solo y catálisis sola en un rango de temperatura de reacción de 160–400 °C. La combinación de Ni–K/Al2O3 y plasma produjo efectos sinérgicos. En particular, la sinergia plasma-catalítica era dependiente de la temperatura y variaba a diferentes temperaturas de reacción. Usando catálisis de plasma, la conversión máxima de CH4 y CO2 (31.6% y 22.8%, respectivamente) se logró sobre Ni-K/Al2O3 a 160 ° C, mientras que el aumento de la temperatura de reacción a 340 ° C mejoró notablemente la relación H2/CO a 2.71. Además, en comparación con el reformado de biogás catalítico por plasma a 160 °C, el aumento de la temperatura de reacción a 400 °C suprimió la conversión de biogás con una reducción drástica de la formación de coque en la superficie de Ni-K/Al2O3 del 6,81% en peso al 3,37% en peso. Plasma-enhanced catalytic biogas reforming for hydrogen-rich syngas production over a Ni–K/Al2O3 catalyst was investigated using a tabular dielectric barrier discharge non-thermal plasma reactor. To better understand the plasma catalysis synergy at elevated temperatures, we compared different reaction modes: plasma catalysis, plasma alone, and catalysis alone in a reaction temperature range of 160–400 °C. The combination of Ni–K/Al2O3 and plasma produced synergistic effects. Notably, the plasma-catalytic synergy was temperature-dependent and varied at different reaction temperatures. Using plasma catalysis, the maximum conversion of CH4 and CO2 (31.6% and 22.8%, respectively) was attained over Ni–K/Al2O3 at 160 °C, while increasing the reaction temperature to 340 °C noticeably enhanced the H2/CO ratio to 2.71. Moreover, compared to plasma-catalytic biogas reforming at 160 °C, increasing the reaction temperature to 400 °C suppressed biogas conversion with dramatically reduced coke formation on the Ni–K/Al2O3 surface from 6.81 wt% to 3.37 wt%. تم فحص إصلاح الغاز الحيوي الحفاز المعزز بالبلازما لإنتاج غاز التخليق الغني بالهيدروجين على محفز Ni - K/Al2O3 باستخدام مفاعل بلازما غير حراري لتفريغ حاجز العزل الكهربائي الجدولي. لفهم تآزر تحفيز البلازما بشكل أفضل في درجات الحرارة المرتفعة، قمنا بمقارنة أوضاع التفاعل المختلفة: تحفيز البلازما، البلازما وحدها، والتحفيز وحده في نطاق درجة حرارة تفاعل يتراوح بين 160–400 درجة مئوية. أنتج الجمع بين Ni - K/Al2O3 والبلازما تأثيرات تآزرية. والجدير بالذكر أن التآزر المحفز للبلازما كان يعتمد على درجة الحرارة ومتنوعًا في درجات حرارة تفاعل مختلفة. باستخدام تحفيز البلازما، تم تحقيق الحد الأقصى لتحويل CH4 و CO2 (31.6 ٪ و 22.8 ٪ على التوالي) على Ni - K/Al2O3 عند 160 درجة مئوية، في حين أن زيادة درجة حرارة التفاعل إلى 340 درجة مئوية عززت بشكل ملحوظ نسبة H2/CO إلى 2.71. علاوة على ذلك، بالمقارنة مع إعادة تشكيل الغاز الحيوي المحفّز للبلازما عند 160 درجة مئوية، فإن زيادة درجة حرارة التفاعل إلى 400 درجة مئوية قمع تحويل الغاز الحيوي مع انخفاض كبير في تكوين فحم الكوك على سطح Ni - K/Al2O3 من 6.81 ٪ بالوزن إلى 3.37 ٪ بالوزن.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2022.06.135&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2022.06.135&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 Australia, Germany, United States, Australia, Australia, GermanyPublisher:Wiley Funded by:DFG, ARC | Discovery Projects - Gran..., ARC | Discovery Projects - Gran... +1 projectsDFG ,ARC| Discovery Projects - Grant ID: DP160104835 ,ARC| Discovery Projects - Grant ID: DP150104365 ,EC| HiPowARKyle S. Brinkman; Shaomin Liu; Jaka Sunarso; Weishen Yang; Weishen Yang; Ahmed F. Ghoniem; Zongping Shao; Zongping Shao; Jian Xue; Guoxing Chen; Kaspar Andreas Friedrich; Claudia Li; Xiaoyao Tan; Haihui Wang; Ralf Kriegel; Xue-Feng Zhu; Xue-Feng Zhu; Armin Feldhoff; Jack H. Duffy; Xiao-Yu Wu; Anke Weidenkaff; Rémi Costa; Heqing Jiang; Yan Zhang; Kevin Huang;handle: 1721.1/152435 , 20.500.11937/90613 , 1959.3/463997
AbstractMixed ionic‐electronic conducting (MIEC) membranes have gained growing interest recently for various promising environmental and energy applications, such as H2and O2production, CO2reduction, O2and H2separation, CO2separation, membrane reactors for production of chemicals, cathode development for solid oxide fuel cells, solar‐driven evaporation and energy‐saving regeneration as well as electrolyzer cells for power‐to‐X technologies. The purpose of this roadmap, written by international specialists in their fields, is to present a snapshot of the state‐of‐the‐art, and provide opinions on the future challenges and opportunities in this complex multidisciplinary research field. As the fundamentals of using MIEC membranes for various applications become increasingly challenging tasks, particularly in view of the growing interdisciplinary nature of this field, a better understanding of the underlying physical and chemical processes is also crucial to enable the career advancement of the next generation of researchers. As an integrated and combined article, it is hoped that this roadmap, covering all these aspects, will be informative to support further progress in academics as well as in the industry‐oriented research toward commercialization of MIEC membranes for different applications.
Curtin University: e... arrow_drop_down Curtin University: espaceArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Advanced Functional MaterialsArticle . 2021 . Peer-reviewedLicense: CC BY NCData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adfm.202105702&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 74 citations 74 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Curtin University: e... arrow_drop_down Curtin University: espaceArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Advanced Functional MaterialsArticle . 2021 . Peer-reviewedLicense: CC BY NCData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adfm.202105702&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 AustraliaPublisher:Elsevier BV Funded by:EC | ColdSpark, UKRI | ColdSpark Driven Energy a...EC| ColdSpark ,UKRI| ColdSpark Driven Energy and Cost-efficient Methane Cracking for Hydrogen ProductionChen, Guoxing; Yu, Xiao; Ostrikov, Kostya (Ken); Liu, Bowen; Harding, Jonathan; Homm, Gert; Guo, Heng; Andreas Schunk, Stephan; Zhou, Ying; Tu, Xin; Weidenkaff, Anke;A global transition to a hydrogen economy requires widespread adoption of clean hydrogen energy. Methane cracking is one of the most viable technologies for producing clean hydrogen, nearing the ultimate zero-carbon-emissions targets. While major progress has been made in the lab-scale development of high-performance reactors and catalysts for methane pyrolysis, research focusing on industry-relevant scale and process conditions is in its infancy. Herein, recent advances in fundamental and applied research in methane pyrolysis are critically examined, focusing on physico-chemical mechanisms to achieve energy-efficient, low-carbon emission, scalable processes. The highlighted recent efforts to bridge the gap between laboratory research and industrial applications reveal rapid advances in practical applications based on synergistic chemical engineering, catalysis, and materials science research. Perspectives, challenges, and opportunities for translational research towards commercial applications of methane cracking are discussed aiming at clean hydrogen production.
Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2023License: CC BYFull-Text: https://eprints.qut.edu.au/246649/1/AAM.pdfData sources: Bielefeld Academic Search Engine (BASE)Chemical Engineering JournalArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2023.146335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2023License: CC BYFull-Text: https://eprints.qut.edu.au/246649/1/AAM.pdfData sources: Bielefeld Academic Search Engine (BASE)Chemical Engineering JournalArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2023.146335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 BelgiumPublisher:Elsevier BV Rony Snyders; Guoxing Chen; Guoxing Chen; Guoxing Chen; N Britun; N Britun;Abstract The up to date progress, present status and future directions of CO2 conversion in various gaseous discharges are critically overviewed. The main theoretical aspects alongside with the resent achievements in the field, mainly related to non-thermal discharges, are discussed. A special accent is made on the advantages of the catalytic CO2 decomposition in the plasma phase (plasma catalysis). The promising candidates among the different plasma processes and the available catalytic materials are systematically analyzed, which is of a great importance for further progress in the field as well as for potential applications.
Journal of CO2 Utili... arrow_drop_down Journal of CO2 UtilizationArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jcou.2021.101557&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu82 citations 82 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of CO2 Utili... arrow_drop_down Journal of CO2 UtilizationArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jcou.2021.101557&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Elsevier BV Funded by:EC | BIOMASS-CCUEC| BIOMASS-CCUYuxuan Zeng; Guoxing Chen; Qianyun Bai; Li Wang; Renbing Wu; Xin Tu;Le reformage catalytique du biogaz amélioré par plasma pour la production de gaz de synthèse riche en hydrogène sur un catalyseur Ni-K/Al2O3 a été étudié à l'aide d'un réacteur à plasma non thermique à décharge à barrière diélectrique tabulaire. Pour mieux comprendre la synergie de la catalyse plasma à des températures élevées, nous avons comparé différents modes de réaction : catalyse plasma, plasma seul et catalyse seule dans une plage de température de réaction de 160–400 °C. La combinaison de Ni-K/Al2O3 et de plasma a produit des effets synergiques. Notamment, la synergie plasma-catalytique était dépendante de la température et variait à différentes températures de réaction. En utilisant la catalyse plasma, la conversion maximale du CH4 et du CO2 (31,6 % et 22,8 %, respectivement) a été atteinte sur Ni–K/Al2O3 à 160 °C, tout en augmentant la température de réaction à 340 °C, ce qui a considérablement amélioré le rapport H2/CO à 2,71. De plus, par rapport au reformage du biogaz catalytique au plasma à 160 °C, l'augmentation de la température de réaction à 400 °C a supprimé la conversion du biogaz avec une réduction spectaculaire de la formation de coke sur la surface Ni-K/Al2O3 de 6,81 % en poids à 3,37 % en poids. Se investigó el reformado catalítico de biogás mejorado con plasma para la producción de gas de síntesis rico en hidrógeno sobre un catalizador de Ni-K/Al2O3 utilizando un reactor de plasma no térmico de descarga de barrera dieléctrica tabular. Para comprender mejor la sinergia de la catálisis plasmática a temperaturas elevadas, comparamos diferentes modos de reacción: catálisis plasmática, plasma solo y catálisis sola en un rango de temperatura de reacción de 160–400 °C. La combinación de Ni–K/Al2O3 y plasma produjo efectos sinérgicos. En particular, la sinergia plasma-catalítica era dependiente de la temperatura y variaba a diferentes temperaturas de reacción. Usando catálisis de plasma, la conversión máxima de CH4 y CO2 (31.6% y 22.8%, respectivamente) se logró sobre Ni-K/Al2O3 a 160 ° C, mientras que el aumento de la temperatura de reacción a 340 ° C mejoró notablemente la relación H2/CO a 2.71. Además, en comparación con el reformado de biogás catalítico por plasma a 160 °C, el aumento de la temperatura de reacción a 400 °C suprimió la conversión de biogás con una reducción drástica de la formación de coque en la superficie de Ni-K/Al2O3 del 6,81% en peso al 3,37% en peso. Plasma-enhanced catalytic biogas reforming for hydrogen-rich syngas production over a Ni–K/Al2O3 catalyst was investigated using a tabular dielectric barrier discharge non-thermal plasma reactor. To better understand the plasma catalysis synergy at elevated temperatures, we compared different reaction modes: plasma catalysis, plasma alone, and catalysis alone in a reaction temperature range of 160–400 °C. The combination of Ni–K/Al2O3 and plasma produced synergistic effects. Notably, the plasma-catalytic synergy was temperature-dependent and varied at different reaction temperatures. Using plasma catalysis, the maximum conversion of CH4 and CO2 (31.6% and 22.8%, respectively) was attained over Ni–K/Al2O3 at 160 °C, while increasing the reaction temperature to 340 °C noticeably enhanced the H2/CO ratio to 2.71. Moreover, compared to plasma-catalytic biogas reforming at 160 °C, increasing the reaction temperature to 400 °C suppressed biogas conversion with dramatically reduced coke formation on the Ni–K/Al2O3 surface from 6.81 wt% to 3.37 wt%. تم فحص إصلاح الغاز الحيوي الحفاز المعزز بالبلازما لإنتاج غاز التخليق الغني بالهيدروجين على محفز Ni - K/Al2O3 باستخدام مفاعل بلازما غير حراري لتفريغ حاجز العزل الكهربائي الجدولي. لفهم تآزر تحفيز البلازما بشكل أفضل في درجات الحرارة المرتفعة، قمنا بمقارنة أوضاع التفاعل المختلفة: تحفيز البلازما، البلازما وحدها، والتحفيز وحده في نطاق درجة حرارة تفاعل يتراوح بين 160–400 درجة مئوية. أنتج الجمع بين Ni - K/Al2O3 والبلازما تأثيرات تآزرية. والجدير بالذكر أن التآزر المحفز للبلازما كان يعتمد على درجة الحرارة ومتنوعًا في درجات حرارة تفاعل مختلفة. باستخدام تحفيز البلازما، تم تحقيق الحد الأقصى لتحويل CH4 و CO2 (31.6 ٪ و 22.8 ٪ على التوالي) على Ni - K/Al2O3 عند 160 درجة مئوية، في حين أن زيادة درجة حرارة التفاعل إلى 340 درجة مئوية عززت بشكل ملحوظ نسبة H2/CO إلى 2.71. علاوة على ذلك، بالمقارنة مع إعادة تشكيل الغاز الحيوي المحفّز للبلازما عند 160 درجة مئوية، فإن زيادة درجة حرارة التفاعل إلى 400 درجة مئوية قمع تحويل الغاز الحيوي مع انخفاض كبير في تكوين فحم الكوك على سطح Ni - K/Al2O3 من 6.81 ٪ بالوزن إلى 3.37 ٪ بالوزن.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2022.06.135&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2022.06.135&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu