- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2018 United Kingdom, Singapore, United StatesPublisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: C...NSF| Collaborative Research: Climate Change Impacts on Forest Biodiversity: Individual Risk to Subcontinental ImpactsDaniel J. Johnson; Jessica Needham; Chonggang Xu; Elias C. Massoud; Stuart J. Davies; Kristina J. Anderson-Teixeira; Sarayudh Bunyavejchewin; Jeffery Q. Chambers; Chia-Hao Chang-Yang; Jyh-Min Chiang; George B. Chuyong; Richard Condit; Susan Cordell; Christine Fletcher; Christian P. Giardina; Thomas W. Giambelluca; Nimal Gunatilleke; Savitri Gunatilleke; Chang-Fu Hsieh; Stephen Hubbell; Faith Inman-Narahari; Abdul Rahman Kassim; Masatoshi Katabuchi; David Kenfack; Creighton M. Litton; Shawn Lum; Mohizah Mohamad; Musalmah Nasardin; Perry S. Ong; Rebecca Ostertag; Lawren Sack; Nathan G. Swenson; I Fang Sun; Sylvester Tan; Duncan W. Thomas; Jill Thompson; Maria Natalia Umaña; Maria Uriarte; Renato Valencia; Sandra Yap; Jess Zimmerman; Nate G. McDowell; Sean M. McMahon;Survival rates of large trees determine forest biomass dynamics. Survival rates of small trees have been linked to mechanisms that maintain biodiversity across tropical forests. How species survival rates change with size offers insight into the links between biodiversity and ecosystem function across tropical forests. We tested patterns of size-dependent tree survival across the tropics using data from 1,781 species and over 2 million individuals to assess whether tropical forests can be characterized by size-dependent life-history survival strategies. We found that species were classifiable into four 'survival modes' that explain life-history variation that shapes carbon cycling and the relative abundance within forests. Frequently collected functional traits, such as wood density, leaf mass per area and seed mass, were not generally predictive of the survival modes of species. Mean annual temperature and cumulative water deficit predicted the proportion of biomass of survival modes, indicating important links between evolutionary strategies, climate and carbon cycling. The application of survival modes in demographic simulations predicted biomass change across forest sites. Our results reveal globally identifiable size-dependent survival strategies that differ across diverse systems in a consistent way. The abundance of survival modes and interaction with climate ultimately determine forest structure, carbon storage in biomass and future forest trajectories.
NERC Open Research A... arrow_drop_down University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/8sv5v438Data sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2018 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaDR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-018-0626-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/8sv5v438Data sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2018 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaDR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-018-0626-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014 Australia, United States, India, Brazil, India, Netherlands, China (People's Republic of), Brazil, China (People's Republic of), United KingdomPublisher:Wiley Funded by:EC | GEM-TRAITEC| GEM-TRAITAuthors: Alexandre Adalardo de Oliveira; Xihua Wang; Jonathan Myers; Geoffrey G. Parker; +116 AuthorsAlexandre Adalardo de Oliveira; Xihua Wang; Jonathan Myers; Geoffrey G. Parker; Norman A. Bourg; Jill Thompson; Margaret F. Kinnaird; Keith Clay; Xiaojun Du; Dairon Cárdenas; Vojtech Novotny; Jitendra Kumar; Christine Fletcher; Raman Sukumar; George B. Chuyong; Billy C.H. Hau; Patrick A. Jansen; Patrick A. Jansen; Nathalie Butt; Nathalie Butt; Sarayudh Bunyavejchewin; Han Xu; Stuart J. Davies; Stuart J. Davies; Keping Ma; Rebecca Ostertag; Xiaobao Deng; Yide Li; William W. Hargrove; George D. Weiblen; Gregory S. Gilbert; Gregory S. Gilbert; Christian P. Giardina; Rafizah Mat Serudin; Takashi Mizuno; Michael D. Morecroft; Gunter A. Fischer; Jean-Remy Makana; Stephen P. Hubbell; Stephen P. Hubbell; Faith Inman-Narahari; Moses N. Sainge; Yves Basset; Xiangcheng Mi; Daniel J. Johnson; Richard P. Phillips; Fangliang He; David F. R. P. Burslem; Mingxi Jiang; H. S. Suresh; Matteo Detto; Witchaphart Sungpalee; Yadvinder Malhi; Xugao Wang; Min Cao; Robert W. Howe; Sean M. McMahon; Sean M. McMahon; Shawn K. Y. Lum; David Kenfack; David Kenfack; James A. Lutz; Amy Wolf; Kamariah Abu Salim; Warren Y. Brockelman; Perry S. Ong; H. S. Dattaraja; Tomáš Vrška; David L. Erikson; Corneille E. N. Ewango; I-Fang Sun; Lisa Korte; S. Joseph Wright; Susan Cordell; Jan den Ouden; Lawren Sack; Andrew J. Larson; Sandra L. Yap; Benjamin L. Turner; Jess K. Zimmerman; Abdul Rahman Kassim; Amy C. Bennett; Sylvester Tan; Angelica M. Almeyda Zambrano; Angelica M. Almeyda Zambrano; Angelica M. Almeyda Zambrano; Shirong Liu; Staline Kibet; Helene C. Muller-Landau; María Uriarte; Renato Valencia; Nimal Gunatilleke; Alfonso Alonso; Savitri Gunatilleke; Marta I. Vallejo; Duncan W. Thomas; Kristina J. Anderson-Teixeira; Kristina J. Anderson-Teixeira; Zhanqing Hao; Robin B. Foster; Erika Gonzalez-Akre; Kriangsak Sri-ngernyuang; Eben N. Broadbent; Eben N. Broadbent; Eben N. Broadbent; Weiguo Sang; Hervé Memiaghe; Forrest M. Hoffman; Terese B. Hart; Alvaro Duque; Sean C. Thomas; Alberto Vicentini; Mamoru Kanzaki; Xiankun Li; David A. Orwig; Jennifer L. Baltzer; Toby R. Marthews; Damian M. Maddalena; Kamil Král; William J. McShea;AbstractGlobal change is impacting forests worldwide, threatening biodiversity and ecosystem services including climate regulation. Understanding how forests respond is critical to forest conservation and climate protection. This review describes an international network of 59 long‐term forest dynamics research sites (CTFS‐ForestGEO) useful for characterizing forest responses to global change. Within very large plots (median size 25 ha), all stems ≥1 cm diameter are identified to species, mapped, and regularly recensused according to standardized protocols. CTFS‐ForestGEO spans 25°S–61°N latitude, is generally representative of the range of bioclimatic, edaphic, and topographic conditions experienced by forests worldwide, and is the only forest monitoring network that applies a standardized protocol to each of the world's major forest biomes. Supplementary standardized measurements at subsets of the sites provide additional information on plants, animals, and ecosystem and environmental variables. CTFS‐ForestGEO sites are experiencing multifaceted anthropogenic global change pressures including warming (average 0.61 °C), changes in precipitation (up to ±30% change), atmospheric deposition of nitrogen and sulfur compounds (up to 3.8 g N m−2 yr−1 and 3.1 g S m−2 yr−1), and forest fragmentation in the surrounding landscape (up to 88% reduced tree cover within 5 km). The broad suite of measurements made at CTFS‐ForestGEO sites makes it possible to investigate the complex ways in which global change is impacting forest dynamics. Ongoing research across the CTFS‐ForestGEO network is yielding insights into how and why the forests are changing, and continued monitoring will provide vital contributions to understanding worldwide forest diversity and dynamics in an era of global change.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/3rs0b0skData sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of Californiahttp://dx.doi.org/10.1111/gcb....Article . Peer-reviewedData sources: European Union Open Data PortalThe University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)University of Hong Kong: HKU Scholars HubArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12712&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 505 citations 505 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/3rs0b0skData sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of Californiahttp://dx.doi.org/10.1111/gcb....Article . Peer-reviewedData sources: European Union Open Data PortalThe University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)University of Hong Kong: HKU Scholars HubArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12712&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Brazil, United Kingdom, Brazil, SingaporePublisher:Wiley Funded by:NSF | Integrating functional, p..., NSF | Dimensions IRCN: Diversit...NSF| Integrating functional, phylogenetic and genetic components of diversity for an improved understanding of forest structure, dynamics, and change ,NSF| Dimensions IRCN: Diversity and Forest Change: Characterizing functional, phylogenetic and genetic contributions to diversity gradients and dynamics in tree communitiesAuthors: Geoffrey G. Parker; Kristina J. Anderson-Teixeira; Michael D. Morecroft; Perry S. Ong; +95 AuthorsGeoffrey G. Parker; Kristina J. Anderson-Teixeira; Michael D. Morecroft; Perry S. Ong; I-Fang Sun; George B. Chuyong; Sarayudh Bunyavejchewin; Keith Clay; Takuo Yamakura; George D. Weiblen; Tucker J. Furniss; Ana Andrade; Vojtech Novotny; James A. Freund; Christine Fletcher; María Uriarte; Kuo-Jung Chao; Richard P. Phillips; Wei-Chun Chao; Alfonso Alonso; Mark E. Swanson; Norman A. Bourg; Norman A. Bourg; Gunter A. Fischer; Jean-Remy Makana; Jonathan Myers; Rajit Patankar; David A. Orwig; Jennifer L. Baltzer; Stephen P. Hubbell; Paul M. Musili; Xiangcheng Mi; Sean M. McMahon; Ke Cao; Terese B. Hart; Lawren Sack; Sandra L. Yap; David Kenfack; Yadvinder Malhi; Sara J. Germain; Jill Thompson; David Janík; Andy Hector; Min Cao; James A. Lutz; Sylvester Tan; Kendall M. L. Becker; Erika M. Blomdahl; C. Alina Cansler; Billy C.H. Hau; Jyh-Min Chiang; Sheng-Hsin Su; Guo-Zhang Michael Song; Fangliang He; H. S. Dattaraja; Raman Sukumar; Duncan W. Thomas; Hebbalalu S. Suresh; Dairon Cárdenas; Stuart J. Davies; Gregory S. Gilbert; Alvaro Duque; Chengjin Chu; Alberto Vicentini; Yide Li; Kamil Král; William J. McShea; Chang-Fu Hsieh; Yiching Lin; Corneille E. N. Ewango; Daniel J. Johnson; Andrew J. Larson; Tomáš Vrška; Susan Cordell; Renato Valencia; Xugao Wang; Lisa Korte; Zhanqing Hao; Abdul Rahman Kassim; Yue-Hua Hu; Shu-Hui Wu; Richard Condit; Jess K. Zimmerman; Alexandre Adalardo de Oliveira; Faith Inman-Narahari; Glen Reynolds; Amy Wolf; Christian P. Giardina; David F. R. P. Burslem; Robert W. Howe; Shawn K. Y. Lum; Shirong Liu; David Allen; Han Xu; Keping Ma; Rebecca Ostertag; Li-Wan Chang; Hervé Memiaghe; Akira Itoh;doi: 10.1111/geb.12747
handle: 10356/140605
AbstractAimTo examine the contribution of large‐diameter trees to biomass, stand structure, and species richness across forest biomes.LocationGlobal.Time periodEarly 21st century.Major taxa studiedWoody plants.MethodsWe examined the contribution of large trees to forest density, richness and biomass using a global network of 48 large (from 2 to 60 ha) forest plots representing 5,601,473 stems across 9,298 species and 210 plant families. This contribution was assessed using three metrics: the largest 1% of trees ≥ 1 cm diameter at breast height (DBH), all trees ≥ 60 cm DBH, and those rank‐ordered largest trees that cumulatively comprise 50% of forest biomass.ResultsAveraged across these 48 forest plots, the largest 1% of trees ≥ 1 cm DBH comprised 50% of aboveground live biomass, with hectare‐scale standard deviation of 26%. Trees ≥ 60 cm DBH comprised 41% of aboveground live tree biomass. The size of the largest trees correlated with total forest biomass (r2 = .62,p < .001). Large‐diameter trees in high biomass forests represented far fewer species relative to overall forest richness (r2 = .45,p < .001). Forests with more diverse large‐diameter tree communities were comprised of smaller trees (r2 = .33,p < .001). Lower large‐diameter richness was associated with large‐diameter trees being individuals of more common species (r2 = .17,p = .002). The concentration of biomass in the largest 1% of trees declined with increasing absolute latitude (r2 = .46,p < .001), as did forest density (r2 = .31,p < .001). Forest structural complexity increased with increasing absolute latitude (r2 = .26,p < .001).Main conclusionsBecause large‐diameter trees constitute roughly half of the mature forest biomass worldwide, their dynamics and sensitivities to environmental change represent potentially large controls on global forest carbon cycling. We recommend managing forests for conservation of existing large‐diameter trees or those that can soon reach large diameters as a simple way to conserve and potentially enhance ecosystem services.
NERC Open Research A... arrow_drop_down Global Ecology and BiogeographyArticleLicense: publisher-specific, author manuscriptData sources: UnpayWallGlobal Ecology and BiogeographyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12747&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 395 citations 395 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Global Ecology and BiogeographyArticleLicense: publisher-specific, author manuscriptData sources: UnpayWallGlobal Ecology and BiogeographyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12747&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018 United Kingdom, Singapore, United StatesPublisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: C...NSF| Collaborative Research: Climate Change Impacts on Forest Biodiversity: Individual Risk to Subcontinental ImpactsDaniel J. Johnson; Jessica Needham; Chonggang Xu; Elias C. Massoud; Stuart J. Davies; Kristina J. Anderson-Teixeira; Sarayudh Bunyavejchewin; Jeffery Q. Chambers; Chia-Hao Chang-Yang; Jyh-Min Chiang; George B. Chuyong; Richard Condit; Susan Cordell; Christine Fletcher; Christian P. Giardina; Thomas W. Giambelluca; Nimal Gunatilleke; Savitri Gunatilleke; Chang-Fu Hsieh; Stephen Hubbell; Faith Inman-Narahari; Abdul Rahman Kassim; Masatoshi Katabuchi; David Kenfack; Creighton M. Litton; Shawn Lum; Mohizah Mohamad; Musalmah Nasardin; Perry S. Ong; Rebecca Ostertag; Lawren Sack; Nathan G. Swenson; I Fang Sun; Sylvester Tan; Duncan W. Thomas; Jill Thompson; Maria Natalia Umaña; Maria Uriarte; Renato Valencia; Sandra Yap; Jess Zimmerman; Nate G. McDowell; Sean M. McMahon;Survival rates of large trees determine forest biomass dynamics. Survival rates of small trees have been linked to mechanisms that maintain biodiversity across tropical forests. How species survival rates change with size offers insight into the links between biodiversity and ecosystem function across tropical forests. We tested patterns of size-dependent tree survival across the tropics using data from 1,781 species and over 2 million individuals to assess whether tropical forests can be characterized by size-dependent life-history survival strategies. We found that species were classifiable into four 'survival modes' that explain life-history variation that shapes carbon cycling and the relative abundance within forests. Frequently collected functional traits, such as wood density, leaf mass per area and seed mass, were not generally predictive of the survival modes of species. Mean annual temperature and cumulative water deficit predicted the proportion of biomass of survival modes, indicating important links between evolutionary strategies, climate and carbon cycling. The application of survival modes in demographic simulations predicted biomass change across forest sites. Our results reveal globally identifiable size-dependent survival strategies that differ across diverse systems in a consistent way. The abundance of survival modes and interaction with climate ultimately determine forest structure, carbon storage in biomass and future forest trajectories.
NERC Open Research A... arrow_drop_down University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/8sv5v438Data sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2018 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaDR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-018-0626-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/8sv5v438Data sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2018 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaDR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-018-0626-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014 Australia, United States, India, Brazil, India, Netherlands, China (People's Republic of), Brazil, China (People's Republic of), United KingdomPublisher:Wiley Funded by:EC | GEM-TRAITEC| GEM-TRAITAuthors: Alexandre Adalardo de Oliveira; Xihua Wang; Jonathan Myers; Geoffrey G. Parker; +116 AuthorsAlexandre Adalardo de Oliveira; Xihua Wang; Jonathan Myers; Geoffrey G. Parker; Norman A. Bourg; Jill Thompson; Margaret F. Kinnaird; Keith Clay; Xiaojun Du; Dairon Cárdenas; Vojtech Novotny; Jitendra Kumar; Christine Fletcher; Raman Sukumar; George B. Chuyong; Billy C.H. Hau; Patrick A. Jansen; Patrick A. Jansen; Nathalie Butt; Nathalie Butt; Sarayudh Bunyavejchewin; Han Xu; Stuart J. Davies; Stuart J. Davies; Keping Ma; Rebecca Ostertag; Xiaobao Deng; Yide Li; William W. Hargrove; George D. Weiblen; Gregory S. Gilbert; Gregory S. Gilbert; Christian P. Giardina; Rafizah Mat Serudin; Takashi Mizuno; Michael D. Morecroft; Gunter A. Fischer; Jean-Remy Makana; Stephen P. Hubbell; Stephen P. Hubbell; Faith Inman-Narahari; Moses N. Sainge; Yves Basset; Xiangcheng Mi; Daniel J. Johnson; Richard P. Phillips; Fangliang He; David F. R. P. Burslem; Mingxi Jiang; H. S. Suresh; Matteo Detto; Witchaphart Sungpalee; Yadvinder Malhi; Xugao Wang; Min Cao; Robert W. Howe; Sean M. McMahon; Sean M. McMahon; Shawn K. Y. Lum; David Kenfack; David Kenfack; James A. Lutz; Amy Wolf; Kamariah Abu Salim; Warren Y. Brockelman; Perry S. Ong; H. S. Dattaraja; Tomáš Vrška; David L. Erikson; Corneille E. N. Ewango; I-Fang Sun; Lisa Korte; S. Joseph Wright; Susan Cordell; Jan den Ouden; Lawren Sack; Andrew J. Larson; Sandra L. Yap; Benjamin L. Turner; Jess K. Zimmerman; Abdul Rahman Kassim; Amy C. Bennett; Sylvester Tan; Angelica M. Almeyda Zambrano; Angelica M. Almeyda Zambrano; Angelica M. Almeyda Zambrano; Shirong Liu; Staline Kibet; Helene C. Muller-Landau; María Uriarte; Renato Valencia; Nimal Gunatilleke; Alfonso Alonso; Savitri Gunatilleke; Marta I. Vallejo; Duncan W. Thomas; Kristina J. Anderson-Teixeira; Kristina J. Anderson-Teixeira; Zhanqing Hao; Robin B. Foster; Erika Gonzalez-Akre; Kriangsak Sri-ngernyuang; Eben N. Broadbent; Eben N. Broadbent; Eben N. Broadbent; Weiguo Sang; Hervé Memiaghe; Forrest M. Hoffman; Terese B. Hart; Alvaro Duque; Sean C. Thomas; Alberto Vicentini; Mamoru Kanzaki; Xiankun Li; David A. Orwig; Jennifer L. Baltzer; Toby R. Marthews; Damian M. Maddalena; Kamil Král; William J. McShea;AbstractGlobal change is impacting forests worldwide, threatening biodiversity and ecosystem services including climate regulation. Understanding how forests respond is critical to forest conservation and climate protection. This review describes an international network of 59 long‐term forest dynamics research sites (CTFS‐ForestGEO) useful for characterizing forest responses to global change. Within very large plots (median size 25 ha), all stems ≥1 cm diameter are identified to species, mapped, and regularly recensused according to standardized protocols. CTFS‐ForestGEO spans 25°S–61°N latitude, is generally representative of the range of bioclimatic, edaphic, and topographic conditions experienced by forests worldwide, and is the only forest monitoring network that applies a standardized protocol to each of the world's major forest biomes. Supplementary standardized measurements at subsets of the sites provide additional information on plants, animals, and ecosystem and environmental variables. CTFS‐ForestGEO sites are experiencing multifaceted anthropogenic global change pressures including warming (average 0.61 °C), changes in precipitation (up to ±30% change), atmospheric deposition of nitrogen and sulfur compounds (up to 3.8 g N m−2 yr−1 and 3.1 g S m−2 yr−1), and forest fragmentation in the surrounding landscape (up to 88% reduced tree cover within 5 km). The broad suite of measurements made at CTFS‐ForestGEO sites makes it possible to investigate the complex ways in which global change is impacting forest dynamics. Ongoing research across the CTFS‐ForestGEO network is yielding insights into how and why the forests are changing, and continued monitoring will provide vital contributions to understanding worldwide forest diversity and dynamics in an era of global change.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/3rs0b0skData sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of Californiahttp://dx.doi.org/10.1111/gcb....Article . Peer-reviewedData sources: European Union Open Data PortalThe University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)University of Hong Kong: HKU Scholars HubArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12712&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 505 citations 505 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/3rs0b0skData sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of Californiahttp://dx.doi.org/10.1111/gcb....Article . Peer-reviewedData sources: European Union Open Data PortalThe University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)University of Hong Kong: HKU Scholars HubArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12712&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Brazil, United Kingdom, Brazil, SingaporePublisher:Wiley Funded by:NSF | Integrating functional, p..., NSF | Dimensions IRCN: Diversit...NSF| Integrating functional, phylogenetic and genetic components of diversity for an improved understanding of forest structure, dynamics, and change ,NSF| Dimensions IRCN: Diversity and Forest Change: Characterizing functional, phylogenetic and genetic contributions to diversity gradients and dynamics in tree communitiesAuthors: Geoffrey G. Parker; Kristina J. Anderson-Teixeira; Michael D. Morecroft; Perry S. Ong; +95 AuthorsGeoffrey G. Parker; Kristina J. Anderson-Teixeira; Michael D. Morecroft; Perry S. Ong; I-Fang Sun; George B. Chuyong; Sarayudh Bunyavejchewin; Keith Clay; Takuo Yamakura; George D. Weiblen; Tucker J. Furniss; Ana Andrade; Vojtech Novotny; James A. Freund; Christine Fletcher; María Uriarte; Kuo-Jung Chao; Richard P. Phillips; Wei-Chun Chao; Alfonso Alonso; Mark E. Swanson; Norman A. Bourg; Norman A. Bourg; Gunter A. Fischer; Jean-Remy Makana; Jonathan Myers; Rajit Patankar; David A. Orwig; Jennifer L. Baltzer; Stephen P. Hubbell; Paul M. Musili; Xiangcheng Mi; Sean M. McMahon; Ke Cao; Terese B. Hart; Lawren Sack; Sandra L. Yap; David Kenfack; Yadvinder Malhi; Sara J. Germain; Jill Thompson; David Janík; Andy Hector; Min Cao; James A. Lutz; Sylvester Tan; Kendall M. L. Becker; Erika M. Blomdahl; C. Alina Cansler; Billy C.H. Hau; Jyh-Min Chiang; Sheng-Hsin Su; Guo-Zhang Michael Song; Fangliang He; H. S. Dattaraja; Raman Sukumar; Duncan W. Thomas; Hebbalalu S. Suresh; Dairon Cárdenas; Stuart J. Davies; Gregory S. Gilbert; Alvaro Duque; Chengjin Chu; Alberto Vicentini; Yide Li; Kamil Král; William J. McShea; Chang-Fu Hsieh; Yiching Lin; Corneille E. N. Ewango; Daniel J. Johnson; Andrew J. Larson; Tomáš Vrška; Susan Cordell; Renato Valencia; Xugao Wang; Lisa Korte; Zhanqing Hao; Abdul Rahman Kassim; Yue-Hua Hu; Shu-Hui Wu; Richard Condit; Jess K. Zimmerman; Alexandre Adalardo de Oliveira; Faith Inman-Narahari; Glen Reynolds; Amy Wolf; Christian P. Giardina; David F. R. P. Burslem; Robert W. Howe; Shawn K. Y. Lum; Shirong Liu; David Allen; Han Xu; Keping Ma; Rebecca Ostertag; Li-Wan Chang; Hervé Memiaghe; Akira Itoh;doi: 10.1111/geb.12747
handle: 10356/140605
AbstractAimTo examine the contribution of large‐diameter trees to biomass, stand structure, and species richness across forest biomes.LocationGlobal.Time periodEarly 21st century.Major taxa studiedWoody plants.MethodsWe examined the contribution of large trees to forest density, richness and biomass using a global network of 48 large (from 2 to 60 ha) forest plots representing 5,601,473 stems across 9,298 species and 210 plant families. This contribution was assessed using three metrics: the largest 1% of trees ≥ 1 cm diameter at breast height (DBH), all trees ≥ 60 cm DBH, and those rank‐ordered largest trees that cumulatively comprise 50% of forest biomass.ResultsAveraged across these 48 forest plots, the largest 1% of trees ≥ 1 cm DBH comprised 50% of aboveground live biomass, with hectare‐scale standard deviation of 26%. Trees ≥ 60 cm DBH comprised 41% of aboveground live tree biomass. The size of the largest trees correlated with total forest biomass (r2 = .62,p < .001). Large‐diameter trees in high biomass forests represented far fewer species relative to overall forest richness (r2 = .45,p < .001). Forests with more diverse large‐diameter tree communities were comprised of smaller trees (r2 = .33,p < .001). Lower large‐diameter richness was associated with large‐diameter trees being individuals of more common species (r2 = .17,p = .002). The concentration of biomass in the largest 1% of trees declined with increasing absolute latitude (r2 = .46,p < .001), as did forest density (r2 = .31,p < .001). Forest structural complexity increased with increasing absolute latitude (r2 = .26,p < .001).Main conclusionsBecause large‐diameter trees constitute roughly half of the mature forest biomass worldwide, their dynamics and sensitivities to environmental change represent potentially large controls on global forest carbon cycling. We recommend managing forests for conservation of existing large‐diameter trees or those that can soon reach large diameters as a simple way to conserve and potentially enhance ecosystem services.
NERC Open Research A... arrow_drop_down Global Ecology and BiogeographyArticleLicense: publisher-specific, author manuscriptData sources: UnpayWallGlobal Ecology and BiogeographyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12747&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 395 citations 395 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Global Ecology and BiogeographyArticleLicense: publisher-specific, author manuscriptData sources: UnpayWallGlobal Ecology and BiogeographyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12747&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu