- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: AbdAllah A. Youssef; Stephan Matthäi; L.K. Tran;Abstract Design of subsurface CO2 storage sites largely relies on numeric simulation-based predictions of plume extent and progressive immobilization. In most cases, sensitivity analyses are performed with corner-point grid representations of the geo-model and first-order IFD methods using two-point flux approximation (TPFA). Here, we have conducted a comprehensive analysis of the impact of the vertical resolution of such grids on the predicted plume extent and capacity in a simplified layered aquifer system. Four different CO2 mobility and buoyancy scenarios were analyzed. To minimize grid-orientation effects, the analysis was performed for predominantly grid-axes parallel flow through regularly gridded cross-sectional models with uniform cell size and variable cell width-over-height ratios. The analysis of the role of vertical grid resolution indicates a first-order correlation between plume extent and this parameter. The results also reveal that capillary forces reduce plume extent and enhance aquifer storage for low permeability contrasts between layers. Furthermore, model sensitivity to grid resolution scales with the magnitude of the permeability contrast between layers. Inspection of these results reveals that an underestimation of CO2 mobility at the top of the plume is the root cause of the observed plume retardation. A comparison with two alternative simulators that discretize mobility as piecewise linear within cells as opposed to piecewise constant and are less resolution sensitive confirms this interpretation.
International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103249&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103249&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: AbdAllah A. Youssef; Stephan Matthäi; L.K. Tran;Abstract Design of subsurface CO2 storage sites largely relies on numeric simulation-based predictions of plume extent and progressive immobilization. In most cases, sensitivity analyses are performed with corner-point grid representations of the geo-model and first-order IFD methods using two-point flux approximation (TPFA). Here, we have conducted a comprehensive analysis of the impact of the vertical resolution of such grids on the predicted plume extent and capacity in a simplified layered aquifer system. Four different CO2 mobility and buoyancy scenarios were analyzed. To minimize grid-orientation effects, the analysis was performed for predominantly grid-axes parallel flow through regularly gridded cross-sectional models with uniform cell size and variable cell width-over-height ratios. The analysis of the role of vertical grid resolution indicates a first-order correlation between plume extent and this parameter. The results also reveal that capillary forces reduce plume extent and enhance aquifer storage for low permeability contrasts between layers. Furthermore, model sensitivity to grid resolution scales with the magnitude of the permeability contrast between layers. Inspection of these results reveals that an underestimation of CO2 mobility at the top of the plume is the root cause of the observed plume retardation. A comparison with two alternative simulators that discretize mobility as piecewise linear within cells as opposed to piecewise constant and are less resolution sensitive confirms this interpretation.
International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103249&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103249&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu