Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • SDG [Beta]
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Louis A. Schipper; Johannes Laubach; Lindsay B. Hutley; David W. Rowlings; +23 Authors

    A comprehensive understanding of the effects of agricultural management on climate–crop interactions has yet to emerge. Using a novel wavelet–statistics conjunction approach, we analysed the synchronisation amongst fluxes (net ecosystem exchange NEE, evapotranspiration and sensible heat flux) and seven environmental factors (e.g., air temperature, soil water content) on 19 farm sites across Australia and New Zealand. Irrigation and fertilisation practices improved positive coupling between net ecosystem productivity (NEP = −NEE) and evapotranspiration, as hypothesised. Highly intense management tended to protect against heat stress, especially for irrigated crops in dry climates. By contrast, stress avoidance in the vegetation of tropical and hot desert climates was identified by reverse coupling between NEP and sensible heat flux (i.e., increases in NEP were synchronised with decreases in sensible heat flux). Some environmental factors were found to be under management control, whereas others were fixed as constraints at a given location. Irrigated crops in dry climates (e.g., maize, almonds) showed high predictability of fluxes given only knowledge of fluctuations in climate (R2 > 0.78), and fluxes were nearly as predictable across strongly energy- or water-limited environments (0.60

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Agricultural and For...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Agricultural and Forest Meteorology
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    17
    citations17
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Louis A. Schipper; Johannes Laubach; Lindsay B. Hutley; David W. Rowlings; +23 Authors

    A comprehensive understanding of the effects of agricultural management on climate–crop interactions has yet to emerge. Using a novel wavelet–statistics conjunction approach, we analysed the synchronisation amongst fluxes (net ecosystem exchange NEE, evapotranspiration and sensible heat flux) and seven environmental factors (e.g., air temperature, soil water content) on 19 farm sites across Australia and New Zealand. Irrigation and fertilisation practices improved positive coupling between net ecosystem productivity (NEP = −NEE) and evapotranspiration, as hypothesised. Highly intense management tended to protect against heat stress, especially for irrigated crops in dry climates. By contrast, stress avoidance in the vegetation of tropical and hot desert climates was identified by reverse coupling between NEP and sensible heat flux (i.e., increases in NEP were synchronised with decreases in sensible heat flux). Some environmental factors were found to be under management control, whereas others were fixed as constraints at a given location. Irrigated crops in dry climates (e.g., maize, almonds) showed high predictability of fluxes given only knowledge of fluctuations in climate (R2 > 0.78), and fluxes were nearly as predictable across strongly energy- or water-limited environments (0.60

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Agricultural and For...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Agricultural and Forest Meteorology
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    17
    citations17
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
Powered by OpenAIRE graph