- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2017 GermanyPublisher:MDPI AG Authors: Tobias Ullmann; Sarah N. Banks; Andreas Schmitt; Thomas Jagdhuber;doi: 10.3390/app7060595
In this study, polarimetric Synthetic Aperture Radar (PolSAR) data at X-, C- and L-Bands, acquired by the satellites: TerraSAR-X (2011), Radarsat-2 (2011), ALOS (2010) and ALOS-2 (2016), were used to characterize the tundra land cover of a test site located close to the town of Tuktoyaktuk, NWT, Canada. Using available in situ ground data collected in 2010 and 2012, we investigate PolSAR scattering characteristics of common tundra land cover classes at X-, C- and L-Bands. Several decomposition features of quad-, co-, and cross-polarized data were compared, the correlation between them was investigated, and the class separability offered by their different feature spaces was analyzed. Certain PolSAR features at each wavelength were sensitive to the land cover and exhibited distinct scattering characteristics. Use of shorter wavelength imagery (X and C) was beneficial for the characterization of wetland and tundra vegetation, while L-Band data highlighted differences of the bare ground classes better. The Kennaugh Matrix decomposition applied in this study provided a unified framework to store, process, and analyze all data consistently, and the matrix offered a favorable feature space for class separation. Of all elements of the quad-polarized Kennaugh Matrix, the intensity based elements K0, K1, K2, K3 and K4 were found to be most valuable for class discrimination. These elements contributed to better class separation as indicated by an increase of the separability metrics squared Jefferys Matusita Distance and Transformed Divergence. The increase in separability was up to 57% for Radarsat-2 and up to 18% for ALOS-2 data.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2076-3417/7/6/595/pdfData sources: Multidisciplinary Digital Publishing InstituteOnline-Publikations-Server der Universität WürzburgArticle . 2017License: CC BYData sources: Online-Publikations-Server der Universität Würzburgadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app7060595&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2076-3417/7/6/595/pdfData sources: Multidisciplinary Digital Publishing InstituteOnline-Publikations-Server der Universität WürzburgArticle . 2017License: CC BYData sources: Online-Publikations-Server der Universität Würzburgadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app7060595&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2023 GermanyAuthors: Piles, Maria; Chaparro, David; Jagdhuber, Thomas;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1640::26a37bb3601a3c0789510297523cfa3c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1640::26a37bb3601a3c0789510297523cfa3c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 France, Germany, Germany, GermanyPublisher:Elsevier BV Jean-Pierre Wigneron; Lei Fan; Xiangzhuo Liu; Frédéric Frappart; Nicolas Baghdadi; Philippe Ciais; Mengjia Wang; Mengjia Wang; Xiaojing Bai; Xiaojun Li; Christophe Moisy; Thomas Jagdhuber; Thomas Jagdhuber; Mehrez Zribi;Abstract Vegetation optical depth (VOD), as a microwave-based vegetation index for vegetation water and biomass content, is increasingly used to study the impact of global climate and environmental changes on vegetation. Currently, VOD is mainly retrieved from passive microwave data and few studies focused on VOD retrievals from active microwave data. The Advanced SCATterometer (ASCAT) provides long-term C-band backscatter data at Vertical-Vertical (VV) polarization. In this study, a new ASCAT INRAE Bordeaux (IB) VOD (hereafter, IB VOD), was developed based on the Water Cloud Model (WCM) coupled with the Ulaby linear model for soil backscattering. The main features of IB VOD are that (i) the ERA5-Land soil moisture (SM) dataset was used as an auxiliary SM dataset in the retrievals, (ii) pixel-based soil model parameters were mapped using Random Forest (RF), and (iii) the vegetation model parameter was calibrated for each day. The IB VOD product was retrieved over Africa during 2015–2019, and its performances were evaluated in space and time by comparing with aboveground biomass (AGB), lidar tree height (TH), normalized difference vegetation index (NDVI), enhanced vegetation index (EVI) and leaf area index (LAI). Results were inter-compared with three other VOD products at the same frequency. In terms of spatial correlation with AGB (R = 0.92) and TH (R = 0.89), IB VOD outperforms the other VOD products, suggesting IB VOD has a strong ability to capture spatial patterns of AGB and TH. By comparing all VOD products against NDVI, EVI and LAI, we found that the highest temporal correlation with NDVI (EVI, LAI) was obtained with IB VOD over 29.94% (36.65%, 30.19%) of the study region. Considering all three vegetations indices, highest temporal correlation values with IB VOD could be particularly noted for deciduous broadleaf forests, woody savannas and savannas.
Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021License: CC BY NCFull-Text: https://hal.inrae.fr/hal-03318149Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2021License: CC BY NCFull-Text: https://hal.inrae.fr/hal-03318149Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021License: CC BY NCFull-Text: https://hal.inrae.fr/hal-03318149Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Remote Sensing of EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rse.2021.112587&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021License: CC BY NCFull-Text: https://hal.inrae.fr/hal-03318149Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2021License: CC BY NCFull-Text: https://hal.inrae.fr/hal-03318149Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021License: CC BY NCFull-Text: https://hal.inrae.fr/hal-03318149Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Remote Sensing of EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rse.2021.112587&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Other literature type 2021 Germany, FrancePublisher:IEEE Liu, Xiangzhuo; Wigneron, J.-P.; Frappart, Frederic; Baghdadi, Nicolas; Zribi, Mehrez; Jagdhuber, Thomas; Ciais, Philippe; Li, Xiaojun; Wang, Mengjia; Fan, Lei; Ygorra, Bertrand; Ma, Hongliang; Xing, Zanpin; Al-Yaari, A.; Fernandez-Moran, Roberto; Moisy, Christophe;Global and long-term vegetation optical depth (VOD) dataset are very useful to monitor the dynamics of the vegetation features, climate and environmental changes. In this study, the radar-based global ASCAT (Advanced SCATterometer) IB (INRAE-BORDEAUX) VOD was retrieved using a model which was recently calibrated over Africa. In order to assess the performance of IB VOD, the Saatchi biomass and three other VOD datasets (ASCAT V16, AMSR2 LPRM V5 and VODCA LPRM V6) derived from C-band observations were used in the comparison. The preliminary results show that IB VOD has a promising ability to predict biomass $(\mathrm{R}=0.74,\ \text{RMSE} =44.82\ \text{Mg}\ \text{ha}^{-1})$ , which is better than V16 VOD $(\mathrm{R}=0.64,\ \text{RMSE} =51.27\ \text{Mg} \text{ha}^{-1})$ and VODCA VOD $(\mathrm{R}=0.72,\ \text{RMSE} =47.14\ \text{Mg}\ \text{ha}^{-1})$ . Some retrieval issues for IB VOD were found in boreal regions (e.g., Eastern America, Russia). In the future, we will focus on improving our algorithm in those regions, and produce a global and long-term dataset.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/igarss...Conference object . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/igarss47720.2021.9553244&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/igarss...Conference object . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/igarss47720.2021.9553244&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Other literature type 2021 Germany, SpainPublisher:IEEE Authors: Chaparro Danon, David; Jagdhuber, Thomas; Piles Guillem, María; Entekhabi, Dara; +5 AuthorsChaparro Danon, David; Jagdhuber, Thomas; Piles Guillem, María; Entekhabi, Dara; Jonard, François; Fluhrer, Anke; Feldman, Andrew F.; Vall-Llossera Ferran, Mercedes Magdalena; Camps Carmona, Adriano José;handle: 2117/365791
The attenuation of microwave emissions through the canopy is quantified by the vegetation optical depth (VOD), which is related to the amount of water, the biomass and the structure of vegetation. To provide microwave-derived plant water estimates, one must account for biomass/structure contributions in order to extract the water component from the VOD. This study uses Aquarius scatterometer data to build an L-band global seasonality of vegetation volume fraction (d), representative of biomass/structure dynamics. The dynamic range of d is adapted for its application in a gravimetric moisture (Mg) retrieval model. Results show that d ranging from 0 to 3.35.10- 4 is needed for modelling physically reasonable Mg values. The global average of d shows consistent spatial patterns across vegetation distributions, and d seasonality is coherent with the phenology of the studied vegetation types. These findings enable the separation of information on vegetation water and biomass/structure inherent within VOD. This work was supported by “la Caixa” Foundation (ID 100010434), under agreement LCF /PR/MIT19/51840001 (MIT -Spain Seed Fund), and by the Spanish Ministry of Science, Innovation and Universities and the European Regional Development Fund (ERDF, EU) through projects ESP2017-89463-C3-3-R, RTI2018-096765-A-100, CAS19/00264 and MDM-2016-0600. Also, the authors are grateful to MIT for supporting this research with the MIT-Germany Seed Fund (D. Entekhabi, T. Jagdhuber). Peer Reviewed
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCConference object . 2021 . Peer-reviewedData sources: UPCommons. Portal del coneixement obert de la UPChttps://doi.org/10.1109/igarss...Conference object . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/igarss47720.2021.9554872&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 61visibility views 61 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCConference object . 2021 . Peer-reviewedData sources: UPCommons. Portal del coneixement obert de la UPChttps://doi.org/10.1109/igarss...Conference object . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/igarss47720.2021.9554872&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Germany, Germany, Germany, FrancePublisher:Elsevier BV Liu, Xiangzhuo; J.-P., Wigneron; Wagner, Wolfgang; Frappart, Frédéric; Fan, Lei; Vreugdenhil, Mariette; Baghdadi, Nicolas; Zribi, Mehrez; Jagdhuber, Thomas; Tao, Shengli; Li, Xiaojun; Wang, Huan; Wang, Mengjia; Bai, Xiaojing; Mousa, B.G.; Ciais, Philippe;Active microwave measurements have the potential to estimate vegetation optical depth (VOD), an indicator related to vegetation water content and biomass. The Advanced SCATterometer (ASCAT) provides long-term C-band backscatter data at vertical-vertical (VV) polarization from 2007. So far, very few studies have considered retrieving VOD from this active sensor. This study presents a new publicly released global long-term and continuous (2007–2020) C-band VOD dataset retrieved from the ASCAT observations, named the ASCAT INRAE-BORDEAUX or ASCAT IB VOD product. The retrieval algorithm is based on the Water Cloud Model (WCM) including the Ulaby bare soil model. The algorithm takes advantage of a multi-temporal (MT) retrieval method relying on a cost function where constraints to the retrieved parameters are implemented and a reanalysis soil moisture (SM) dataset from ERA5-Land is used as an input. The performance of ASCAT IB VOD was evaluated by inter-comparing it with ASCAT Technische Universität Wien (TUW), the Advanced Microwave Scanning Radiometer 2 (AMSR2), and VOD Climate Archive (VODCA) VOD products (the last two products are estimated from passive microwave observations). Results showed that ASCAT IB VOD presented the highest spatial correlation with aboveground biomass (R ∼ 0.83) and with the Global Ecosystem Dynamics Investigation (GEDI) canopy height (R ∼ 0.84–0.85). In terms of temporal performance, ASCAT IB VOD had the highest correlation R values with leaf area index (LAI) and Normalized Difference Water Index (NDWI) in most parts of the globe from 2013 to 2018. This contrasts with AMSR2 VODs which correlated better with Normalized Difference Vegetation Index (NDVI). The new ASCAT-based VOD product on a global scale highlighted the potential benefit of combining active (namely ASCAT) and passive (namely AMSR2) VOD products for vegetation studies.
HAL-IRD arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Remote Sensing of EnvironmentArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefCIRAD: HAL (Agricultural Research for Development)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rse.2023.113850&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert HAL-IRD arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Remote Sensing of EnvironmentArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefCIRAD: HAL (Agricultural Research for Development)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rse.2023.113850&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 GermanyPublisher:MDPI AG Funded by:EC | MULTIPLYEC| MULTIPLYThomas Weiß; Thomas Ramsauer; Thomas Jagdhuber; Alexander Löw; Philip Marzahn;doi: 10.3390/rs13122320
This study evaluates a temporally dense VV-polarized Sentinel-1 C-band backscatter time series (revisit time of 1.5 days) for wheat fields near Munich (Germany). A dense time series consisting of images from different orbits (varying acquisition) is analyzed, and Radiative Transfer (RT)-based model combinations are adapted and evaluated with the use of radar backscatter. The model shortcomings are related to scattering mechanism changes throughout the growth period with the use of polarimetric decomposition. Furthermore, changes in the RT modeled backscatter results with spatial aggregation from the pixel to field scales are quantified and related to the sensitivity of the RT models, and their soil moisture output are quantified and related to changes in backscatter. Therefore, various (sub)sets of the dense Sentinel-1 time series are analyzed to relate and quantify the impact of the abovementioned points on the modeling results. The results indicate that the incidence angle is the main driver for backscatter differences between consecutive acquisitions with various recording scenarios. The influence of changing azimuth angles was found to be negligible. Further analyses of polarimetric entropy and scattering alpha angle using a dual polarimetric eigen-based decomposition show that scattering mechanisms change over time. The patterns analyzed in the entropy-alpha space indicate that scattering mechanism changes are mainly driven by the incidence angle and not by the azimuth angle. Besides the analysis of differences within the Sentinel-1 data, we analyze the capability of RT model approaches to capture the observed Sentinel-1 backscatter changes due to various acquisition geometries. For this, the surface models “Oh92” or “IEM_B” (Baghdadi’s version of the Integral Equation Method) are coupled with the canopy model “SSRT” (Single Scattering Radiative Transfer). To resolve the shortcomings of the RT model setup in handling varying incidence angles and therefore the backscatter changes observed between consecutive time steps of a dense winter wheat time series, an empirical calibration parameter (coef) influencing the transmissivity (T) is introduced. The results show that shortcomings of simplified RT model architectures caused by handling time series consisting of images with varied incidence angles can be at least partially compensated by including a calibration coefficient to parameterize the modeled transmissivity for the varying incidence angle scenarios individually.
Remote Sensing arrow_drop_down Remote SensingOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2072-4292/13/12/2320/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs13122320&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Remote Sensing arrow_drop_down Remote SensingOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2072-4292/13/12/2320/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs13122320&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2017 GermanyPublisher:MDPI AG Authors: Tobias Ullmann; Sarah N. Banks; Andreas Schmitt; Thomas Jagdhuber;doi: 10.3390/app7060595
In this study, polarimetric Synthetic Aperture Radar (PolSAR) data at X-, C- and L-Bands, acquired by the satellites: TerraSAR-X (2011), Radarsat-2 (2011), ALOS (2010) and ALOS-2 (2016), were used to characterize the tundra land cover of a test site located close to the town of Tuktoyaktuk, NWT, Canada. Using available in situ ground data collected in 2010 and 2012, we investigate PolSAR scattering characteristics of common tundra land cover classes at X-, C- and L-Bands. Several decomposition features of quad-, co-, and cross-polarized data were compared, the correlation between them was investigated, and the class separability offered by their different feature spaces was analyzed. Certain PolSAR features at each wavelength were sensitive to the land cover and exhibited distinct scattering characteristics. Use of shorter wavelength imagery (X and C) was beneficial for the characterization of wetland and tundra vegetation, while L-Band data highlighted differences of the bare ground classes better. The Kennaugh Matrix decomposition applied in this study provided a unified framework to store, process, and analyze all data consistently, and the matrix offered a favorable feature space for class separation. Of all elements of the quad-polarized Kennaugh Matrix, the intensity based elements K0, K1, K2, K3 and K4 were found to be most valuable for class discrimination. These elements contributed to better class separation as indicated by an increase of the separability metrics squared Jefferys Matusita Distance and Transformed Divergence. The increase in separability was up to 57% for Radarsat-2 and up to 18% for ALOS-2 data.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2076-3417/7/6/595/pdfData sources: Multidisciplinary Digital Publishing InstituteOnline-Publikations-Server der Universität WürzburgArticle . 2017License: CC BYData sources: Online-Publikations-Server der Universität Würzburgadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app7060595&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2076-3417/7/6/595/pdfData sources: Multidisciplinary Digital Publishing InstituteOnline-Publikations-Server der Universität WürzburgArticle . 2017License: CC BYData sources: Online-Publikations-Server der Universität Würzburgadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app7060595&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2023 GermanyAuthors: Piles, Maria; Chaparro, David; Jagdhuber, Thomas;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1640::26a37bb3601a3c0789510297523cfa3c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1640::26a37bb3601a3c0789510297523cfa3c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 France, Germany, Germany, GermanyPublisher:Elsevier BV Jean-Pierre Wigneron; Lei Fan; Xiangzhuo Liu; Frédéric Frappart; Nicolas Baghdadi; Philippe Ciais; Mengjia Wang; Mengjia Wang; Xiaojing Bai; Xiaojun Li; Christophe Moisy; Thomas Jagdhuber; Thomas Jagdhuber; Mehrez Zribi;Abstract Vegetation optical depth (VOD), as a microwave-based vegetation index for vegetation water and biomass content, is increasingly used to study the impact of global climate and environmental changes on vegetation. Currently, VOD is mainly retrieved from passive microwave data and few studies focused on VOD retrievals from active microwave data. The Advanced SCATterometer (ASCAT) provides long-term C-band backscatter data at Vertical-Vertical (VV) polarization. In this study, a new ASCAT INRAE Bordeaux (IB) VOD (hereafter, IB VOD), was developed based on the Water Cloud Model (WCM) coupled with the Ulaby linear model for soil backscattering. The main features of IB VOD are that (i) the ERA5-Land soil moisture (SM) dataset was used as an auxiliary SM dataset in the retrievals, (ii) pixel-based soil model parameters were mapped using Random Forest (RF), and (iii) the vegetation model parameter was calibrated for each day. The IB VOD product was retrieved over Africa during 2015–2019, and its performances were evaluated in space and time by comparing with aboveground biomass (AGB), lidar tree height (TH), normalized difference vegetation index (NDVI), enhanced vegetation index (EVI) and leaf area index (LAI). Results were inter-compared with three other VOD products at the same frequency. In terms of spatial correlation with AGB (R = 0.92) and TH (R = 0.89), IB VOD outperforms the other VOD products, suggesting IB VOD has a strong ability to capture spatial patterns of AGB and TH. By comparing all VOD products against NDVI, EVI and LAI, we found that the highest temporal correlation with NDVI (EVI, LAI) was obtained with IB VOD over 29.94% (36.65%, 30.19%) of the study region. Considering all three vegetations indices, highest temporal correlation values with IB VOD could be particularly noted for deciduous broadleaf forests, woody savannas and savannas.
Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021License: CC BY NCFull-Text: https://hal.inrae.fr/hal-03318149Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2021License: CC BY NCFull-Text: https://hal.inrae.fr/hal-03318149Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021License: CC BY NCFull-Text: https://hal.inrae.fr/hal-03318149Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Remote Sensing of EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rse.2021.112587&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021License: CC BY NCFull-Text: https://hal.inrae.fr/hal-03318149Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2021License: CC BY NCFull-Text: https://hal.inrae.fr/hal-03318149Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021License: CC BY NCFull-Text: https://hal.inrae.fr/hal-03318149Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Remote Sensing of EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rse.2021.112587&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Other literature type 2021 Germany, FrancePublisher:IEEE Liu, Xiangzhuo; Wigneron, J.-P.; Frappart, Frederic; Baghdadi, Nicolas; Zribi, Mehrez; Jagdhuber, Thomas; Ciais, Philippe; Li, Xiaojun; Wang, Mengjia; Fan, Lei; Ygorra, Bertrand; Ma, Hongliang; Xing, Zanpin; Al-Yaari, A.; Fernandez-Moran, Roberto; Moisy, Christophe;Global and long-term vegetation optical depth (VOD) dataset are very useful to monitor the dynamics of the vegetation features, climate and environmental changes. In this study, the radar-based global ASCAT (Advanced SCATterometer) IB (INRAE-BORDEAUX) VOD was retrieved using a model which was recently calibrated over Africa. In order to assess the performance of IB VOD, the Saatchi biomass and three other VOD datasets (ASCAT V16, AMSR2 LPRM V5 and VODCA LPRM V6) derived from C-band observations were used in the comparison. The preliminary results show that IB VOD has a promising ability to predict biomass $(\mathrm{R}=0.74,\ \text{RMSE} =44.82\ \text{Mg}\ \text{ha}^{-1})$ , which is better than V16 VOD $(\mathrm{R}=0.64,\ \text{RMSE} =51.27\ \text{Mg} \text{ha}^{-1})$ and VODCA VOD $(\mathrm{R}=0.72,\ \text{RMSE} =47.14\ \text{Mg}\ \text{ha}^{-1})$ . Some retrieval issues for IB VOD were found in boreal regions (e.g., Eastern America, Russia). In the future, we will focus on improving our algorithm in those regions, and produce a global and long-term dataset.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/igarss...Conference object . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/igarss47720.2021.9553244&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/igarss...Conference object . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/igarss47720.2021.9553244&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Other literature type 2021 Germany, SpainPublisher:IEEE Authors: Chaparro Danon, David; Jagdhuber, Thomas; Piles Guillem, María; Entekhabi, Dara; +5 AuthorsChaparro Danon, David; Jagdhuber, Thomas; Piles Guillem, María; Entekhabi, Dara; Jonard, François; Fluhrer, Anke; Feldman, Andrew F.; Vall-Llossera Ferran, Mercedes Magdalena; Camps Carmona, Adriano José;handle: 2117/365791
The attenuation of microwave emissions through the canopy is quantified by the vegetation optical depth (VOD), which is related to the amount of water, the biomass and the structure of vegetation. To provide microwave-derived plant water estimates, one must account for biomass/structure contributions in order to extract the water component from the VOD. This study uses Aquarius scatterometer data to build an L-band global seasonality of vegetation volume fraction (d), representative of biomass/structure dynamics. The dynamic range of d is adapted for its application in a gravimetric moisture (Mg) retrieval model. Results show that d ranging from 0 to 3.35.10- 4 is needed for modelling physically reasonable Mg values. The global average of d shows consistent spatial patterns across vegetation distributions, and d seasonality is coherent with the phenology of the studied vegetation types. These findings enable the separation of information on vegetation water and biomass/structure inherent within VOD. This work was supported by “la Caixa” Foundation (ID 100010434), under agreement LCF /PR/MIT19/51840001 (MIT -Spain Seed Fund), and by the Spanish Ministry of Science, Innovation and Universities and the European Regional Development Fund (ERDF, EU) through projects ESP2017-89463-C3-3-R, RTI2018-096765-A-100, CAS19/00264 and MDM-2016-0600. Also, the authors are grateful to MIT for supporting this research with the MIT-Germany Seed Fund (D. Entekhabi, T. Jagdhuber). Peer Reviewed
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCConference object . 2021 . Peer-reviewedData sources: UPCommons. Portal del coneixement obert de la UPChttps://doi.org/10.1109/igarss...Conference object . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/igarss47720.2021.9554872&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 61visibility views 61 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCConference object . 2021 . Peer-reviewedData sources: UPCommons. Portal del coneixement obert de la UPChttps://doi.org/10.1109/igarss...Conference object . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/igarss47720.2021.9554872&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Germany, Germany, Germany, FrancePublisher:Elsevier BV Liu, Xiangzhuo; J.-P., Wigneron; Wagner, Wolfgang; Frappart, Frédéric; Fan, Lei; Vreugdenhil, Mariette; Baghdadi, Nicolas; Zribi, Mehrez; Jagdhuber, Thomas; Tao, Shengli; Li, Xiaojun; Wang, Huan; Wang, Mengjia; Bai, Xiaojing; Mousa, B.G.; Ciais, Philippe;Active microwave measurements have the potential to estimate vegetation optical depth (VOD), an indicator related to vegetation water content and biomass. The Advanced SCATterometer (ASCAT) provides long-term C-band backscatter data at vertical-vertical (VV) polarization from 2007. So far, very few studies have considered retrieving VOD from this active sensor. This study presents a new publicly released global long-term and continuous (2007–2020) C-band VOD dataset retrieved from the ASCAT observations, named the ASCAT INRAE-BORDEAUX or ASCAT IB VOD product. The retrieval algorithm is based on the Water Cloud Model (WCM) including the Ulaby bare soil model. The algorithm takes advantage of a multi-temporal (MT) retrieval method relying on a cost function where constraints to the retrieved parameters are implemented and a reanalysis soil moisture (SM) dataset from ERA5-Land is used as an input. The performance of ASCAT IB VOD was evaluated by inter-comparing it with ASCAT Technische Universität Wien (TUW), the Advanced Microwave Scanning Radiometer 2 (AMSR2), and VOD Climate Archive (VODCA) VOD products (the last two products are estimated from passive microwave observations). Results showed that ASCAT IB VOD presented the highest spatial correlation with aboveground biomass (R ∼ 0.83) and with the Global Ecosystem Dynamics Investigation (GEDI) canopy height (R ∼ 0.84–0.85). In terms of temporal performance, ASCAT IB VOD had the highest correlation R values with leaf area index (LAI) and Normalized Difference Water Index (NDWI) in most parts of the globe from 2013 to 2018. This contrasts with AMSR2 VODs which correlated better with Normalized Difference Vegetation Index (NDVI). The new ASCAT-based VOD product on a global scale highlighted the potential benefit of combining active (namely ASCAT) and passive (namely AMSR2) VOD products for vegetation studies.
HAL-IRD arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Remote Sensing of EnvironmentArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefCIRAD: HAL (Agricultural Research for Development)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rse.2023.113850&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert HAL-IRD arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Remote Sensing of EnvironmentArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefCIRAD: HAL (Agricultural Research for Development)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rse.2023.113850&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 GermanyPublisher:MDPI AG Funded by:EC | MULTIPLYEC| MULTIPLYThomas Weiß; Thomas Ramsauer; Thomas Jagdhuber; Alexander Löw; Philip Marzahn;doi: 10.3390/rs13122320
This study evaluates a temporally dense VV-polarized Sentinel-1 C-band backscatter time series (revisit time of 1.5 days) for wheat fields near Munich (Germany). A dense time series consisting of images from different orbits (varying acquisition) is analyzed, and Radiative Transfer (RT)-based model combinations are adapted and evaluated with the use of radar backscatter. The model shortcomings are related to scattering mechanism changes throughout the growth period with the use of polarimetric decomposition. Furthermore, changes in the RT modeled backscatter results with spatial aggregation from the pixel to field scales are quantified and related to the sensitivity of the RT models, and their soil moisture output are quantified and related to changes in backscatter. Therefore, various (sub)sets of the dense Sentinel-1 time series are analyzed to relate and quantify the impact of the abovementioned points on the modeling results. The results indicate that the incidence angle is the main driver for backscatter differences between consecutive acquisitions with various recording scenarios. The influence of changing azimuth angles was found to be negligible. Further analyses of polarimetric entropy and scattering alpha angle using a dual polarimetric eigen-based decomposition show that scattering mechanisms change over time. The patterns analyzed in the entropy-alpha space indicate that scattering mechanism changes are mainly driven by the incidence angle and not by the azimuth angle. Besides the analysis of differences within the Sentinel-1 data, we analyze the capability of RT model approaches to capture the observed Sentinel-1 backscatter changes due to various acquisition geometries. For this, the surface models “Oh92” or “IEM_B” (Baghdadi’s version of the Integral Equation Method) are coupled with the canopy model “SSRT” (Single Scattering Radiative Transfer). To resolve the shortcomings of the RT model setup in handling varying incidence angles and therefore the backscatter changes observed between consecutive time steps of a dense winter wheat time series, an empirical calibration parameter (coef) influencing the transmissivity (T) is introduced. The results show that shortcomings of simplified RT model architectures caused by handling time series consisting of images with varied incidence angles can be at least partially compensated by including a calibration coefficient to parameterize the modeled transmissivity for the varying incidence angle scenarios individually.
Remote Sensing arrow_drop_down Remote SensingOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2072-4292/13/12/2320/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs13122320&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Remote Sensing arrow_drop_down Remote SensingOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2072-4292/13/12/2320/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs13122320&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu