- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Embargo end date: 01 Nov 2023 Switzerland, France, Ireland, NetherlandsPublisher:Elsevier BV Publicly fundedAlejandro Pena-Bello; David Parra; Benjamin Bowler; Yue Zhou; Antonios Papaemmanouil; Mustafa A. Mustafa; Mustafa A. Mustafa; Marina Bertolini; Blanche Lormeteau; Christina Francis; Merlinda Andoni; Fairouz Zobiri; Diana Neves; Yingjie Wang; Tarek AlSkaif; Shafi Khadem; Viktorija Dudjak; Pietro Saggese;In recent years extensive research has been conducted on the development of different models that enable energy trading between prosumers and consumers due to expected high integration of distributed energy resources. Some of the most researched mechanisms include Peer-to-Peer energy trading, Community Self-Consumption and Transactive Energy Models. To ensure the stable and reliable delivery of electricity as such markets and models grow, this paper aims to understand the impact of these models on grid infrastructure, including impacts on the control, operation, and planning of power systems, interaction between multiple market models and impact on transmission network. Here, we present a comprehensive review of existing research on impact of Local Energy Market integration in power systems layer. We detect and classify most common issues and benefits that the power grid can expect from integrating these models. We also present a detailed overview of methods that are used to integrate physical network constraints into the market mechanisms, their advantages, drawbacks, and scaling potential. In addition, we present different methods to calculate and allocate network tariffs and power losses. We find that financial energy transactions do not directly reflect the physical energy flows imposed by the constraints of the installed electrical infrastructure. In the end, we identify a number of different challenges and detect research gaps that need to be addressed in order to integrate Local Energy Market models into existing infrastructure. + ID der Publikation: hslu_86628 + Art des Beitrages: Wissenschaftliche Medien + Jahrgang: 301 + Sprache: Englisch + Letzte Aktualisierung: 2023-04-17 10:46:41
Université de Nantes... arrow_drop_down Université de Nantes: HAL-UNIV-NANTESArticle . 2021Full-Text: https://shs.hal.science/halshs-03677235Data sources: Bielefeld Academic Search Engine (BASE)Cork Open Research Archive (CORA)Article . 2021License: CC BY NC NDData sources: Cork Open Research Archive (CORA)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.117434&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 84 citations 84 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 151visibility views 151 Powered bymore_vert Université de Nantes... arrow_drop_down Université de Nantes: HAL-UNIV-NANTESArticle . 2021Full-Text: https://shs.hal.science/halshs-03677235Data sources: Bielefeld Academic Search Engine (BASE)Cork Open Research Archive (CORA)Article . 2021License: CC BY NC NDData sources: Cork Open Research Archive (CORA)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.117434&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 NetherlandsPublisher:MDPI AG Authors: Marte K. Gerritsma; Tarek A. AlSkaif; Henk A. Fidder; Wilfried G. J. H. M. van Sark;doi: 10.3390/wevj10010014
This paper proposes a method for analyzing and simulating the time-dependent flexibility of electric vehicle (EV) demand. This flexibility is influenced by charging power, which depends on the charging stations, the EV characteristics, and several environmental factors. Detailed charging station data from a Dutch case study have been analysed and used as input for a simulation. In the simulation, the interdependencies between plug-in time, connection duration, and required energy are respected. The data analysis of measured data reveals that 59% of the aggregated EV demand can be delayed for more than 8 h, and 16% for even more than 24 h. The evening peak shows high flexibility, confirming the feasibility of congestion management using smart charging within flexibility constraints. The results from the simulation show that the average daily EV demand increases by a factor 21 between the ‘Present-day’ and the ‘High’ scenario, while the maximum EV demand peak increases only by a factor 6, as a result of the limited simultaneity of the transactions. Further, simulations using the average charging power of individual measured transactions yield more accurate results than simulations using a fixed value for charging power. The proposed method for simulating future EV flexibility provides a basis for testing different smart charging algorithms.
World Electric Vehic... arrow_drop_down World Electric Vehicle JournalOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2032-6653/10/1/14/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/wevj10010014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 60 citations 60 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert World Electric Vehic... arrow_drop_down World Electric Vehicle JournalOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2032-6653/10/1/14/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/wevj10010014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 NetherlandsPublisher:Elsevier BV Authors: Gijs van Leeuwen; Tarek AlSkaif; Madeleine Gibescu; Wilfried van Sark;In this paper, an integrated blockchain-based energy management platform is proposed that optimizes energy flows in a microgrid whilst implementing a bilateral trading mechanism. Physical constraints in the microgrid are respected by formulating an Optimal Power Flow (OPF) problem, which is combined with a bilateral trading mechanism in a single optimization problem. The Alternating Direction Method of Multipliers (ADMM) is used to decompose the problem to enable distributed optimization and a smart contract is used as a virtual aggregator. This eliminates the need for a third-party coordinating entity. The smart contract fulfills several functions, including distribution of data to all participants and executing part of the ADMM algorithm. The model is run using actual data from a prosumer community in Amsterdam and several scenarios of the model are tested to evaluate the impact of combining physical constraints and trading on social welfare of the community and scheduling of energy flows. The scenario variants are trade-only, where only a trading mechanism is implemented, grid-only where only OPF optimization is implemented and a combined scenario where both are implemented. Results are compared with a baseline scenario. Simulation results show that import costs of the whole community are reduced by 34.9% as compared to a baseline scenario, and total energy import quantities are reduced by 15%. Total social welfare is found to be highest without a trading mechanism, however this platform is only viable when all costs are equally shared between all households. Furthermore, peak imports are reduced by over 50% in scenarios including grid constraints.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.114613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 206 citations 206 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.114613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Other literature type 2022Embargo end date: 01 Jan 2022 NetherlandsPublisher:Elsevier BV Publicly fundedFunded by:SFI | ADAPT_Phase 2, EC | EDGESFI| ADAPT_Phase 2 ,EC| EDGEJiantao Wu; Fabrizio Orlandi; Tarek AlSkaif; Declan O’Sullivan; Soumyabrata Dev;In a decentralized household energy system comprised of various devices such as home appliances, electric vehicles, and solar panels, end-users are able to dig deeper into the system's details and further achieve energy sustainability if they are presented with data on the electric energy consumption and production at the granularity of the device. However, many databases in this field are siloed from other domains, including solely information pertaining to energy. This may result in the loss of information (e.g. weather) on each device's energy use. Meanwhile, a large number of these datasets have been extensively used in computational modeling techniques such as machine learning models. While such computational approaches achieve great accuracy and performance by concentrating only on a local view of datasets, model reliability cannot be guaranteed since such models are very vulnerable to data input fluctuations when information omission is taken into account. This article tackles the data isolation issue in the field of smart energy systems by examining Semantic Web methods on top of a household energy system. We offer an ontology-based approach for managing decentralized data at the device-level resolution in a system. As a consequence, the scope of the data associated with each device may easily be expanded in an interoperable manner throughout the Web, and additional information, such as weather, can be obtained from the Web, provided that the data is organized according to W3C standards. Published in Sustainable Energy, Grids and Networks (SEGAN) 2022
Sustainable Energy G... arrow_drop_down Sustainable Energy Grids and NetworksArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff Publicationshttps://dx.doi.org/10.48550/ar...Article . 2022License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.segan.2022.100891&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainable Energy G... arrow_drop_down Sustainable Energy Grids and NetworksArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff Publicationshttps://dx.doi.org/10.48550/ar...Article . 2022License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.segan.2022.100891&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 NetherlandsPublisher:Elsevier BV Tarek AlSkaif; Christian Bauer; Wilfried van Sark; Tom Terlouw; Tom Terlouw;The power system requires an additional amount of flexibility to process the large-scale integration of renewable energy sources. Community Energy Storage (CES) is one of the solutions to offer flexibility. In this paper two scenarios of CES ownership are proposed. Firstly, an Energy Arbitrage (EA) scenario is studied where an aggregator aims to minimize costs and CO2-emissions of an energy portfolio. Secondly, an Energy Arbitrage - Peak Shaving (EA-PS) scenario is assessed, which is based on a shared ownership between a Distribution System Operator (DSO) and an aggregator. A multi-objective Mixed Integer Linear Programming (MILP) optimization model is developed to minimize the operation costs and CO2-emissions of a community situated in Cernier (Switzerland), using different battery technologies in the CES system. The results demonstrate a profitable system design for all Lithium-ion-Batteries (LiBs) and the Vanadium Redox Flow Battery (VRFB), for both the EA and EA-PS scenarios. The economic and environmental performance of the EA-PS scenario is slightly worse compared to the EA scenario, due to power boundaries on grid absorption and injection to achieve peak shaving. Overall, the differences between the EA and EA-PS scenarios, in economic and environmental performance, are small. Therefore, the EA-PS is recommended to prevent problematic loads on the distribution transformer. In addition, the Pareto frontiers demonstrate that LiBs perform best on both economic and environmental performance, with the best economic and environmental performance for the Lithium-Nickel-Manganese-Cobalt (NMC-C) battery.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.01.227&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 207 citations 207 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.01.227&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Conference object , Other literature type , Contribution for newspaper or weekly magazine 2022 NetherlandsPublisher:Springer International Publishing Authors: Lennard Visser; Tarel AlSkaif; Wilfried van Sark;Accurate forecasts of the electric power generation by solar Photovoltaic (PV) systems are essential to support their vast increasing integration. This study evaluates the interdependence of 14 predictor variables and their importance to machine learning models that forecast the day-ahead PV power production. To this purpose, we use two feature selection models to rank the predictor variables and accordingly, examine the performance change of two forecast models when a growing number of variables is considered. The study is performed using 3 years of data for Utrecht, the Netherlands. The results show the most important variables for PV power forecasting and identifies how many top variables should be considered to achieve an optimal forecast performance accuracy. Additionally, the best forecast model performance is found when only a few predictor variables are considered, including a created variable that estimates the PV power output based on technical system characteristics and physical relations.
Pure Utrecht Univers... arrow_drop_down Pure Utrecht UniversityConference object . 2022License: taverneData sources: Pure Utrecht Universityhttps://doi.org/10.1007/978-3-...Part of book or chapter of book . 2022 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUtrecht University RepositoryContribution for newspaper or weekly magazine . 2021Data sources: Utrecht University Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-031-10525-8_24&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Pure Utrecht Univers... arrow_drop_down Pure Utrecht UniversityConference object . 2022License: taverneData sources: Pure Utrecht Universityhttps://doi.org/10.1007/978-3-...Part of book or chapter of book . 2022 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUtrecht University RepositoryContribution for newspaper or weekly magazine . 2021Data sources: Utrecht University Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-031-10525-8_24&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 NetherlandsPublisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:EC | PV-Prosumers4GridEC| PV-Prosumers4GridWouter L. Schram; Tarek AlSkaif; Ioannis Lampropoulos; Sawsan Henein; Wilfried G.J.H.M. van Sark;The need to limit climate change has led to policies that aim for the reduction of greenhouse gas emissions. Often, a trade-off exists between reducing emissions and associated costs. In this article, a multi-objective optimization framework is proposed to determine this trade-off when operating a Community Energy Storage (CES) system in a neighbourhood with high shares of photovoltaic (PV) electricity generation capacity. The Pareto frontier of costs and emissions objectives is established when the CES system would operate on the day-Ahead spot market. The emission profile is constructed based on the marginal emissions. Results show that costs and emissions can simultaneously be decreased for a range of solutions compared to reference scenarios with no battery or a battery only focused on increasing self-consumption, for very attractive CO2 abatement costs and without hampering self-consumption of PV-generated electricity. Results are robust for battery degradation, whereas battery efficiency is found to be an important determining factor for simultaneously decreasing costs and emissions. The operational schedules are tested against violating transformer, line and voltage limits through a load flow analysis. The proposed framework can be extended to employ a wide range of objectives and/or location-specific circumstances.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Sustainable EnergyArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tste.2020.2969292&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 52 citations 52 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Sustainable EnergyArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tste.2020.2969292&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 NetherlandsPublisher:Springer Science and Business Media LLC Funded by:EC | SCALEEC| SCALENico Brinkel; Thijs van Wijk; Anoeska Buijze; Nanda Kishor Panda; Jelle Meersmans; Peter Markotić; Bart van der Ree; Henk Fidder; Baerte de Brey; Simon Tindemans; Tarek AlSkaif; Wilfried van Sark;AbstractSmart charging of electric vehicles can alleviate grid congestion and reduce charging costs. However, various electric vehicle models currently lack the technical capabilities to effectively implement smart charging since they cannot handle charging pauses or delays. These models enter sleep mode when charging is interrupted, preventing resumption afterwards. To avoid this, they should be continuously charged with their minimum charging power, even when a charging pause would be desirable, for instance with high electricity prices. This research examines this problem to inform various stakeholders, including policymakers and manufacturers, and stimulates the adoption of proactive measures that address this problem. Here, we demonstrate through technical charging tests that around one-third of tested car models suffer from this issue. Through model simulations we indicate that eliminating paused and delayed charging problems would double the smart charging potential for all applications. Lastly, we propose concrete legal and practical solutions to eliminate these problems.
Nature Communication... arrow_drop_down Wageningen Staff PublicationsArticle . 2024License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-024-48477-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Nature Communication... arrow_drop_down Wageningen Staff PublicationsArticle . 2024License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-024-48477-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Report 2024 NetherlandsPublisher:AIP Publishing Authors: Lennard R. Visser; Boudewijn Elsinga; Tarek A. AlSkaif; Wilfried G. J. H. M. van Sark;doi: 10.1063/5.0203147
The authors regret that minor typos ended up in Eqs. (7)–(10) of the original article.1 The corrected version of the equations is outlined below in Eqs. (1)–(4), respectively. On a final note, the explanation, results, and code used and published in the original work were correct; therefore, the results and conclusions remain unchanged. The correct formulation of the expression in Eq. (7) is (Formula Presented). where pm is the measured power output of a PV system at time t. SAC presents the inverter capacity of the PV system (see Sec. III A 2 of Ref. 1) and t is a constant, which is set at 1.025. The correct form of the expressions in Eqs. (8)–(10) are (Formula Presented) where pcs presents the simulated power output of a PV system for clear sky conditions, considering the clear sky irradiance. Furthermore, kPV is a threshold value that is set to 1.4 and SDC is the DC capacity of the PV system, which is estimated as described by Sec. IIIA 1 in Ref. 1. Finally, hz is the solar zenith angle.
Journal of Renewable... arrow_drop_down Journal of Renewable and Sustainable EnergyOther literature type . 2024License: taverneData sources: Pure Utrecht Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0203147&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Renewable... arrow_drop_down Journal of Renewable and Sustainable EnergyOther literature type . 2024License: taverneData sources: Pure Utrecht Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0203147&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Netherlands, Spain, SpainPublisher:Elsevier BV Authors: Carlos Cruz; Tarek Alskaif; Esther Palomar; Ignacio Bravo;handle: 10017/58757
In recent years, the increasing popularity of renewable energy and energy-efficient technologies is creating a new movement towards more sustainable communities. Understanding energy consumption is important for the optimisation of resources and the implementation of ecological trends. This paper integrates electricity consumers into a cooperative framework for planning sustainable smart communities through aggregators, which reallocates consumers" demand according to available renewable energy supply collected from consumers and service providers. The aggregated demand response also includes consumers involved in energy production activities through microgeneration capabilities. A characterisation study of the different types of demand preferences is performed by defining scenarios of communities and consumers" behaviours, which are validated through a reputation factor. The results show that the system adequately manages demand reallocation following the preferences and contribution of consumers and/or prosumers. Besides, this research analyses the current energy policy concerning demand flexibility, demand aggregation and microgeneration capacity, and their regulations in Spain. Finally, microgeneration acceptance, the role of aggregators and prosumers in the scheduling process is also investigated through a series of surveys. Comunidad de Madrid
Energy Policy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsBiblioteca Digital de la Universidad de AlcaláArticle . 2023License: CC BYData sources: Biblioteca Digital de la Universidad de Alcaláadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4265437&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Policy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsBiblioteca Digital de la Universidad de AlcaláArticle . 2023License: CC BYData sources: Biblioteca Digital de la Universidad de Alcaláadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4265437&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Embargo end date: 01 Nov 2023 Switzerland, France, Ireland, NetherlandsPublisher:Elsevier BV Publicly fundedAlejandro Pena-Bello; David Parra; Benjamin Bowler; Yue Zhou; Antonios Papaemmanouil; Mustafa A. Mustafa; Mustafa A. Mustafa; Marina Bertolini; Blanche Lormeteau; Christina Francis; Merlinda Andoni; Fairouz Zobiri; Diana Neves; Yingjie Wang; Tarek AlSkaif; Shafi Khadem; Viktorija Dudjak; Pietro Saggese;In recent years extensive research has been conducted on the development of different models that enable energy trading between prosumers and consumers due to expected high integration of distributed energy resources. Some of the most researched mechanisms include Peer-to-Peer energy trading, Community Self-Consumption and Transactive Energy Models. To ensure the stable and reliable delivery of electricity as such markets and models grow, this paper aims to understand the impact of these models on grid infrastructure, including impacts on the control, operation, and planning of power systems, interaction between multiple market models and impact on transmission network. Here, we present a comprehensive review of existing research on impact of Local Energy Market integration in power systems layer. We detect and classify most common issues and benefits that the power grid can expect from integrating these models. We also present a detailed overview of methods that are used to integrate physical network constraints into the market mechanisms, their advantages, drawbacks, and scaling potential. In addition, we present different methods to calculate and allocate network tariffs and power losses. We find that financial energy transactions do not directly reflect the physical energy flows imposed by the constraints of the installed electrical infrastructure. In the end, we identify a number of different challenges and detect research gaps that need to be addressed in order to integrate Local Energy Market models into existing infrastructure. + ID der Publikation: hslu_86628 + Art des Beitrages: Wissenschaftliche Medien + Jahrgang: 301 + Sprache: Englisch + Letzte Aktualisierung: 2023-04-17 10:46:41
Université de Nantes... arrow_drop_down Université de Nantes: HAL-UNIV-NANTESArticle . 2021Full-Text: https://shs.hal.science/halshs-03677235Data sources: Bielefeld Academic Search Engine (BASE)Cork Open Research Archive (CORA)Article . 2021License: CC BY NC NDData sources: Cork Open Research Archive (CORA)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.117434&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 84 citations 84 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 151visibility views 151 Powered bymore_vert Université de Nantes... arrow_drop_down Université de Nantes: HAL-UNIV-NANTESArticle . 2021Full-Text: https://shs.hal.science/halshs-03677235Data sources: Bielefeld Academic Search Engine (BASE)Cork Open Research Archive (CORA)Article . 2021License: CC BY NC NDData sources: Cork Open Research Archive (CORA)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.117434&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 NetherlandsPublisher:MDPI AG Authors: Marte K. Gerritsma; Tarek A. AlSkaif; Henk A. Fidder; Wilfried G. J. H. M. van Sark;doi: 10.3390/wevj10010014
This paper proposes a method for analyzing and simulating the time-dependent flexibility of electric vehicle (EV) demand. This flexibility is influenced by charging power, which depends on the charging stations, the EV characteristics, and several environmental factors. Detailed charging station data from a Dutch case study have been analysed and used as input for a simulation. In the simulation, the interdependencies between plug-in time, connection duration, and required energy are respected. The data analysis of measured data reveals that 59% of the aggregated EV demand can be delayed for more than 8 h, and 16% for even more than 24 h. The evening peak shows high flexibility, confirming the feasibility of congestion management using smart charging within flexibility constraints. The results from the simulation show that the average daily EV demand increases by a factor 21 between the ‘Present-day’ and the ‘High’ scenario, while the maximum EV demand peak increases only by a factor 6, as a result of the limited simultaneity of the transactions. Further, simulations using the average charging power of individual measured transactions yield more accurate results than simulations using a fixed value for charging power. The proposed method for simulating future EV flexibility provides a basis for testing different smart charging algorithms.
World Electric Vehic... arrow_drop_down World Electric Vehicle JournalOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2032-6653/10/1/14/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/wevj10010014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 60 citations 60 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert World Electric Vehic... arrow_drop_down World Electric Vehicle JournalOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2032-6653/10/1/14/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/wevj10010014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 NetherlandsPublisher:Elsevier BV Authors: Gijs van Leeuwen; Tarek AlSkaif; Madeleine Gibescu; Wilfried van Sark;In this paper, an integrated blockchain-based energy management platform is proposed that optimizes energy flows in a microgrid whilst implementing a bilateral trading mechanism. Physical constraints in the microgrid are respected by formulating an Optimal Power Flow (OPF) problem, which is combined with a bilateral trading mechanism in a single optimization problem. The Alternating Direction Method of Multipliers (ADMM) is used to decompose the problem to enable distributed optimization and a smart contract is used as a virtual aggregator. This eliminates the need for a third-party coordinating entity. The smart contract fulfills several functions, including distribution of data to all participants and executing part of the ADMM algorithm. The model is run using actual data from a prosumer community in Amsterdam and several scenarios of the model are tested to evaluate the impact of combining physical constraints and trading on social welfare of the community and scheduling of energy flows. The scenario variants are trade-only, where only a trading mechanism is implemented, grid-only where only OPF optimization is implemented and a combined scenario where both are implemented. Results are compared with a baseline scenario. Simulation results show that import costs of the whole community are reduced by 34.9% as compared to a baseline scenario, and total energy import quantities are reduced by 15%. Total social welfare is found to be highest without a trading mechanism, however this platform is only viable when all costs are equally shared between all households. Furthermore, peak imports are reduced by over 50% in scenarios including grid constraints.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.114613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 206 citations 206 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.114613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Other literature type 2022Embargo end date: 01 Jan 2022 NetherlandsPublisher:Elsevier BV Publicly fundedFunded by:SFI | ADAPT_Phase 2, EC | EDGESFI| ADAPT_Phase 2 ,EC| EDGEJiantao Wu; Fabrizio Orlandi; Tarek AlSkaif; Declan O’Sullivan; Soumyabrata Dev;In a decentralized household energy system comprised of various devices such as home appliances, electric vehicles, and solar panels, end-users are able to dig deeper into the system's details and further achieve energy sustainability if they are presented with data on the electric energy consumption and production at the granularity of the device. However, many databases in this field are siloed from other domains, including solely information pertaining to energy. This may result in the loss of information (e.g. weather) on each device's energy use. Meanwhile, a large number of these datasets have been extensively used in computational modeling techniques such as machine learning models. While such computational approaches achieve great accuracy and performance by concentrating only on a local view of datasets, model reliability cannot be guaranteed since such models are very vulnerable to data input fluctuations when information omission is taken into account. This article tackles the data isolation issue in the field of smart energy systems by examining Semantic Web methods on top of a household energy system. We offer an ontology-based approach for managing decentralized data at the device-level resolution in a system. As a consequence, the scope of the data associated with each device may easily be expanded in an interoperable manner throughout the Web, and additional information, such as weather, can be obtained from the Web, provided that the data is organized according to W3C standards. Published in Sustainable Energy, Grids and Networks (SEGAN) 2022
Sustainable Energy G... arrow_drop_down Sustainable Energy Grids and NetworksArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff Publicationshttps://dx.doi.org/10.48550/ar...Article . 2022License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.segan.2022.100891&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainable Energy G... arrow_drop_down Sustainable Energy Grids and NetworksArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff Publicationshttps://dx.doi.org/10.48550/ar...Article . 2022License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.segan.2022.100891&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 NetherlandsPublisher:Elsevier BV Tarek AlSkaif; Christian Bauer; Wilfried van Sark; Tom Terlouw; Tom Terlouw;The power system requires an additional amount of flexibility to process the large-scale integration of renewable energy sources. Community Energy Storage (CES) is one of the solutions to offer flexibility. In this paper two scenarios of CES ownership are proposed. Firstly, an Energy Arbitrage (EA) scenario is studied where an aggregator aims to minimize costs and CO2-emissions of an energy portfolio. Secondly, an Energy Arbitrage - Peak Shaving (EA-PS) scenario is assessed, which is based on a shared ownership between a Distribution System Operator (DSO) and an aggregator. A multi-objective Mixed Integer Linear Programming (MILP) optimization model is developed to minimize the operation costs and CO2-emissions of a community situated in Cernier (Switzerland), using different battery technologies in the CES system. The results demonstrate a profitable system design for all Lithium-ion-Batteries (LiBs) and the Vanadium Redox Flow Battery (VRFB), for both the EA and EA-PS scenarios. The economic and environmental performance of the EA-PS scenario is slightly worse compared to the EA scenario, due to power boundaries on grid absorption and injection to achieve peak shaving. Overall, the differences between the EA and EA-PS scenarios, in economic and environmental performance, are small. Therefore, the EA-PS is recommended to prevent problematic loads on the distribution transformer. In addition, the Pareto frontiers demonstrate that LiBs perform best on both economic and environmental performance, with the best economic and environmental performance for the Lithium-Nickel-Manganese-Cobalt (NMC-C) battery.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.01.227&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 207 citations 207 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.01.227&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Conference object , Other literature type , Contribution for newspaper or weekly magazine 2022 NetherlandsPublisher:Springer International Publishing Authors: Lennard Visser; Tarel AlSkaif; Wilfried van Sark;Accurate forecasts of the electric power generation by solar Photovoltaic (PV) systems are essential to support their vast increasing integration. This study evaluates the interdependence of 14 predictor variables and their importance to machine learning models that forecast the day-ahead PV power production. To this purpose, we use two feature selection models to rank the predictor variables and accordingly, examine the performance change of two forecast models when a growing number of variables is considered. The study is performed using 3 years of data for Utrecht, the Netherlands. The results show the most important variables for PV power forecasting and identifies how many top variables should be considered to achieve an optimal forecast performance accuracy. Additionally, the best forecast model performance is found when only a few predictor variables are considered, including a created variable that estimates the PV power output based on technical system characteristics and physical relations.
Pure Utrecht Univers... arrow_drop_down Pure Utrecht UniversityConference object . 2022License: taverneData sources: Pure Utrecht Universityhttps://doi.org/10.1007/978-3-...Part of book or chapter of book . 2022 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUtrecht University RepositoryContribution for newspaper or weekly magazine . 2021Data sources: Utrecht University Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-031-10525-8_24&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Pure Utrecht Univers... arrow_drop_down Pure Utrecht UniversityConference object . 2022License: taverneData sources: Pure Utrecht Universityhttps://doi.org/10.1007/978-3-...Part of book or chapter of book . 2022 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUtrecht University RepositoryContribution for newspaper or weekly magazine . 2021Data sources: Utrecht University Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-031-10525-8_24&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 NetherlandsPublisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:EC | PV-Prosumers4GridEC| PV-Prosumers4GridWouter L. Schram; Tarek AlSkaif; Ioannis Lampropoulos; Sawsan Henein; Wilfried G.J.H.M. van Sark;The need to limit climate change has led to policies that aim for the reduction of greenhouse gas emissions. Often, a trade-off exists between reducing emissions and associated costs. In this article, a multi-objective optimization framework is proposed to determine this trade-off when operating a Community Energy Storage (CES) system in a neighbourhood with high shares of photovoltaic (PV) electricity generation capacity. The Pareto frontier of costs and emissions objectives is established when the CES system would operate on the day-Ahead spot market. The emission profile is constructed based on the marginal emissions. Results show that costs and emissions can simultaneously be decreased for a range of solutions compared to reference scenarios with no battery or a battery only focused on increasing self-consumption, for very attractive CO2 abatement costs and without hampering self-consumption of PV-generated electricity. Results are robust for battery degradation, whereas battery efficiency is found to be an important determining factor for simultaneously decreasing costs and emissions. The operational schedules are tested against violating transformer, line and voltage limits through a load flow analysis. The proposed framework can be extended to employ a wide range of objectives and/or location-specific circumstances.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Sustainable EnergyArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tste.2020.2969292&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 52 citations 52 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Sustainable EnergyArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tste.2020.2969292&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 NetherlandsPublisher:Springer Science and Business Media LLC Funded by:EC | SCALEEC| SCALENico Brinkel; Thijs van Wijk; Anoeska Buijze; Nanda Kishor Panda; Jelle Meersmans; Peter Markotić; Bart van der Ree; Henk Fidder; Baerte de Brey; Simon Tindemans; Tarek AlSkaif; Wilfried van Sark;AbstractSmart charging of electric vehicles can alleviate grid congestion and reduce charging costs. However, various electric vehicle models currently lack the technical capabilities to effectively implement smart charging since they cannot handle charging pauses or delays. These models enter sleep mode when charging is interrupted, preventing resumption afterwards. To avoid this, they should be continuously charged with their minimum charging power, even when a charging pause would be desirable, for instance with high electricity prices. This research examines this problem to inform various stakeholders, including policymakers and manufacturers, and stimulates the adoption of proactive measures that address this problem. Here, we demonstrate through technical charging tests that around one-third of tested car models suffer from this issue. Through model simulations we indicate that eliminating paused and delayed charging problems would double the smart charging potential for all applications. Lastly, we propose concrete legal and practical solutions to eliminate these problems.
Nature Communication... arrow_drop_down Wageningen Staff PublicationsArticle . 2024License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-024-48477-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Nature Communication... arrow_drop_down Wageningen Staff PublicationsArticle . 2024License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-024-48477-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Report 2024 NetherlandsPublisher:AIP Publishing Authors: Lennard R. Visser; Boudewijn Elsinga; Tarek A. AlSkaif; Wilfried G. J. H. M. van Sark;doi: 10.1063/5.0203147
The authors regret that minor typos ended up in Eqs. (7)–(10) of the original article.1 The corrected version of the equations is outlined below in Eqs. (1)–(4), respectively. On a final note, the explanation, results, and code used and published in the original work were correct; therefore, the results and conclusions remain unchanged. The correct formulation of the expression in Eq. (7) is (Formula Presented). where pm is the measured power output of a PV system at time t. SAC presents the inverter capacity of the PV system (see Sec. III A 2 of Ref. 1) and t is a constant, which is set at 1.025. The correct form of the expressions in Eqs. (8)–(10) are (Formula Presented) where pcs presents the simulated power output of a PV system for clear sky conditions, considering the clear sky irradiance. Furthermore, kPV is a threshold value that is set to 1.4 and SDC is the DC capacity of the PV system, which is estimated as described by Sec. IIIA 1 in Ref. 1. Finally, hz is the solar zenith angle.
Journal of Renewable... arrow_drop_down Journal of Renewable and Sustainable EnergyOther literature type . 2024License: taverneData sources: Pure Utrecht Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0203147&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Renewable... arrow_drop_down Journal of Renewable and Sustainable EnergyOther literature type . 2024License: taverneData sources: Pure Utrecht Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0203147&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Netherlands, Spain, SpainPublisher:Elsevier BV Authors: Carlos Cruz; Tarek Alskaif; Esther Palomar; Ignacio Bravo;handle: 10017/58757
In recent years, the increasing popularity of renewable energy and energy-efficient technologies is creating a new movement towards more sustainable communities. Understanding energy consumption is important for the optimisation of resources and the implementation of ecological trends. This paper integrates electricity consumers into a cooperative framework for planning sustainable smart communities through aggregators, which reallocates consumers" demand according to available renewable energy supply collected from consumers and service providers. The aggregated demand response also includes consumers involved in energy production activities through microgeneration capabilities. A characterisation study of the different types of demand preferences is performed by defining scenarios of communities and consumers" behaviours, which are validated through a reputation factor. The results show that the system adequately manages demand reallocation following the preferences and contribution of consumers and/or prosumers. Besides, this research analyses the current energy policy concerning demand flexibility, demand aggregation and microgeneration capacity, and their regulations in Spain. Finally, microgeneration acceptance, the role of aggregators and prosumers in the scheduling process is also investigated through a series of surveys. Comunidad de Madrid
Energy Policy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsBiblioteca Digital de la Universidad de AlcaláArticle . 2023License: CC BYData sources: Biblioteca Digital de la Universidad de Alcaláadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4265437&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Policy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsBiblioteca Digital de la Universidad de AlcaláArticle . 2023License: CC BYData sources: Biblioteca Digital de la Universidad de Alcaláadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4265437&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu