- home
- Advanced Search
- Energy Research
- 13. Climate action
- Energy Research
- 13. Climate action
description Publicationkeyboard_double_arrow_right Conference object , Article 2015 AustraliaPublisher:IEEE Authors: Frank Bruno; Shane Sheoran; Martin Belusko;handle: 11541.2/118810
To accelerate the charging and discharging of molten salt thermal storage and to enhance heat transfer, the authors of this paper propose a novel idea of using direct contact heat exchange. Under this proposal, a gaseous fluid from the solar field is directly injected into the molten salt system without any heat exchanger. In direct contact heat exchange, efficient energy exchange takes place within a smaller volume, which contributes an order of magnitude increase in heat transfer. Relative to liquid metals, whose thermal conductivity varies from low 10 W/m.K to 180W/m.K, the thermal conductivity of molten nitrate salts is fairly low i.e. 0.55W/m.K to 0.654W/m.K The low thermal conductivity of molten salts in liquid, mushy and solid phase limits their charging, discharging efficiency and makes the heat transfer process an energy and engineering resource-intensive process. The proposed direct contact heat exchange will eliminate the use of electric blanket heating of molten salt tank and pipe and address the issue related to molten salt freezing in the tank, pipes, pumps or the solar field. The authors of this research paper are investigating an innovative concept in which a non-reactive gaseous heat transfer fluid from solar field is directly injected into the molten carbonate to melt and remelt and to enhance the heat transfer. During the cooling cycle, the liquid to solid phase change process will take place; the gaseous fluid cooling will enforce a porous solidification of the molten salts. This porous phase change phenomenon is of critical importance and is beneficial during the remelting of the molten salts. In the current research, the role of forced convection, liquid and vapour phase drops and the role of mass transfer due to evaporative losses are investigated. In addition, the issues related to the freezing and melting of phase change material by forced convection are also addressed. Modelling and analysis results of heat transfer due to forced convection are presented. The results of low and medium temperature testing, their analysis, some preliminary modelling and simulation work is presented in this research paper. The role of low vapour pressure, thermal stability, surface tension, the density of the molten salt and areas of critical importance are analyzed. Analysis of experimental results is presented to determine the energy exchange the exchange effectiveness and heat transfer coefficients.
https://doi.org/10.1... arrow_drop_down UniSA Research Outputs RepositoryConference object . 2015 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/irsec.2015.7455039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down UniSA Research Outputs RepositoryConference object . 2015 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/irsec.2015.7455039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2015 AustraliaPublisher:IEEE Authors: Frank Bruno; Shane Sheoran; Martin Belusko;handle: 11541.2/118810
To accelerate the charging and discharging of molten salt thermal storage and to enhance heat transfer, the authors of this paper propose a novel idea of using direct contact heat exchange. Under this proposal, a gaseous fluid from the solar field is directly injected into the molten salt system without any heat exchanger. In direct contact heat exchange, efficient energy exchange takes place within a smaller volume, which contributes an order of magnitude increase in heat transfer. Relative to liquid metals, whose thermal conductivity varies from low 10 W/m.K to 180W/m.K, the thermal conductivity of molten nitrate salts is fairly low i.e. 0.55W/m.K to 0.654W/m.K The low thermal conductivity of molten salts in liquid, mushy and solid phase limits their charging, discharging efficiency and makes the heat transfer process an energy and engineering resource-intensive process. The proposed direct contact heat exchange will eliminate the use of electric blanket heating of molten salt tank and pipe and address the issue related to molten salt freezing in the tank, pipes, pumps or the solar field. The authors of this research paper are investigating an innovative concept in which a non-reactive gaseous heat transfer fluid from solar field is directly injected into the molten carbonate to melt and remelt and to enhance the heat transfer. During the cooling cycle, the liquid to solid phase change process will take place; the gaseous fluid cooling will enforce a porous solidification of the molten salts. This porous phase change phenomenon is of critical importance and is beneficial during the remelting of the molten salts. In the current research, the role of forced convection, liquid and vapour phase drops and the role of mass transfer due to evaporative losses are investigated. In addition, the issues related to the freezing and melting of phase change material by forced convection are also addressed. Modelling and analysis results of heat transfer due to forced convection are presented. The results of low and medium temperature testing, their analysis, some preliminary modelling and simulation work is presented in this research paper. The role of low vapour pressure, thermal stability, surface tension, the density of the molten salt and areas of critical importance are analyzed. Analysis of experimental results is presented to determine the energy exchange the exchange effectiveness and heat transfer coefficients.
https://doi.org/10.1... arrow_drop_down UniSA Research Outputs RepositoryConference object . 2015 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/irsec.2015.7455039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down UniSA Research Outputs RepositoryConference object . 2015 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/irsec.2015.7455039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Australia, United KingdomPublisher:Elsevier BV Authors: Bruno F; Tay NHS; Belusko M;handle: 1959.8/157789
Abstract Achieving energy savings with domestic off peak air conditioning using phase change materials (PCMs) has always proved a challenge. Although the energy efficiency ratio of an air conditioner is higher during the night, this improvement often does not offset the exergy loss experienced when using thermal storage. Simulations have been conducted using the effectiveness-number of transfer units (ɛ-NTU) representation of a PCM system to determine the instantaneous heat transfer when coupled to an inverter chiller cooling system. Results show that although 85% of the energy consumption for cooling could be shifted to the off-peak period with an ice based system, the energy demand increased by 7.6%. The investigation demonstrated that by using a PCM with a melting point of 4 °C, it is possible to achieve an energy saving for cooling. A savings of around 13.5% can be achieved using a PCM with a melting point of 10 °C. Energy usage was increased with a more efficient PCM storage system. This unexpected result was due to which period the storage system was charged. A more efficient storage system charged quicker during the warmer part of the evening. Therefore energy minimisation requires optimal charging during the coldest part of the night.
Energy and Buildings arrow_drop_down UniSA Research Outputs RepositoryArticle . 2014 . Peer-reviewedData sources: UniSA Research Outputs RepositoryNewcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2014.02.069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy and Buildings arrow_drop_down UniSA Research Outputs RepositoryArticle . 2014 . Peer-reviewedData sources: UniSA Research Outputs RepositoryNewcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2014.02.069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Australia, United KingdomPublisher:Elsevier BV Authors: Bruno F; Tay NHS; Belusko M;handle: 1959.8/157789
Abstract Achieving energy savings with domestic off peak air conditioning using phase change materials (PCMs) has always proved a challenge. Although the energy efficiency ratio of an air conditioner is higher during the night, this improvement often does not offset the exergy loss experienced when using thermal storage. Simulations have been conducted using the effectiveness-number of transfer units (ɛ-NTU) representation of a PCM system to determine the instantaneous heat transfer when coupled to an inverter chiller cooling system. Results show that although 85% of the energy consumption for cooling could be shifted to the off-peak period with an ice based system, the energy demand increased by 7.6%. The investigation demonstrated that by using a PCM with a melting point of 4 °C, it is possible to achieve an energy saving for cooling. A savings of around 13.5% can be achieved using a PCM with a melting point of 10 °C. Energy usage was increased with a more efficient PCM storage system. This unexpected result was due to which period the storage system was charged. A more efficient storage system charged quicker during the warmer part of the evening. Therefore energy minimisation requires optimal charging during the coldest part of the night.
Energy and Buildings arrow_drop_down UniSA Research Outputs RepositoryArticle . 2014 . Peer-reviewedData sources: UniSA Research Outputs RepositoryNewcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2014.02.069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy and Buildings arrow_drop_down UniSA Research Outputs RepositoryArticle . 2014 . Peer-reviewedData sources: UniSA Research Outputs RepositoryNewcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2014.02.069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 AustraliaPublisher:Elsevier BV Authors: Frank Bruno; Wasim Saman; Ming Liu;handle: 1959.8/131339
Abstract An innovative refrigeration system incorporating phase change material (PCM) is proposed to maintain refrigerated trucks at the desired thermal conditions. The advantage of using PCM to maintain low temperatures is that a conventional refrigeration system does not have to be located on-board the vehicle. In addition, the system consumes less energy and produces much lower local greenhouse gas (GHG) emissions. The phase change thermal storage unit (PCTSU) is charged by a refrigeration unit located off the vehicle when stationary. The PCM is discharged and provides cooling when in service. A new PCM with a lower cost than currently available PCMs was developed, suitable for maintaining the refrigerated truck at a temperature of −18 °C. The PCM has a melting temperature of −26.7 °C and a latent heat of 154.4 kJ kg−1. A prototype system was constructed and test results proved that the proposed refrigeration system is feasible for mobile transport. An analysis shows that delivery of refrigerated products can be made with a PCM system having a weight comparable to that of an on board conventional refrigeration system with less than half of the energy cost.
Applied Energy arrow_drop_down UniSA Research Outputs RepositoryArticle . 2012 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2011.10.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu170 citations 170 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Applied Energy arrow_drop_down UniSA Research Outputs RepositoryArticle . 2012 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2011.10.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 AustraliaPublisher:Elsevier BV Authors: Frank Bruno; Wasim Saman; Ming Liu;handle: 1959.8/131339
Abstract An innovative refrigeration system incorporating phase change material (PCM) is proposed to maintain refrigerated trucks at the desired thermal conditions. The advantage of using PCM to maintain low temperatures is that a conventional refrigeration system does not have to be located on-board the vehicle. In addition, the system consumes less energy and produces much lower local greenhouse gas (GHG) emissions. The phase change thermal storage unit (PCTSU) is charged by a refrigeration unit located off the vehicle when stationary. The PCM is discharged and provides cooling when in service. A new PCM with a lower cost than currently available PCMs was developed, suitable for maintaining the refrigerated truck at a temperature of −18 °C. The PCM has a melting temperature of −26.7 °C and a latent heat of 154.4 kJ kg−1. A prototype system was constructed and test results proved that the proposed refrigeration system is feasible for mobile transport. An analysis shows that delivery of refrigerated products can be made with a PCM system having a weight comparable to that of an on board conventional refrigeration system with less than half of the energy cost.
Applied Energy arrow_drop_down UniSA Research Outputs RepositoryArticle . 2012 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2011.10.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu170 citations 170 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Applied Energy arrow_drop_down UniSA Research Outputs RepositoryArticle . 2012 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2011.10.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 AustraliaPublisher:Trans Tech Publications, Ltd. N.A.M. Amin; Mohd Azizi Said; Azizul Mohamad; Mohd Shukry Abdul Majid; Mohd Afendi; R. Daud; Frank Bruno; Martin Belusko;handle: 11541.2/118497
Mathematical representations of the encapsulated phase change material (PCM) within thermal energy storage (TES) models are investigated. Applying the Effectiveness - Number of Transfer Unit (ɛ-NTU) method, the performances of these TES are presented in terms of the effectiveness considering the impact of different variable parameters. The mathematical formulations summarized can be used for future research work with the suggestion to maximize the heat transfer within the storage. Thus the optimisation on the configuration of the encapsulation can be done through a parametric analysis.
Applied Mechanics an... arrow_drop_down Applied Mechanics and MaterialsArticle . 2014 . Peer-reviewedLicense: Trans Tech Publications Copyright and Content Usage PolicyData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2015 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4028/www.scientific.net/amm.695.553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Applied Mechanics an... arrow_drop_down Applied Mechanics and MaterialsArticle . 2014 . Peer-reviewedLicense: Trans Tech Publications Copyright and Content Usage PolicyData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2015 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4028/www.scientific.net/amm.695.553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 AustraliaPublisher:Trans Tech Publications, Ltd. N.A.M. Amin; Mohd Azizi Said; Azizul Mohamad; Mohd Shukry Abdul Majid; Mohd Afendi; R. Daud; Frank Bruno; Martin Belusko;handle: 11541.2/118497
Mathematical representations of the encapsulated phase change material (PCM) within thermal energy storage (TES) models are investigated. Applying the Effectiveness - Number of Transfer Unit (ɛ-NTU) method, the performances of these TES are presented in terms of the effectiveness considering the impact of different variable parameters. The mathematical formulations summarized can be used for future research work with the suggestion to maximize the heat transfer within the storage. Thus the optimisation on the configuration of the encapsulation can be done through a parametric analysis.
Applied Mechanics an... arrow_drop_down Applied Mechanics and MaterialsArticle . 2014 . Peer-reviewedLicense: Trans Tech Publications Copyright and Content Usage PolicyData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2015 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4028/www.scientific.net/amm.695.553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Applied Mechanics an... arrow_drop_down Applied Mechanics and MaterialsArticle . 2014 . Peer-reviewedLicense: Trans Tech Publications Copyright and Content Usage PolicyData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2015 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4028/www.scientific.net/amm.695.553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014 AustraliaPublisher:MDPI AG Luigi Cirocco; Martin Belusko; Frank Bruno; John Boland; Peter Pudney;handle: 1959.8/162859
The proliferation of non-scheduled generation from renewable electrical energy sources such concentrated solar power (CSP) presents a need for enabling scheduled generation by incorporating energy storage; either via directly coupled Thermal Energy Storage (TES) or Electrical Storage Systems (ESS) distributed within the electrical network or grid. The challenges for 100% renewable energy generation are: to minimise capitalisation cost and to maximise energy dispatch capacity. The aims of this review article are twofold: to review storage technologies and to survey the most appropriate optimisation techniques to determine optimal operation and size of storage of a system to operate in the Australian National Energy Market (NEM). Storage technologies are reviewed to establish indicative characterisations of energy density, conversion efficiency, charge/discharge rates and costings. A partitioning of optimisation techniques based on methods most appropriate for various time scales is performed: from “whole of year”, seasonal, monthly, weekly and daily averaging to those best suited matching the NEM bid timing of five minute dispatch bidding, averaged on the half hour as the trading settlement spot price. Finally, a selection of the most promising research directions and methods to determine the optimal operation and sizing of storage for renewables in the grid is presented.
Challenges arrow_drop_down ChallengesOther literature type . 2014License: CC BYFull-Text: http://www.mdpi.com/2078-1547/5/2/473/pdfData sources: Multidisciplinary Digital Publishing InstituteUniSA Research Outputs RepositoryArticle . 2014 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/challe5020473&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Challenges arrow_drop_down ChallengesOther literature type . 2014License: CC BYFull-Text: http://www.mdpi.com/2078-1547/5/2/473/pdfData sources: Multidisciplinary Digital Publishing InstituteUniSA Research Outputs RepositoryArticle . 2014 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/challe5020473&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014 AustraliaPublisher:MDPI AG Luigi Cirocco; Martin Belusko; Frank Bruno; John Boland; Peter Pudney;handle: 1959.8/162859
The proliferation of non-scheduled generation from renewable electrical energy sources such concentrated solar power (CSP) presents a need for enabling scheduled generation by incorporating energy storage; either via directly coupled Thermal Energy Storage (TES) or Electrical Storage Systems (ESS) distributed within the electrical network or grid. The challenges for 100% renewable energy generation are: to minimise capitalisation cost and to maximise energy dispatch capacity. The aims of this review article are twofold: to review storage technologies and to survey the most appropriate optimisation techniques to determine optimal operation and size of storage of a system to operate in the Australian National Energy Market (NEM). Storage technologies are reviewed to establish indicative characterisations of energy density, conversion efficiency, charge/discharge rates and costings. A partitioning of optimisation techniques based on methods most appropriate for various time scales is performed: from “whole of year”, seasonal, monthly, weekly and daily averaging to those best suited matching the NEM bid timing of five minute dispatch bidding, averaged on the half hour as the trading settlement spot price. Finally, a selection of the most promising research directions and methods to determine the optimal operation and sizing of storage for renewables in the grid is presented.
Challenges arrow_drop_down ChallengesOther literature type . 2014License: CC BYFull-Text: http://www.mdpi.com/2078-1547/5/2/473/pdfData sources: Multidisciplinary Digital Publishing InstituteUniSA Research Outputs RepositoryArticle . 2014 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/challe5020473&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Challenges arrow_drop_down ChallengesOther literature type . 2014License: CC BYFull-Text: http://www.mdpi.com/2078-1547/5/2/473/pdfData sources: Multidisciplinary Digital Publishing InstituteUniSA Research Outputs RepositoryArticle . 2014 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/challe5020473&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 AustraliaPublisher:Elsevier BV Authors: Frank Bruno; N.H.S. Tay; Martin Belusko;handle: 1959.8/124339
An experimental validation for a computational fluid dynamics (CFD) model for tubes coiled in a phase change thermal energy storage system has been conducted. Using the validated CFD model, three CFD models have been developed. The first model was developed having pins embedded on a tube with heat transfer fluid (HTF) flowing in it, with PCM surrounding the tube. Different configurations of pins on the tube have been analysed. The second model developed is similar to the first model; however, fins were embedded instead of pins. Different configurations of fins on the tube were also investigated. The last model developed was a plain copper tube surrounded by PCM with HTF flowing in it. This model was used as a benchmark for comparison for the first two models. The models were analysed for the freezing process. From this study, it was concluded that fins on the tube is better than pins on the tube. The paper gives details of the CFD models and presents the results obtained from simulations carried out using these models.
Applied Energy arrow_drop_down UniSA Research Outputs RepositoryArticle . 2013 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2012.10.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu170 citations 170 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Applied Energy arrow_drop_down UniSA Research Outputs RepositoryArticle . 2013 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2012.10.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 AustraliaPublisher:Elsevier BV Authors: Frank Bruno; N.H.S. Tay; Martin Belusko;handle: 1959.8/124339
An experimental validation for a computational fluid dynamics (CFD) model for tubes coiled in a phase change thermal energy storage system has been conducted. Using the validated CFD model, three CFD models have been developed. The first model was developed having pins embedded on a tube with heat transfer fluid (HTF) flowing in it, with PCM surrounding the tube. Different configurations of pins on the tube have been analysed. The second model developed is similar to the first model; however, fins were embedded instead of pins. Different configurations of fins on the tube were also investigated. The last model developed was a plain copper tube surrounded by PCM with HTF flowing in it. This model was used as a benchmark for comparison for the first two models. The models were analysed for the freezing process. From this study, it was concluded that fins on the tube is better than pins on the tube. The paper gives details of the CFD models and presents the results obtained from simulations carried out using these models.
Applied Energy arrow_drop_down UniSA Research Outputs RepositoryArticle . 2013 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2012.10.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu170 citations 170 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Applied Energy arrow_drop_down UniSA Research Outputs RepositoryArticle . 2013 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2012.10.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 AustraliaPublisher:Elsevier BV Authors: P R Roach; Martin Belusko; Frank Bruno;handle: 1959.8/152910
Abstract Night cooling strategies are gaining popularity with the raise in profile of Green Buildings and Sustainable rating systems. The use of night ventilation to exploit lower diurnal temperatures to pre-cool the building structure in preparation for the following day's gains is well known; however, the role which the facade has to contribute to night ventilation is not fully understood. Researchers are familiar with economiser cycles operation for central air conditioning systems and the ability of these to operate in night ventilation mode with simple modifications to the control strategy requires validation. Simulations were carried out for a typical office building in Adelaide to demonstrate that a traditional economiser cycle operating 24 h each day under thermostatic control delivers energy savings. A number of facade structures were considered and the effect of varying the location of the thermal mass within the structure was investigated. The paper gives details on the model used for the simulations and discusses the results obtained. It was found that increasing the mass on the inside of the facade is preferred over the external for the warm marine climate zone of Adelaide, South Australia.
Energy and Buildings arrow_drop_down UniSA Research Outputs RepositoryArticle . 2013 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2013.06.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu31 citations 31 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Energy and Buildings arrow_drop_down UniSA Research Outputs RepositoryArticle . 2013 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2013.06.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 AustraliaPublisher:Elsevier BV Authors: P R Roach; Martin Belusko; Frank Bruno;handle: 1959.8/152910
Abstract Night cooling strategies are gaining popularity with the raise in profile of Green Buildings and Sustainable rating systems. The use of night ventilation to exploit lower diurnal temperatures to pre-cool the building structure in preparation for the following day's gains is well known; however, the role which the facade has to contribute to night ventilation is not fully understood. Researchers are familiar with economiser cycles operation for central air conditioning systems and the ability of these to operate in night ventilation mode with simple modifications to the control strategy requires validation. Simulations were carried out for a typical office building in Adelaide to demonstrate that a traditional economiser cycle operating 24 h each day under thermostatic control delivers energy savings. A number of facade structures were considered and the effect of varying the location of the thermal mass within the structure was investigated. The paper gives details on the model used for the simulations and discusses the results obtained. It was found that increasing the mass on the inside of the facade is preferred over the external for the warm marine climate zone of Adelaide, South Australia.
Energy and Buildings arrow_drop_down UniSA Research Outputs RepositoryArticle . 2013 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2013.06.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu31 citations 31 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Energy and Buildings arrow_drop_down UniSA Research Outputs RepositoryArticle . 2013 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2013.06.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 AustraliaPublisher:Elsevier BV Authors: Frank Bruno; David Whaley; Martin Belusko; Timothy O'Leary;handle: 11541.2/117876
The rating of buildings using thermal models represents a contrasting regulatory approach to prescriptive measures to improve the energy efficiency of buildings. This paper investigates the relationship between measured household energy use for thermal comfort purposes and the modelled thermal energy calculated under the Nationwide House Energy Rating Scheme (NatHERS), which is used for the regulation of minimum energy performance standards for new housing in Australia. Two different sets of housing in Adelaide, South Australia which were built a decade apart and to significantly different energy performance standards represent the basis of this study. The results show that better insulated houses represented by higher stars under the NatHERS scheme do use less energy for heating and cooling.
Energy and Buildings arrow_drop_down UniSA Research Outputs RepositoryArticle . 2016 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2016.03.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy and Buildings arrow_drop_down UniSA Research Outputs RepositoryArticle . 2016 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2016.03.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 AustraliaPublisher:Elsevier BV Authors: Frank Bruno; David Whaley; Martin Belusko; Timothy O'Leary;handle: 11541.2/117876
The rating of buildings using thermal models represents a contrasting regulatory approach to prescriptive measures to improve the energy efficiency of buildings. This paper investigates the relationship between measured household energy use for thermal comfort purposes and the modelled thermal energy calculated under the Nationwide House Energy Rating Scheme (NatHERS), which is used for the regulation of minimum energy performance standards for new housing in Australia. Two different sets of housing in Adelaide, South Australia which were built a decade apart and to significantly different energy performance standards represent the basis of this study. The results show that better insulated houses represented by higher stars under the NatHERS scheme do use less energy for heating and cooling.
Energy and Buildings arrow_drop_down UniSA Research Outputs RepositoryArticle . 2016 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2016.03.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy and Buildings arrow_drop_down UniSA Research Outputs RepositoryArticle . 2016 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2016.03.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Australia, United KingdomPublisher:Elsevier BV Authors: Liu M; Belusko M; Tay NHS; Bruno F;handle: 11541.2/120617
Abstract Thermal energy storage allows improved dispatch-ability of power from a concentrated solar power plant and increases its annual capacity factor. The selection of an appropriate heat transfer fluid (HTF) is important for designing a cost-effective thermal storage system and to improve the cycle efficiency of the power plant. The current state-of-the-art HTF for tower power plants is molten salts, which have the drawback of having low degradation temperature and high melting temperatures respectively. Alternative HTFs under investigation allow for a much larger range of operation, and can offer other cost and performance advantages. In this study, a comparison of six gaseous and liquid HTFs was carried out to determine their suitability for use in a high temperature thermal storage unit with flat slabs of phase change materials. The comparison is in terms of their thermo-physical properties, heat transfer characteristics between the flat plates and the total delivered electrical energy to the grid. Using a validated mathematical model of phase change material in thin slabs, the HTF outlet temperature, heat transfer rate and liquid fraction profiles were predicted when using different HTFs at a constant heat capacity rate for both charging and discharging processes. For the capacity rate considered, liquid sodium was identified as the best HTF, delivering the highest electrical energy to the grid, achieving 99.4% relative to the ideal case. Solar salt achieved a value of 93.6%, while the gaseous fluids of atmospheric air, air at 10 bar, s-CO 2 at 100 bar and steam at 10 bar achieved between 87.9% and 91.3% of the ideal delivered electricity. Gaseous fluids have the advantage of being able to be used as the working fluid in the power block. This study shows that gaseous fluids are comparable to liquid HTFs in PCM storage facilities.
Solar Energy arrow_drop_down UniSA Research Outputs RepositoryArticle . 2014 . Peer-reviewedData sources: UniSA Research Outputs RepositoryNewcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2013.12.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu56 citations 56 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy arrow_drop_down UniSA Research Outputs RepositoryArticle . 2014 . Peer-reviewedData sources: UniSA Research Outputs RepositoryNewcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2013.12.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Australia, United KingdomPublisher:Elsevier BV Authors: Liu M; Belusko M; Tay NHS; Bruno F;handle: 11541.2/120617
Abstract Thermal energy storage allows improved dispatch-ability of power from a concentrated solar power plant and increases its annual capacity factor. The selection of an appropriate heat transfer fluid (HTF) is important for designing a cost-effective thermal storage system and to improve the cycle efficiency of the power plant. The current state-of-the-art HTF for tower power plants is molten salts, which have the drawback of having low degradation temperature and high melting temperatures respectively. Alternative HTFs under investigation allow for a much larger range of operation, and can offer other cost and performance advantages. In this study, a comparison of six gaseous and liquid HTFs was carried out to determine their suitability for use in a high temperature thermal storage unit with flat slabs of phase change materials. The comparison is in terms of their thermo-physical properties, heat transfer characteristics between the flat plates and the total delivered electrical energy to the grid. Using a validated mathematical model of phase change material in thin slabs, the HTF outlet temperature, heat transfer rate and liquid fraction profiles were predicted when using different HTFs at a constant heat capacity rate for both charging and discharging processes. For the capacity rate considered, liquid sodium was identified as the best HTF, delivering the highest electrical energy to the grid, achieving 99.4% relative to the ideal case. Solar salt achieved a value of 93.6%, while the gaseous fluids of atmospheric air, air at 10 bar, s-CO 2 at 100 bar and steam at 10 bar achieved between 87.9% and 91.3% of the ideal delivered electricity. Gaseous fluids have the advantage of being able to be used as the working fluid in the power block. This study shows that gaseous fluids are comparable to liquid HTFs in PCM storage facilities.
Solar Energy arrow_drop_down UniSA Research Outputs RepositoryArticle . 2014 . Peer-reviewedData sources: UniSA Research Outputs RepositoryNewcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2013.12.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu56 citations 56 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy arrow_drop_down UniSA Research Outputs RepositoryArticle . 2014 . Peer-reviewedData sources: UniSA Research Outputs RepositoryNewcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2013.12.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United Kingdom, AustraliaPublisher:Elsevier BV N.H.S. Tay; N.H.S. Tay; Martin Belusko; Ming Liu; Frank Bruno;handle: 11541.2/125543
Abstract Thermal energy storage systems provide a means to store energy for use in heating and cooling applications at a later time. The storage of thermal energy allows renewable sources of energy to be stored if the time of demand does not coincide with the time of production. It also enables access to off-peak electricity tariffs offered during times of low electricity demand. Storage systems can be charged during the low-cost tariff period and provide heating or cooling later when required. This benefits consumers with lower electricity costs and power generators with demand levelling. Thermal energy storage systems predominantly store heat as sensible heat in a substance. However, during a phase change heat energy can be stored as latent heat. Phase change material (PCM) thermal storage systems can store a greater amount of thermal energy per unit volume than sensible heat storage systems. Historically a drawback of using PCMs as a storage medium has been the low rates of heat transfer. Heat transfer enhancement techniques studied have included the use of additional metallic material and increasing heat transfer surface area such as fins to improve heat transfer rates of the PCM. Although these techniques are effective, they add significant cost and reduce the compactness factor of the thermal energy storage system. Recent research has been conducted on heat transfer enhancement that makes use of moving or transporting the PCM. This method is not only effective for increasing the heat transfer; it is less expensive and maintains a high compactness factor for the thermal energy storage system. This review paper presents the different heat transfer enhancement techniques reported in the literature. It also summarises the research conducted on phase change storage systems where the PCM is moved in the storage system.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2017 . Peer-reviewedData sources: UniSA Research Outputs RepositoryNewcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2016.10.069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu101 citations 101 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2017 . Peer-reviewedData sources: UniSA Research Outputs RepositoryNewcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2016.10.069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United Kingdom, AustraliaPublisher:Elsevier BV N.H.S. Tay; N.H.S. Tay; Martin Belusko; Ming Liu; Frank Bruno;handle: 11541.2/125543
Abstract Thermal energy storage systems provide a means to store energy for use in heating and cooling applications at a later time. The storage of thermal energy allows renewable sources of energy to be stored if the time of demand does not coincide with the time of production. It also enables access to off-peak electricity tariffs offered during times of low electricity demand. Storage systems can be charged during the low-cost tariff period and provide heating or cooling later when required. This benefits consumers with lower electricity costs and power generators with demand levelling. Thermal energy storage systems predominantly store heat as sensible heat in a substance. However, during a phase change heat energy can be stored as latent heat. Phase change material (PCM) thermal storage systems can store a greater amount of thermal energy per unit volume than sensible heat storage systems. Historically a drawback of using PCMs as a storage medium has been the low rates of heat transfer. Heat transfer enhancement techniques studied have included the use of additional metallic material and increasing heat transfer surface area such as fins to improve heat transfer rates of the PCM. Although these techniques are effective, they add significant cost and reduce the compactness factor of the thermal energy storage system. Recent research has been conducted on heat transfer enhancement that makes use of moving or transporting the PCM. This method is not only effective for increasing the heat transfer; it is less expensive and maintains a high compactness factor for the thermal energy storage system. This review paper presents the different heat transfer enhancement techniques reported in the literature. It also summarises the research conducted on phase change storage systems where the PCM is moved in the storage system.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2017 . Peer-reviewedData sources: UniSA Research Outputs RepositoryNewcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2016.10.069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu101 citations 101 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2017 . Peer-reviewedData sources: UniSA Research Outputs RepositoryNewcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2016.10.069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Conference object , Article 2015 AustraliaPublisher:IEEE Authors: Frank Bruno; Shane Sheoran; Martin Belusko;handle: 11541.2/118810
To accelerate the charging and discharging of molten salt thermal storage and to enhance heat transfer, the authors of this paper propose a novel idea of using direct contact heat exchange. Under this proposal, a gaseous fluid from the solar field is directly injected into the molten salt system without any heat exchanger. In direct contact heat exchange, efficient energy exchange takes place within a smaller volume, which contributes an order of magnitude increase in heat transfer. Relative to liquid metals, whose thermal conductivity varies from low 10 W/m.K to 180W/m.K, the thermal conductivity of molten nitrate salts is fairly low i.e. 0.55W/m.K to 0.654W/m.K The low thermal conductivity of molten salts in liquid, mushy and solid phase limits their charging, discharging efficiency and makes the heat transfer process an energy and engineering resource-intensive process. The proposed direct contact heat exchange will eliminate the use of electric blanket heating of molten salt tank and pipe and address the issue related to molten salt freezing in the tank, pipes, pumps or the solar field. The authors of this research paper are investigating an innovative concept in which a non-reactive gaseous heat transfer fluid from solar field is directly injected into the molten carbonate to melt and remelt and to enhance the heat transfer. During the cooling cycle, the liquid to solid phase change process will take place; the gaseous fluid cooling will enforce a porous solidification of the molten salts. This porous phase change phenomenon is of critical importance and is beneficial during the remelting of the molten salts. In the current research, the role of forced convection, liquid and vapour phase drops and the role of mass transfer due to evaporative losses are investigated. In addition, the issues related to the freezing and melting of phase change material by forced convection are also addressed. Modelling and analysis results of heat transfer due to forced convection are presented. The results of low and medium temperature testing, their analysis, some preliminary modelling and simulation work is presented in this research paper. The role of low vapour pressure, thermal stability, surface tension, the density of the molten salt and areas of critical importance are analyzed. Analysis of experimental results is presented to determine the energy exchange the exchange effectiveness and heat transfer coefficients.
https://doi.org/10.1... arrow_drop_down UniSA Research Outputs RepositoryConference object . 2015 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/irsec.2015.7455039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down UniSA Research Outputs RepositoryConference object . 2015 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/irsec.2015.7455039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2015 AustraliaPublisher:IEEE Authors: Frank Bruno; Shane Sheoran; Martin Belusko;handle: 11541.2/118810
To accelerate the charging and discharging of molten salt thermal storage and to enhance heat transfer, the authors of this paper propose a novel idea of using direct contact heat exchange. Under this proposal, a gaseous fluid from the solar field is directly injected into the molten salt system without any heat exchanger. In direct contact heat exchange, efficient energy exchange takes place within a smaller volume, which contributes an order of magnitude increase in heat transfer. Relative to liquid metals, whose thermal conductivity varies from low 10 W/m.K to 180W/m.K, the thermal conductivity of molten nitrate salts is fairly low i.e. 0.55W/m.K to 0.654W/m.K The low thermal conductivity of molten salts in liquid, mushy and solid phase limits their charging, discharging efficiency and makes the heat transfer process an energy and engineering resource-intensive process. The proposed direct contact heat exchange will eliminate the use of electric blanket heating of molten salt tank and pipe and address the issue related to molten salt freezing in the tank, pipes, pumps or the solar field. The authors of this research paper are investigating an innovative concept in which a non-reactive gaseous heat transfer fluid from solar field is directly injected into the molten carbonate to melt and remelt and to enhance the heat transfer. During the cooling cycle, the liquid to solid phase change process will take place; the gaseous fluid cooling will enforce a porous solidification of the molten salts. This porous phase change phenomenon is of critical importance and is beneficial during the remelting of the molten salts. In the current research, the role of forced convection, liquid and vapour phase drops and the role of mass transfer due to evaporative losses are investigated. In addition, the issues related to the freezing and melting of phase change material by forced convection are also addressed. Modelling and analysis results of heat transfer due to forced convection are presented. The results of low and medium temperature testing, their analysis, some preliminary modelling and simulation work is presented in this research paper. The role of low vapour pressure, thermal stability, surface tension, the density of the molten salt and areas of critical importance are analyzed. Analysis of experimental results is presented to determine the energy exchange the exchange effectiveness and heat transfer coefficients.
https://doi.org/10.1... arrow_drop_down UniSA Research Outputs RepositoryConference object . 2015 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/irsec.2015.7455039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down UniSA Research Outputs RepositoryConference object . 2015 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/irsec.2015.7455039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Australia, United KingdomPublisher:Elsevier BV Authors: Bruno F; Tay NHS; Belusko M;handle: 1959.8/157789
Abstract Achieving energy savings with domestic off peak air conditioning using phase change materials (PCMs) has always proved a challenge. Although the energy efficiency ratio of an air conditioner is higher during the night, this improvement often does not offset the exergy loss experienced when using thermal storage. Simulations have been conducted using the effectiveness-number of transfer units (ɛ-NTU) representation of a PCM system to determine the instantaneous heat transfer when coupled to an inverter chiller cooling system. Results show that although 85% of the energy consumption for cooling could be shifted to the off-peak period with an ice based system, the energy demand increased by 7.6%. The investigation demonstrated that by using a PCM with a melting point of 4 °C, it is possible to achieve an energy saving for cooling. A savings of around 13.5% can be achieved using a PCM with a melting point of 10 °C. Energy usage was increased with a more efficient PCM storage system. This unexpected result was due to which period the storage system was charged. A more efficient storage system charged quicker during the warmer part of the evening. Therefore energy minimisation requires optimal charging during the coldest part of the night.
Energy and Buildings arrow_drop_down UniSA Research Outputs RepositoryArticle . 2014 . Peer-reviewedData sources: UniSA Research Outputs RepositoryNewcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2014.02.069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy and Buildings arrow_drop_down UniSA Research Outputs RepositoryArticle . 2014 . Peer-reviewedData sources: UniSA Research Outputs RepositoryNewcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2014.02.069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Australia, United KingdomPublisher:Elsevier BV Authors: Bruno F; Tay NHS; Belusko M;handle: 1959.8/157789
Abstract Achieving energy savings with domestic off peak air conditioning using phase change materials (PCMs) has always proved a challenge. Although the energy efficiency ratio of an air conditioner is higher during the night, this improvement often does not offset the exergy loss experienced when using thermal storage. Simulations have been conducted using the effectiveness-number of transfer units (ɛ-NTU) representation of a PCM system to determine the instantaneous heat transfer when coupled to an inverter chiller cooling system. Results show that although 85% of the energy consumption for cooling could be shifted to the off-peak period with an ice based system, the energy demand increased by 7.6%. The investigation demonstrated that by using a PCM with a melting point of 4 °C, it is possible to achieve an energy saving for cooling. A savings of around 13.5% can be achieved using a PCM with a melting point of 10 °C. Energy usage was increased with a more efficient PCM storage system. This unexpected result was due to which period the storage system was charged. A more efficient storage system charged quicker during the warmer part of the evening. Therefore energy minimisation requires optimal charging during the coldest part of the night.
Energy and Buildings arrow_drop_down UniSA Research Outputs RepositoryArticle . 2014 . Peer-reviewedData sources: UniSA Research Outputs RepositoryNewcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2014.02.069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy and Buildings arrow_drop_down UniSA Research Outputs RepositoryArticle . 2014 . Peer-reviewedData sources: UniSA Research Outputs RepositoryNewcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2014.02.069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 AustraliaPublisher:Elsevier BV Authors: Frank Bruno; Wasim Saman; Ming Liu;handle: 1959.8/131339
Abstract An innovative refrigeration system incorporating phase change material (PCM) is proposed to maintain refrigerated trucks at the desired thermal conditions. The advantage of using PCM to maintain low temperatures is that a conventional refrigeration system does not have to be located on-board the vehicle. In addition, the system consumes less energy and produces much lower local greenhouse gas (GHG) emissions. The phase change thermal storage unit (PCTSU) is charged by a refrigeration unit located off the vehicle when stationary. The PCM is discharged and provides cooling when in service. A new PCM with a lower cost than currently available PCMs was developed, suitable for maintaining the refrigerated truck at a temperature of −18 °C. The PCM has a melting temperature of −26.7 °C and a latent heat of 154.4 kJ kg−1. A prototype system was constructed and test results proved that the proposed refrigeration system is feasible for mobile transport. An analysis shows that delivery of refrigerated products can be made with a PCM system having a weight comparable to that of an on board conventional refrigeration system with less than half of the energy cost.
Applied Energy arrow_drop_down UniSA Research Outputs RepositoryArticle . 2012 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2011.10.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu170 citations 170 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Applied Energy arrow_drop_down UniSA Research Outputs RepositoryArticle . 2012 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2011.10.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 AustraliaPublisher:Elsevier BV Authors: Frank Bruno; Wasim Saman; Ming Liu;handle: 1959.8/131339
Abstract An innovative refrigeration system incorporating phase change material (PCM) is proposed to maintain refrigerated trucks at the desired thermal conditions. The advantage of using PCM to maintain low temperatures is that a conventional refrigeration system does not have to be located on-board the vehicle. In addition, the system consumes less energy and produces much lower local greenhouse gas (GHG) emissions. The phase change thermal storage unit (PCTSU) is charged by a refrigeration unit located off the vehicle when stationary. The PCM is discharged and provides cooling when in service. A new PCM with a lower cost than currently available PCMs was developed, suitable for maintaining the refrigerated truck at a temperature of −18 °C. The PCM has a melting temperature of −26.7 °C and a latent heat of 154.4 kJ kg−1. A prototype system was constructed and test results proved that the proposed refrigeration system is feasible for mobile transport. An analysis shows that delivery of refrigerated products can be made with a PCM system having a weight comparable to that of an on board conventional refrigeration system with less than half of the energy cost.
Applied Energy arrow_drop_down UniSA Research Outputs RepositoryArticle . 2012 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2011.10.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu170 citations 170 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Applied Energy arrow_drop_down UniSA Research Outputs RepositoryArticle . 2012 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2011.10.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 AustraliaPublisher:Trans Tech Publications, Ltd. N.A.M. Amin; Mohd Azizi Said; Azizul Mohamad; Mohd Shukry Abdul Majid; Mohd Afendi; R. Daud; Frank Bruno; Martin Belusko;handle: 11541.2/118497
Mathematical representations of the encapsulated phase change material (PCM) within thermal energy storage (TES) models are investigated. Applying the Effectiveness - Number of Transfer Unit (ɛ-NTU) method, the performances of these TES are presented in terms of the effectiveness considering the impact of different variable parameters. The mathematical formulations summarized can be used for future research work with the suggestion to maximize the heat transfer within the storage. Thus the optimisation on the configuration of the encapsulation can be done through a parametric analysis.
Applied Mechanics an... arrow_drop_down Applied Mechanics and MaterialsArticle . 2014 . Peer-reviewedLicense: Trans Tech Publications Copyright and Content Usage PolicyData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2015 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4028/www.scientific.net/amm.695.553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Applied Mechanics an... arrow_drop_down Applied Mechanics and MaterialsArticle . 2014 . Peer-reviewedLicense: Trans Tech Publications Copyright and Content Usage PolicyData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2015 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4028/www.scientific.net/amm.695.553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 AustraliaPublisher:Trans Tech Publications, Ltd. N.A.M. Amin; Mohd Azizi Said; Azizul Mohamad; Mohd Shukry Abdul Majid; Mohd Afendi; R. Daud; Frank Bruno; Martin Belusko;handle: 11541.2/118497
Mathematical representations of the encapsulated phase change material (PCM) within thermal energy storage (TES) models are investigated. Applying the Effectiveness - Number of Transfer Unit (ɛ-NTU) method, the performances of these TES are presented in terms of the effectiveness considering the impact of different variable parameters. The mathematical formulations summarized can be used for future research work with the suggestion to maximize the heat transfer within the storage. Thus the optimisation on the configuration of the encapsulation can be done through a parametric analysis.
Applied Mechanics an... arrow_drop_down Applied Mechanics and MaterialsArticle . 2014 . Peer-reviewedLicense: Trans Tech Publications Copyright and Content Usage PolicyData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2015 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4028/www.scientific.net/amm.695.553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Applied Mechanics an... arrow_drop_down Applied Mechanics and MaterialsArticle . 2014 . Peer-reviewedLicense: Trans Tech Publications Copyright and Content Usage PolicyData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2015 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4028/www.scientific.net/amm.695.553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014 AustraliaPublisher:MDPI AG Luigi Cirocco; Martin Belusko; Frank Bruno; John Boland; Peter Pudney;handle: 1959.8/162859
The proliferation of non-scheduled generation from renewable electrical energy sources such concentrated solar power (CSP) presents a need for enabling scheduled generation by incorporating energy storage; either via directly coupled Thermal Energy Storage (TES) or Electrical Storage Systems (ESS) distributed within the electrical network or grid. The challenges for 100% renewable energy generation are: to minimise capitalisation cost and to maximise energy dispatch capacity. The aims of this review article are twofold: to review storage technologies and to survey the most appropriate optimisation techniques to determine optimal operation and size of storage of a system to operate in the Australian National Energy Market (NEM). Storage technologies are reviewed to establish indicative characterisations of energy density, conversion efficiency, charge/discharge rates and costings. A partitioning of optimisation techniques based on methods most appropriate for various time scales is performed: from “whole of year”, seasonal, monthly, weekly and daily averaging to those best suited matching the NEM bid timing of five minute dispatch bidding, averaged on the half hour as the trading settlement spot price. Finally, a selection of the most promising research directions and methods to determine the optimal operation and sizing of storage for renewables in the grid is presented.
Challenges arrow_drop_down ChallengesOther literature type . 2014License: CC BYFull-Text: http://www.mdpi.com/2078-1547/5/2/473/pdfData sources: Multidisciplinary Digital Publishing InstituteUniSA Research Outputs RepositoryArticle . 2014 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/challe5020473&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Challenges arrow_drop_down ChallengesOther literature type . 2014License: CC BYFull-Text: http://www.mdpi.com/2078-1547/5/2/473/pdfData sources: Multidisciplinary Digital Publishing InstituteUniSA Research Outputs RepositoryArticle . 2014 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/challe5020473&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014 AustraliaPublisher:MDPI AG Luigi Cirocco; Martin Belusko; Frank Bruno; John Boland; Peter Pudney;handle: 1959.8/162859
The proliferation of non-scheduled generation from renewable electrical energy sources such concentrated solar power (CSP) presents a need for enabling scheduled generation by incorporating energy storage; either via directly coupled Thermal Energy Storage (TES) or Electrical Storage Systems (ESS) distributed within the electrical network or grid. The challenges for 100% renewable energy generation are: to minimise capitalisation cost and to maximise energy dispatch capacity. The aims of this review article are twofold: to review storage technologies and to survey the most appropriate optimisation techniques to determine optimal operation and size of storage of a system to operate in the Australian National Energy Market (NEM). Storage technologies are reviewed to establish indicative characterisations of energy density, conversion efficiency, charge/discharge rates and costings. A partitioning of optimisation techniques based on methods most appropriate for various time scales is performed: from “whole of year”, seasonal, monthly, weekly and daily averaging to those best suited matching the NEM bid timing of five minute dispatch bidding, averaged on the half hour as the trading settlement spot price. Finally, a selection of the most promising research directions and methods to determine the optimal operation and sizing of storage for renewables in the grid is presented.
Challenges arrow_drop_down ChallengesOther literature type . 2014License: CC BYFull-Text: http://www.mdpi.com/2078-1547/5/2/473/pdfData sources: Multidisciplinary Digital Publishing InstituteUniSA Research Outputs RepositoryArticle . 2014 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/challe5020473&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Challenges arrow_drop_down ChallengesOther literature type . 2014License: CC BYFull-Text: http://www.mdpi.com/2078-1547/5/2/473/pdfData sources: Multidisciplinary Digital Publishing InstituteUniSA Research Outputs RepositoryArticle . 2014 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/challe5020473&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 AustraliaPublisher:Elsevier BV Authors: Frank Bruno; N.H.S. Tay; Martin Belusko;handle: 1959.8/124339
An experimental validation for a computational fluid dynamics (CFD) model for tubes coiled in a phase change thermal energy storage system has been conducted. Using the validated CFD model, three CFD models have been developed. The first model was developed having pins embedded on a tube with heat transfer fluid (HTF) flowing in it, with PCM surrounding the tube. Different configurations of pins on the tube have been analysed. The second model developed is similar to the first model; however, fins were embedded instead of pins. Different configurations of fins on the tube were also investigated. The last model developed was a plain copper tube surrounded by PCM with HTF flowing in it. This model was used as a benchmark for comparison for the first two models. The models were analysed for the freezing process. From this study, it was concluded that fins on the tube is better than pins on the tube. The paper gives details of the CFD models and presents the results obtained from simulations carried out using these models.
Applied Energy arrow_drop_down UniSA Research Outputs RepositoryArticle . 2013 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2012.10.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu170 citations 170 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Applied Energy arrow_drop_down UniSA Research Outputs RepositoryArticle . 2013 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2012.10.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 AustraliaPublisher:Elsevier BV Authors: Frank Bruno; N.H.S. Tay; Martin Belusko;handle: 1959.8/124339
An experimental validation for a computational fluid dynamics (CFD) model for tubes coiled in a phase change thermal energy storage system has been conducted. Using the validated CFD model, three CFD models have been developed. The first model was developed having pins embedded on a tube with heat transfer fluid (HTF) flowing in it, with PCM surrounding the tube. Different configurations of pins on the tube have been analysed. The second model developed is similar to the first model; however, fins were embedded instead of pins. Different configurations of fins on the tube were also investigated. The last model developed was a plain copper tube surrounded by PCM with HTF flowing in it. This model was used as a benchmark for comparison for the first two models. The models were analysed for the freezing process. From this study, it was concluded that fins on the tube is better than pins on the tube. The paper gives details of the CFD models and presents the results obtained from simulations carried out using these models.
Applied Energy arrow_drop_down UniSA Research Outputs RepositoryArticle . 2013 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2012.10.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu170 citations 170 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Applied Energy arrow_drop_down UniSA Research Outputs RepositoryArticle . 2013 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2012.10.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 AustraliaPublisher:Elsevier BV Authors: P R Roach; Martin Belusko; Frank Bruno;handle: 1959.8/152910
Abstract Night cooling strategies are gaining popularity with the raise in profile of Green Buildings and Sustainable rating systems. The use of night ventilation to exploit lower diurnal temperatures to pre-cool the building structure in preparation for the following day's gains is well known; however, the role which the facade has to contribute to night ventilation is not fully understood. Researchers are familiar with economiser cycles operation for central air conditioning systems and the ability of these to operate in night ventilation mode with simple modifications to the control strategy requires validation. Simulations were carried out for a typical office building in Adelaide to demonstrate that a traditional economiser cycle operating 24 h each day under thermostatic control delivers energy savings. A number of facade structures were considered and the effect of varying the location of the thermal mass within the structure was investigated. The paper gives details on the model used for the simulations and discusses the results obtained. It was found that increasing the mass on the inside of the facade is preferred over the external for the warm marine climate zone of Adelaide, South Australia.
Energy and Buildings arrow_drop_down UniSA Research Outputs RepositoryArticle . 2013 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2013.06.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu31 citations 31 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Energy and Buildings arrow_drop_down UniSA Research Outputs RepositoryArticle . 2013 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2013.06.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 AustraliaPublisher:Elsevier BV Authors: P R Roach; Martin Belusko; Frank Bruno;handle: 1959.8/152910
Abstract Night cooling strategies are gaining popularity with the raise in profile of Green Buildings and Sustainable rating systems. The use of night ventilation to exploit lower diurnal temperatures to pre-cool the building structure in preparation for the following day's gains is well known; however, the role which the facade has to contribute to night ventilation is not fully understood. Researchers are familiar with economiser cycles operation for central air conditioning systems and the ability of these to operate in night ventilation mode with simple modifications to the control strategy requires validation. Simulations were carried out for a typical office building in Adelaide to demonstrate that a traditional economiser cycle operating 24 h each day under thermostatic control delivers energy savings. A number of facade structures were considered and the effect of varying the location of the thermal mass within the structure was investigated. The paper gives details on the model used for the simulations and discusses the results obtained. It was found that increasing the mass on the inside of the facade is preferred over the external for the warm marine climate zone of Adelaide, South Australia.
Energy and Buildings arrow_drop_down UniSA Research Outputs RepositoryArticle . 2013 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2013.06.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu31 citations 31 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Energy and Buildings arrow_drop_down UniSA Research Outputs RepositoryArticle . 2013 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2013.06.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 AustraliaPublisher:Elsevier BV Authors: Frank Bruno; David Whaley; Martin Belusko; Timothy O'Leary;handle: 11541.2/117876
The rating of buildings using thermal models represents a contrasting regulatory approach to prescriptive measures to improve the energy efficiency of buildings. This paper investigates the relationship between measured household energy use for thermal comfort purposes and the modelled thermal energy calculated under the Nationwide House Energy Rating Scheme (NatHERS), which is used for the regulation of minimum energy performance standards for new housing in Australia. Two different sets of housing in Adelaide, South Australia which were built a decade apart and to significantly different energy performance standards represent the basis of this study. The results show that better insulated houses represented by higher stars under the NatHERS scheme do use less energy for heating and cooling.
Energy and Buildings arrow_drop_down UniSA Research Outputs RepositoryArticle . 2016 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2016.03.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy and Buildings arrow_drop_down UniSA Research Outputs RepositoryArticle . 2016 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2016.03.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 AustraliaPublisher:Elsevier BV Authors: Frank Bruno; David Whaley; Martin Belusko; Timothy O'Leary;handle: 11541.2/117876
The rating of buildings using thermal models represents a contrasting regulatory approach to prescriptive measures to improve the energy efficiency of buildings. This paper investigates the relationship between measured household energy use for thermal comfort purposes and the modelled thermal energy calculated under the Nationwide House Energy Rating Scheme (NatHERS), which is used for the regulation of minimum energy performance standards for new housing in Australia. Two different sets of housing in Adelaide, South Australia which were built a decade apart and to significantly different energy performance standards represent the basis of this study. The results show that better insulated houses represented by higher stars under the NatHERS scheme do use less energy for heating and cooling.
Energy and Buildings arrow_drop_down UniSA Research Outputs RepositoryArticle . 2016 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2016.03.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy and Buildings arrow_drop_down UniSA Research Outputs RepositoryArticle . 2016 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2016.03.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Australia, United KingdomPublisher:Elsevier BV Authors: Liu M; Belusko M; Tay NHS; Bruno F;handle: 11541.2/120617
Abstract Thermal energy storage allows improved dispatch-ability of power from a concentrated solar power plant and increases its annual capacity factor. The selection of an appropriate heat transfer fluid (HTF) is important for designing a cost-effective thermal storage system and to improve the cycle efficiency of the power plant. The current state-of-the-art HTF for tower power plants is molten salts, which have the drawback of having low degradation temperature and high melting temperatures respectively. Alternative HTFs under investigation allow for a much larger range of operation, and can offer other cost and performance advantages. In this study, a comparison of six gaseous and liquid HTFs was carried out to determine their suitability for use in a high temperature thermal storage unit with flat slabs of phase change materials. The comparison is in terms of their thermo-physical properties, heat transfer characteristics between the flat plates and the total delivered electrical energy to the grid. Using a validated mathematical model of phase change material in thin slabs, the HTF outlet temperature, heat transfer rate and liquid fraction profiles were predicted when using different HTFs at a constant heat capacity rate for both charging and discharging processes. For the capacity rate considered, liquid sodium was identified as the best HTF, delivering the highest electrical energy to the grid, achieving 99.4% relative to the ideal case. Solar salt achieved a value of 93.6%, while the gaseous fluids of atmospheric air, air at 10 bar, s-CO 2 at 100 bar and steam at 10 bar achieved between 87.9% and 91.3% of the ideal delivered electricity. Gaseous fluids have the advantage of being able to be used as the working fluid in the power block. This study shows that gaseous fluids are comparable to liquid HTFs in PCM storage facilities.
Solar Energy arrow_drop_down UniSA Research Outputs RepositoryArticle . 2014 . Peer-reviewedData sources: UniSA Research Outputs RepositoryNewcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2013.12.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu56 citations 56 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy arrow_drop_down UniSA Research Outputs RepositoryArticle . 2014 . Peer-reviewedData sources: UniSA Research Outputs RepositoryNewcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2013.12.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Australia, United KingdomPublisher:Elsevier BV Authors: Liu M; Belusko M; Tay NHS; Bruno F;handle: 11541.2/120617
Abstract Thermal energy storage allows improved dispatch-ability of power from a concentrated solar power plant and increases its annual capacity factor. The selection of an appropriate heat transfer fluid (HTF) is important for designing a cost-effective thermal storage system and to improve the cycle efficiency of the power plant. The current state-of-the-art HTF for tower power plants is molten salts, which have the drawback of having low degradation temperature and high melting temperatures respectively. Alternative HTFs under investigation allow for a much larger range of operation, and can offer other cost and performance advantages. In this study, a comparison of six gaseous and liquid HTFs was carried out to determine their suitability for use in a high temperature thermal storage unit with flat slabs of phase change materials. The comparison is in terms of their thermo-physical properties, heat transfer characteristics between the flat plates and the total delivered electrical energy to the grid. Using a validated mathematical model of phase change material in thin slabs, the HTF outlet temperature, heat transfer rate and liquid fraction profiles were predicted when using different HTFs at a constant heat capacity rate for both charging and discharging processes. For the capacity rate considered, liquid sodium was identified as the best HTF, delivering the highest electrical energy to the grid, achieving 99.4% relative to the ideal case. Solar salt achieved a value of 93.6%, while the gaseous fluids of atmospheric air, air at 10 bar, s-CO 2 at 100 bar and steam at 10 bar achieved between 87.9% and 91.3% of the ideal delivered electricity. Gaseous fluids have the advantage of being able to be used as the working fluid in the power block. This study shows that gaseous fluids are comparable to liquid HTFs in PCM storage facilities.
Solar Energy arrow_drop_down UniSA Research Outputs RepositoryArticle . 2014 . Peer-reviewedData sources: UniSA Research Outputs RepositoryNewcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2013.12.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu56 citations 56 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy arrow_drop_down UniSA Research Outputs RepositoryArticle . 2014 . Peer-reviewedData sources: UniSA Research Outputs RepositoryNewcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2013.12.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United Kingdom, AustraliaPublisher:Elsevier BV N.H.S. Tay; N.H.S. Tay; Martin Belusko; Ming Liu; Frank Bruno;handle: 11541.2/125543
Abstract Thermal energy storage systems provide a means to store energy for use in heating and cooling applications at a later time. The storage of thermal energy allows renewable sources of energy to be stored if the time of demand does not coincide with the time of production. It also enables access to off-peak electricity tariffs offered during times of low electricity demand. Storage systems can be charged during the low-cost tariff period and provide heating or cooling later when required. This benefits consumers with lower electricity costs and power generators with demand levelling. Thermal energy storage systems predominantly store heat as sensible heat in a substance. However, during a phase change heat energy can be stored as latent heat. Phase change material (PCM) thermal storage systems can store a greater amount of thermal energy per unit volume than sensible heat storage systems. Historically a drawback of using PCMs as a storage medium has been the low rates of heat transfer. Heat transfer enhancement techniques studied have included the use of additional metallic material and increasing heat transfer surface area such as fins to improve heat transfer rates of the PCM. Although these techniques are effective, they add significant cost and reduce the compactness factor of the thermal energy storage system. Recent research has been conducted on heat transfer enhancement that makes use of moving or transporting the PCM. This method is not only effective for increasing the heat transfer; it is less expensive and maintains a high compactness factor for the thermal energy storage system. This review paper presents the different heat transfer enhancement techniques reported in the literature. It also summarises the research conducted on phase change storage systems where the PCM is moved in the storage system.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2017 . Peer-reviewedData sources: UniSA Research Outputs RepositoryNewcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2016.10.069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu101 citations 101 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2017 . Peer-reviewedData sources: UniSA Research Outputs RepositoryNewcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2016.10.069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United Kingdom, AustraliaPublisher:Elsevier BV N.H.S. Tay; N.H.S. Tay; Martin Belusko; Ming Liu; Frank Bruno;handle: 11541.2/125543
Abstract Thermal energy storage systems provide a means to store energy for use in heating and cooling applications at a later time. The storage of thermal energy allows renewable sources of energy to be stored if the time of demand does not coincide with the time of production. It also enables access to off-peak electricity tariffs offered during times of low electricity demand. Storage systems can be charged during the low-cost tariff period and provide heating or cooling later when required. This benefits consumers with lower electricity costs and power generators with demand levelling. Thermal energy storage systems predominantly store heat as sensible heat in a substance. However, during a phase change heat energy can be stored as latent heat. Phase change material (PCM) thermal storage systems can store a greater amount of thermal energy per unit volume than sensible heat storage systems. Historically a drawback of using PCMs as a storage medium has been the low rates of heat transfer. Heat transfer enhancement techniques studied have included the use of additional metallic material and increasing heat transfer surface area such as fins to improve heat transfer rates of the PCM. Although these techniques are effective, they add significant cost and reduce the compactness factor of the thermal energy storage system. Recent research has been conducted on heat transfer enhancement that makes use of moving or transporting the PCM. This method is not only effective for increasing the heat transfer; it is less expensive and maintains a high compactness factor for the thermal energy storage system. This review paper presents the different heat transfer enhancement techniques reported in the literature. It also summarises the research conducted on phase change storage systems where the PCM is moved in the storage system.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2017 . Peer-reviewedData sources: UniSA Research Outputs RepositoryNewcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2016.10.069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu101 citations 101 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2017 . Peer-reviewedData sources: UniSA Research Outputs RepositoryNewcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2016.10.069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu