- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:Elsevier BV Zhe Sun; David L.S. Hung; Mohamed Nour; Mohamed Nour; Xuesong Li; Shangze Yang; Min Xu; Mingli Cui;Abstract Direct injection spark ignition (DISI) engines have been widely used in passenger cars due to their lower fuel consumption, better controllability, and high efficiency. However, DISI engines are suffering from wall wetting, imperfect mixture formation, excess soot emissions, and cyclic variations. Applying a new fuel atomization technique and using biofuels with their distinctive properties can potentially aid in improving DISI engines. In this research, the effects of isobutanol and 2-butanol and their blends with Toluene Primary Reference Fuel (TPRF) on spray characteristics, DISI engine combustion, and particle number (PN) emissions are investigated for conditions with and without flash boiling of the injected fuel. Spray characteristics are investigated using a constant volume chamber. Then, the combustion, flame propagation, and PN emissions are examined using an optical DISI engine. The fuel temperature is set to 298 K and 453 K for liquid injection and flash boiling injection, respectively. The tested blending ratio is 30 vol% butanol isomers and 70 vol% TPRF. The results of the spray test reveal that liquid fuel plumes are distinctly observed, and butanol blends show a slightly wider spray angle with lower penetration length compared to TPRF. However, under flash boiling injection, the sprays collapse towards the injector axis, forming a more extended single central vapor jet due to the plumes' interaction. Meanwhile, butanol blends yield a narrow spray angle with more extended penetration compared to TPRF. The flame visualization test shows that the flash boiling injection reduced yellow flames compared to liquid fuel injection, reflecting the improvements in mixture formation. Thus, improvements were noted in the heat release and PN emissions. Butanol addition reduced the PN emissions by 43% under regular liquid injection. Flash boiling injection provided an additional 25% reduction in PN emissions.
Proceedings of the C... arrow_drop_down Proceedings of the Combustion InstituteArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.proci.2020.10.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Proceedings of the C... arrow_drop_down Proceedings of the Combustion InstituteArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.proci.2020.10.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:Elsevier BV Zhe Sun; David L.S. Hung; Mohamed Nour; Mohamed Nour; Xuesong Li; Shangze Yang; Min Xu; Mingli Cui;Abstract Direct injection spark ignition (DISI) engines have been widely used in passenger cars due to their lower fuel consumption, better controllability, and high efficiency. However, DISI engines are suffering from wall wetting, imperfect mixture formation, excess soot emissions, and cyclic variations. Applying a new fuel atomization technique and using biofuels with their distinctive properties can potentially aid in improving DISI engines. In this research, the effects of isobutanol and 2-butanol and their blends with Toluene Primary Reference Fuel (TPRF) on spray characteristics, DISI engine combustion, and particle number (PN) emissions are investigated for conditions with and without flash boiling of the injected fuel. Spray characteristics are investigated using a constant volume chamber. Then, the combustion, flame propagation, and PN emissions are examined using an optical DISI engine. The fuel temperature is set to 298 K and 453 K for liquid injection and flash boiling injection, respectively. The tested blending ratio is 30 vol% butanol isomers and 70 vol% TPRF. The results of the spray test reveal that liquid fuel plumes are distinctly observed, and butanol blends show a slightly wider spray angle with lower penetration length compared to TPRF. However, under flash boiling injection, the sprays collapse towards the injector axis, forming a more extended single central vapor jet due to the plumes' interaction. Meanwhile, butanol blends yield a narrow spray angle with more extended penetration compared to TPRF. The flame visualization test shows that the flash boiling injection reduced yellow flames compared to liquid fuel injection, reflecting the improvements in mixture formation. Thus, improvements were noted in the heat release and PN emissions. Butanol addition reduced the PN emissions by 43% under regular liquid injection. Flash boiling injection provided an additional 25% reduction in PN emissions.
Proceedings of the C... arrow_drop_down Proceedings of the Combustion InstituteArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.proci.2020.10.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Proceedings of the C... arrow_drop_down Proceedings of the Combustion InstituteArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.proci.2020.10.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu