- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2018 United KingdomPublisher:Elsevier BV Athanasios Kolios; Ying Jiang; Tosin Somorin; Ayodeji Sowale; Aikaterini Anastasopoulou; Edward J. Anthony; Beatriz Fidalgo; Alison Parker; Ewan McAdam; Leon Williams; Matt Collins; Sean Tyrrel;A probabilistic modelling approach was developed and applied to investigate the energy and environmental performance of an innovative sanitation system, the "Nano-membrane Toilet" (NMT). The system treats human excreta via an advanced energy and water recovery island with the aim of addressing current and future sanitation demands. Due to the complex design and inherent characteristics of the system's input material, there are a number of stochastic variables which may significantly affect the system's performance. The non-intrusive probabilistic approach adopted in this study combines a finite number of deterministic thermodynamic process simulations with an artificial neural network (ANN) approximation model and Monte Carlo simulations (MCS) to assess the effect of system uncertainties on the predicted performance of the NMT system. The joint probability distributions of the process performance indicators suggest a Stirling Engine (SE) power output in the range of 61.5-73 W with a high confidence interval (CI) of 95%. In addition, there is high probability (with 95% CI) that the NMT system can achieve positive net power output between 15.8 and 35 W. A sensitivity study reveals the system power performance is mostly affected by SE heater temperature. Investigation into the environmental performance of the NMT design, including water recovery and CO2/NOx emissions, suggests significant environmental benefits compared to conventional systems. Results of the probabilistic analysis can better inform future improvements on the system design and operational strategy and this probabilistic assessment framework can also be applied to similar complex engineering systems.
CORE arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.02.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 14 citations 14 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.02.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Royal Society of Chemistry (RSC) Funded by:EC | ICOMFLUIDEC| ICOMFLUIDSai Gu; Athanasios Kolios; Dekui Shen; Jiajun Zhang; Jiajun Zhang; Beatriz Fidalgo;doi: 10.1039/c7se00280g
An acid catalyst promotes transmethylation in anisole decomposition through a dual electrophilic attack mechanism, lowering intrinsic energy barriers by up to 60 kcal mol−1.
Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2017License: CC BY NCFull-Text: http://dx.doi.org/10.1039/C7SE00280GData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7se00280g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2017License: CC BY NCFull-Text: http://dx.doi.org/10.1039/C7SE00280GData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7se00280g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Elsevier BV Jie Yu; Jie Yu; C. Berrueco; Beatriz Fidalgo; Lushi Sun; Lushi Sun; Marcos Millan; Nigel Paterson;handle: 10044/1/57371
Abstract This work investigates the effect of temperature and particle size on the product yields and structure of chars obtained from the pyrolysis of Beechwood Chips (BWC), a lignocellulosic biomass. BWC of three different size fractions (0.21–0.50 mm, 0.85–1.70 mm and 2.06–3.15 mm) were pyrolyzed at atmospheric pressure and temperatures ranging from 300 to 900 °C in a fixed bed reactor. Tar and gas yields increased with increasing temperature, while char yield decreased, particularly between 300 and 450 °C. The effect of particle size was mostly observed at temperatures lower than 400 °C as a larger char yield for larger particles due to intraparticle reactions. At higher temperatures the larger surface area in the char fixed bed favoured reactions increasing char and gas yields from the smaller particles. Pyrolysis chars were characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Raman spectroscopy. Loss in oxygenated functional groups and aliphatic side chains with increasing temperature was revealed, along with an increase in the concentration of large aromatic systems, leading to a more ordered char structure but no significant graphitization. The changes in char nature at high temperature led to a loss in their combustion reactivity. Raman spectra indicated that the temperature needed to completely decompose the cellulose structure increased with biomass particle size and the enhanced intraparticle reactions in pyrolysis of large particles was likely to give rise to amorphous carbon structures with small fused ring systems.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2018License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/57371Data sources: Bielefeld Academic Search Engine (BASE)Cranfield University: Collection of E-Research - CERESArticle . 2018License: CC BY NC NDFull-Text: http://dx.doi.org/10.1016/j.jaap.2018.01.018Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital RepositoryJournal of Analytical and Applied PyrolysisArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jaap.2018.01.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 103 citations 103 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2018License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/57371Data sources: Bielefeld Academic Search Engine (BASE)Cranfield University: Collection of E-Research - CERESArticle . 2018License: CC BY NC NDFull-Text: http://dx.doi.org/10.1016/j.jaap.2018.01.018Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital RepositoryJournal of Analytical and Applied PyrolysisArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jaap.2018.01.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 United KingdomPublisher:Elsevier BV Onabanjo, T.; Patchigolla, K.; Wagland, S.T.; Fidalgo, B.; Kolios, A.; McAdam, E.; Parker, A.; Williams, L.; Tyrrel, S.; Cartmell, E.;Non-sewered sanitary systems (NSS) are emerging as one of the solutions to poor sanitation because of the limitations of the conventional flush toilet. These new sanitary systems are expected to safely treat faecal waste and operate without external connections to a sewer, water supply or energy source. The Nano Membrane Toilet (NMT) is a unique domestic-scale sanitary solution currently being developed to treat human waste on-site. This toilet will employ a small-scale gasifier to convert human faeces into products of high energy value. This study investigated the suitability of human faeces as a feedstock for gasification. It quantified the recoverable exergy potential from human faeces and explored the optimal routes for thermal conversion, using a thermodynamic equilibrium model. Fresh human faeces were found to have approximately 70-82 wt.% moisture and 3-6 wt.% ash. Product gas resulting from a typical dry human faeces (0 wt.% moisture) had LHV and exergy values of 17.2 MJ/kg and 24 MJ/kg respectively at optimum equivalence ratio of 0.31, values that are comparable to wood biomass. For suitable conversion of moist faecal samples, near combustion operating conditions are required, if an external energy source is not supplied. This is however at 5% loss in the exergy value of the gas, provided both thermal heat and energy of the gas are recovered. This study shows that the maximum recoverable exergy potential from an average adult moist human faeces can be up to 15 MJ/kg, when the gasifier is operated at optimum equivalence ratio of 0.57, excluding heat losses, distribution or other losses that result from operational activities.
CORE arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefEnergy Conversion and ManagementArticle . 2016License: CC BYData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2016.04.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefEnergy Conversion and ManagementArticle . 2016License: CC BYData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2016.04.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2016 United KingdomPublisher:Elsevier BV Hanak, Dawid P.; Kolios, Athanasios J.; Onabanjo, Tosin; Wagland, Stuart T.; Patchigolla, Kumar; Fidalgo, Beatriz; Manovic, Vasilije; McAdam, Ewan; Parker, Alison; Williams, Leon; Tyrrel, Sean; Cartmell, Elise;With about 2.4 billion people worldwide without access to improved sanitation facilities, there is a strong incentive for development of novel sanitation systems to improve the quality of life and reduce mortality. The Nano Membrane Toilet is expected to provide a unique household-scale system that would produce electricity and recover water from human excrement and urine. This study was undertaken to evaluate the performance of the conceptual energy and water recovery system for the Nano Membrane Toilet designed for a household of ten people and to assess its self-sustainability. A process model of the entire system, including the thermochemical conversion island, a Stirling engine and a water recovery system was developed in Aspen Plus®. The energy and water recovery system for the Nano Membrane Toilet was characterised with the specific net power output of 23.1 Wh/kgsettledsolids and water recovery rate of 13.4 dm3/day in the nominal operating mode. Additionally, if no supernatant was processed, the specific net power output was increased to 69.2 Wh/kgsettledsolids. Such household-scale system would deliver the net power output (1.9-5.8 W). This was found to be enough to charge mobile phones or power clock radios, or provide light for the household using low-voltage LED bulbs.
CORE arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefEnergy Conversion and ManagementArticle . 2016License: CC BYData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2016.07.083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefEnergy Conversion and ManagementArticle . 2016License: CC BYData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2016.07.083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 United StatesPublisher:Elsevier BV Muradov, Nazim; Fidalgo, Beatriz; Gujar, Amit C.; Garceau, Nathaniel; T-Raissi, Ali;Abstract Pyrolysis of fast-growing aquatic biomass - Lemna minor (commonly known as duckweed) with the emphasis on production, characterization and catalytic application of bio-char is reported in this paper. The yield of bio-char was determined as a function of L. minor pyrolysis temperature and sweep gas flow rate. It was found that the pore development during L. minor pyrolysis was not significant and the changes in the reaction conditions (temperature and sweep gas flow rate) did not alter markedly the textural characteristics and BET surface area of the bio-char produced. Thermogravimetric/differential thermogravimetric (TG/DTG) analyses of L. minor and different bio-char samples in inert (helium) and oxidative (air) media showed substantial differences in their TG/DTG patterns. A comparison of scanning electron micrographs (SEM) of L. minor, bio-char and ash indicated that the basic structural features of L. minor remained intact and were not affected by thermolysis. The inorganic ash content of L. minor derived bio-char is significantly higher than that of typical terrestrial (plant) biomass. The energy dispersive spectroscopic (EDS) analysis of L. minor ash showed that it mostly consisted of silica, and small quantities of Na, K and Ca compounds. The treatment of bio-char with CO2 at 800 °C increased its BET surface area. It was found that CO2-treated bio-char exhibited appreciable initial catalytic activity in biogas reforming.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2012.03.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu107 citations 107 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2012.03.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 SpainPublisher:Elsevier BV Authors: Domínguez Padilla, Antonio; Fernández Díez, Yolanda; Fidalgo Fernández, Beatriz; Pis Martínez, José Juan; +1 AuthorsDomínguez Padilla, Antonio; Fernández Díez, Yolanda; Fidalgo Fernández, Beatriz; Pis Martínez, José Juan; Menéndez Díaz, José Ángel;This paper assesses the feasibility of producing syngas from sewage sludge via two pyrolysis processes: microwave-induced pyrolysis (MWP) and conventional pyrolysis (CP). The changes in the composition of the produced gas as a function of the pyrolysis treatment and the initial moisture content of the sludge were evaluated. It was found that MWP produced a gas with a higher concentration of syngas than CP, reaching values of up to 94vol%. Moreover, this gas showed a CO2 and CH4 concentration around 50% and 70%, respectively, lower than that obtained in the gas from CP. With respect to the effect of moisture on gas composition, this was more pronounced in CP than in MWP. Thus, the presence of moisture increases the concentration of H2 and CO2 and decreases that of CO, especially when CP was used. In order to elucidate the behaviour of CO2 during the pyrolysis, the CO2 gasification kinetics of the char obtained from the pyrolysis were investigated. It was established that in microwave heating the gasification reaction is much more favoured than in conventional heating. Therefore, the low concentration of CO2 and the high concentration of CO in the microwave pyrolysis gas could be due to the self-gasification of the residue by the CO2 produced during the devolatilization of the sewage sludge in the pyrolysis process.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2008 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2007.06.075&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 171 citations 171 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
visibility 37visibility views 37 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2008 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2007.06.075&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 United KingdomPublisher:Elsevier BV Ayodeji Sowale; Athanasios J. Kolios; Beatriz Fidalgo; Tosin Somorin; Alison Parker; Leon Williams; Matt Collins; Ewan McAdam; Sean Tyrrel;The demand for better hygiene has increased the need for developing more effective sanitation systems and facilities for the safe disposal of human urine and faeces. Non-Sewered Sanitary systems are considered to be one of the promising alternative solutions to the existing flush toilet system. An example of these systems is the Nano Membrane Toilet (NMT) system being developed at Cranfield University, which targets the safe disposal of human waste while generating power and recovering water. The NMT will generate energy from the conversion of human waste with the use of a micro-combustor; the heat produced will power a Stirling engine connected to a linear alternator to generate electricity. This study presents a numerical investigation of the thermodynamic analysis and operational characteristics of a quasi steady state model of the gamma type Stirling engine integrated into a combustor in the back end of the NMT system. The effects of the working gas, at different temperatures, on the Stirling engine performance are also presented. The results show that with the heater temperature of 390 °C from the heat supply via conduction at 820 W from the flue gas, the Stirling engine generates a daily power output of 27 Wh/h at a frequency of 23.85 Hz.
CORE arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.03.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.03.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Funded by:UKRI | Development of fast pyrol..., EC | ICOMFLUIDUKRI| Development of fast pyrolysis based advanced biofuel technologies for biofuels ,EC| ICOMFLUIDAuthors: Gadkari, S; Fidalgo, B; Gu, S;AbstractA comprehensive three-dimensional mathematical model is developed for studying the microwave-assisted pyrolysis of biomass. Kraft Lignin is considered as biomass feedstock in the model, and a mixture of lignin and char, is used as the sample for pyrolysis. A lumped kinetic model which considers three lumped pyrolysis products (gas, liquid and remaining solid fractions) is coupled with the governing equations for the microwave field, heat transfer, mass transfer, Darcy fluid flow and a transient numerical analysis is performed. The distribution of electric field in the microwave cavity, and the distribution of electric field, temperature, and pyrolysis products within the lignin sample are presented. The lignin sample is predicted to undergo volumetric heating when subjected to microwave heating. Accordingly the reaction zone extends from the center of the biomass sample bed towards the outer surface. Preliminary evaluation of the applicability of the model for assessing the effect of different parameters on the microwave pyrolysis of lignin is also carried out.
Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Surrey Open Research repositoryArticle . 2016License: CC BYFull-Text: http://epubs.surrey.ac.uk/812610/Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2016.10.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 42 citations 42 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Surrey Open Research repositoryArticle . 2016License: CC BYFull-Text: http://epubs.surrey.ac.uk/812610/Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2016.10.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 United KingdomPublisher:Elsevier BV Funded by:EC | ICOMFLUID, UKRI | Development of fast pyrol...EC| ICOMFLUID ,UKRI| Development of fast pyrolysis based advanced biofuel technologies for biofuelsAuthors: Shemfe, Mobolaji B.; Whittaker, Carly; Gu, Sai; Fidalgo, Beatriz;AbstractThis study examines the GHG emissions associated with producing bio-hydrocarbons via fast pyrolysis of Miscanthus. The feedstock is then upgraded to bio-oil products via hydroprocessing and zeolite cracking. Inventory data for this study were obtained from current commercial cultivation practices of Miscanthus in the UK and state-of-the-art process models developed in Aspen Plus®. The system boundary considered spans from the cultivation of Miscanthus to conversion of the pyrolysis-derived bio-oil into bio-hydrocarbons up to the refinery gate. The Miscanthus cultivation subsystem considers three scenarios for soil organic carbon (SOC) sequestration rates. These were assumed as follows: (i) excluding (SOC), (ii) low SOC and (iii) high (SOC) for best and worst cases. Overall, Miscanthus cultivation contributed moderate to negative values to GHG emissions, from analysis of excluding SOC to high SOC scenarios. Furthermore, the rate of SOC in the Miscanthus cultivation subsystem has significant effects on total GHG emissions. Where SOC is excluded, the fast pyrolysis subsystem shows the highest positive contribution to GHG emissions, while the credit for exported electricity was the main ‘negative’ GHG emission contributor for both upgrading pathways. Comparison between the bio-hydrocarbons produced from the two upgrading routes and fossil fuels indicates GHG emission savings between 68% and 87%. Sensitivity analysis reveals that bio-hydrocarbon yield and nitrogen gas feed to the fast pyrolysis reactor are the main parameters that influence the total GHG emissions for both pathways.
Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/http://dx.do...Other literature typeData sources: European Union Open Data PortalUniversity of Surrey Open Research repositoryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.04.113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 26 citations 26 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/http://dx.do...Other literature typeData sources: European Union Open Data PortalUniversity of Surrey Open Research repositoryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.04.113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2018 United KingdomPublisher:Elsevier BV Athanasios Kolios; Ying Jiang; Tosin Somorin; Ayodeji Sowale; Aikaterini Anastasopoulou; Edward J. Anthony; Beatriz Fidalgo; Alison Parker; Ewan McAdam; Leon Williams; Matt Collins; Sean Tyrrel;A probabilistic modelling approach was developed and applied to investigate the energy and environmental performance of an innovative sanitation system, the "Nano-membrane Toilet" (NMT). The system treats human excreta via an advanced energy and water recovery island with the aim of addressing current and future sanitation demands. Due to the complex design and inherent characteristics of the system's input material, there are a number of stochastic variables which may significantly affect the system's performance. The non-intrusive probabilistic approach adopted in this study combines a finite number of deterministic thermodynamic process simulations with an artificial neural network (ANN) approximation model and Monte Carlo simulations (MCS) to assess the effect of system uncertainties on the predicted performance of the NMT system. The joint probability distributions of the process performance indicators suggest a Stirling Engine (SE) power output in the range of 61.5-73 W with a high confidence interval (CI) of 95%. In addition, there is high probability (with 95% CI) that the NMT system can achieve positive net power output between 15.8 and 35 W. A sensitivity study reveals the system power performance is mostly affected by SE heater temperature. Investigation into the environmental performance of the NMT design, including water recovery and CO2/NOx emissions, suggests significant environmental benefits compared to conventional systems. Results of the probabilistic analysis can better inform future improvements on the system design and operational strategy and this probabilistic assessment framework can also be applied to similar complex engineering systems.
CORE arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.02.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 14 citations 14 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.02.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Royal Society of Chemistry (RSC) Funded by:EC | ICOMFLUIDEC| ICOMFLUIDSai Gu; Athanasios Kolios; Dekui Shen; Jiajun Zhang; Jiajun Zhang; Beatriz Fidalgo;doi: 10.1039/c7se00280g
An acid catalyst promotes transmethylation in anisole decomposition through a dual electrophilic attack mechanism, lowering intrinsic energy barriers by up to 60 kcal mol−1.
Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2017License: CC BY NCFull-Text: http://dx.doi.org/10.1039/C7SE00280GData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7se00280g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2017License: CC BY NCFull-Text: http://dx.doi.org/10.1039/C7SE00280GData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7se00280g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Elsevier BV Jie Yu; Jie Yu; C. Berrueco; Beatriz Fidalgo; Lushi Sun; Lushi Sun; Marcos Millan; Nigel Paterson;handle: 10044/1/57371
Abstract This work investigates the effect of temperature and particle size on the product yields and structure of chars obtained from the pyrolysis of Beechwood Chips (BWC), a lignocellulosic biomass. BWC of three different size fractions (0.21–0.50 mm, 0.85–1.70 mm and 2.06–3.15 mm) were pyrolyzed at atmospheric pressure and temperatures ranging from 300 to 900 °C in a fixed bed reactor. Tar and gas yields increased with increasing temperature, while char yield decreased, particularly between 300 and 450 °C. The effect of particle size was mostly observed at temperatures lower than 400 °C as a larger char yield for larger particles due to intraparticle reactions. At higher temperatures the larger surface area in the char fixed bed favoured reactions increasing char and gas yields from the smaller particles. Pyrolysis chars were characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Raman spectroscopy. Loss in oxygenated functional groups and aliphatic side chains with increasing temperature was revealed, along with an increase in the concentration of large aromatic systems, leading to a more ordered char structure but no significant graphitization. The changes in char nature at high temperature led to a loss in their combustion reactivity. Raman spectra indicated that the temperature needed to completely decompose the cellulose structure increased with biomass particle size and the enhanced intraparticle reactions in pyrolysis of large particles was likely to give rise to amorphous carbon structures with small fused ring systems.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2018License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/57371Data sources: Bielefeld Academic Search Engine (BASE)Cranfield University: Collection of E-Research - CERESArticle . 2018License: CC BY NC NDFull-Text: http://dx.doi.org/10.1016/j.jaap.2018.01.018Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital RepositoryJournal of Analytical and Applied PyrolysisArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jaap.2018.01.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 103 citations 103 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2018License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/57371Data sources: Bielefeld Academic Search Engine (BASE)Cranfield University: Collection of E-Research - CERESArticle . 2018License: CC BY NC NDFull-Text: http://dx.doi.org/10.1016/j.jaap.2018.01.018Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital RepositoryJournal of Analytical and Applied PyrolysisArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jaap.2018.01.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 United KingdomPublisher:Elsevier BV Onabanjo, T.; Patchigolla, K.; Wagland, S.T.; Fidalgo, B.; Kolios, A.; McAdam, E.; Parker, A.; Williams, L.; Tyrrel, S.; Cartmell, E.;Non-sewered sanitary systems (NSS) are emerging as one of the solutions to poor sanitation because of the limitations of the conventional flush toilet. These new sanitary systems are expected to safely treat faecal waste and operate without external connections to a sewer, water supply or energy source. The Nano Membrane Toilet (NMT) is a unique domestic-scale sanitary solution currently being developed to treat human waste on-site. This toilet will employ a small-scale gasifier to convert human faeces into products of high energy value. This study investigated the suitability of human faeces as a feedstock for gasification. It quantified the recoverable exergy potential from human faeces and explored the optimal routes for thermal conversion, using a thermodynamic equilibrium model. Fresh human faeces were found to have approximately 70-82 wt.% moisture and 3-6 wt.% ash. Product gas resulting from a typical dry human faeces (0 wt.% moisture) had LHV and exergy values of 17.2 MJ/kg and 24 MJ/kg respectively at optimum equivalence ratio of 0.31, values that are comparable to wood biomass. For suitable conversion of moist faecal samples, near combustion operating conditions are required, if an external energy source is not supplied. This is however at 5% loss in the exergy value of the gas, provided both thermal heat and energy of the gas are recovered. This study shows that the maximum recoverable exergy potential from an average adult moist human faeces can be up to 15 MJ/kg, when the gasifier is operated at optimum equivalence ratio of 0.57, excluding heat losses, distribution or other losses that result from operational activities.
CORE arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefEnergy Conversion and ManagementArticle . 2016License: CC BYData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2016.04.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefEnergy Conversion and ManagementArticle . 2016License: CC BYData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2016.04.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2016 United KingdomPublisher:Elsevier BV Hanak, Dawid P.; Kolios, Athanasios J.; Onabanjo, Tosin; Wagland, Stuart T.; Patchigolla, Kumar; Fidalgo, Beatriz; Manovic, Vasilije; McAdam, Ewan; Parker, Alison; Williams, Leon; Tyrrel, Sean; Cartmell, Elise;With about 2.4 billion people worldwide without access to improved sanitation facilities, there is a strong incentive for development of novel sanitation systems to improve the quality of life and reduce mortality. The Nano Membrane Toilet is expected to provide a unique household-scale system that would produce electricity and recover water from human excrement and urine. This study was undertaken to evaluate the performance of the conceptual energy and water recovery system for the Nano Membrane Toilet designed for a household of ten people and to assess its self-sustainability. A process model of the entire system, including the thermochemical conversion island, a Stirling engine and a water recovery system was developed in Aspen Plus®. The energy and water recovery system for the Nano Membrane Toilet was characterised with the specific net power output of 23.1 Wh/kgsettledsolids and water recovery rate of 13.4 dm3/day in the nominal operating mode. Additionally, if no supernatant was processed, the specific net power output was increased to 69.2 Wh/kgsettledsolids. Such household-scale system would deliver the net power output (1.9-5.8 W). This was found to be enough to charge mobile phones or power clock radios, or provide light for the household using low-voltage LED bulbs.
CORE arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefEnergy Conversion and ManagementArticle . 2016License: CC BYData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2016.07.083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefEnergy Conversion and ManagementArticle . 2016License: CC BYData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2016.07.083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 United StatesPublisher:Elsevier BV Muradov, Nazim; Fidalgo, Beatriz; Gujar, Amit C.; Garceau, Nathaniel; T-Raissi, Ali;Abstract Pyrolysis of fast-growing aquatic biomass - Lemna minor (commonly known as duckweed) with the emphasis on production, characterization and catalytic application of bio-char is reported in this paper. The yield of bio-char was determined as a function of L. minor pyrolysis temperature and sweep gas flow rate. It was found that the pore development during L. minor pyrolysis was not significant and the changes in the reaction conditions (temperature and sweep gas flow rate) did not alter markedly the textural characteristics and BET surface area of the bio-char produced. Thermogravimetric/differential thermogravimetric (TG/DTG) analyses of L. minor and different bio-char samples in inert (helium) and oxidative (air) media showed substantial differences in their TG/DTG patterns. A comparison of scanning electron micrographs (SEM) of L. minor, bio-char and ash indicated that the basic structural features of L. minor remained intact and were not affected by thermolysis. The inorganic ash content of L. minor derived bio-char is significantly higher than that of typical terrestrial (plant) biomass. The energy dispersive spectroscopic (EDS) analysis of L. minor ash showed that it mostly consisted of silica, and small quantities of Na, K and Ca compounds. The treatment of bio-char with CO2 at 800 °C increased its BET surface area. It was found that CO2-treated bio-char exhibited appreciable initial catalytic activity in biogas reforming.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2012.03.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu107 citations 107 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2012.03.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 SpainPublisher:Elsevier BV Authors: Domínguez Padilla, Antonio; Fernández Díez, Yolanda; Fidalgo Fernández, Beatriz; Pis Martínez, José Juan; +1 AuthorsDomínguez Padilla, Antonio; Fernández Díez, Yolanda; Fidalgo Fernández, Beatriz; Pis Martínez, José Juan; Menéndez Díaz, José Ángel;This paper assesses the feasibility of producing syngas from sewage sludge via two pyrolysis processes: microwave-induced pyrolysis (MWP) and conventional pyrolysis (CP). The changes in the composition of the produced gas as a function of the pyrolysis treatment and the initial moisture content of the sludge were evaluated. It was found that MWP produced a gas with a higher concentration of syngas than CP, reaching values of up to 94vol%. Moreover, this gas showed a CO2 and CH4 concentration around 50% and 70%, respectively, lower than that obtained in the gas from CP. With respect to the effect of moisture on gas composition, this was more pronounced in CP than in MWP. Thus, the presence of moisture increases the concentration of H2 and CO2 and decreases that of CO, especially when CP was used. In order to elucidate the behaviour of CO2 during the pyrolysis, the CO2 gasification kinetics of the char obtained from the pyrolysis were investigated. It was established that in microwave heating the gasification reaction is much more favoured than in conventional heating. Therefore, the low concentration of CO2 and the high concentration of CO in the microwave pyrolysis gas could be due to the self-gasification of the residue by the CO2 produced during the devolatilization of the sewage sludge in the pyrolysis process.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2008 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2007.06.075&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 171 citations 171 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
visibility 37visibility views 37 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2008 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2007.06.075&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 United KingdomPublisher:Elsevier BV Ayodeji Sowale; Athanasios J. Kolios; Beatriz Fidalgo; Tosin Somorin; Alison Parker; Leon Williams; Matt Collins; Ewan McAdam; Sean Tyrrel;The demand for better hygiene has increased the need for developing more effective sanitation systems and facilities for the safe disposal of human urine and faeces. Non-Sewered Sanitary systems are considered to be one of the promising alternative solutions to the existing flush toilet system. An example of these systems is the Nano Membrane Toilet (NMT) system being developed at Cranfield University, which targets the safe disposal of human waste while generating power and recovering water. The NMT will generate energy from the conversion of human waste with the use of a micro-combustor; the heat produced will power a Stirling engine connected to a linear alternator to generate electricity. This study presents a numerical investigation of the thermodynamic analysis and operational characteristics of a quasi steady state model of the gamma type Stirling engine integrated into a combustor in the back end of the NMT system. The effects of the working gas, at different temperatures, on the Stirling engine performance are also presented. The results show that with the heater temperature of 390 °C from the heat supply via conduction at 820 W from the flue gas, the Stirling engine generates a daily power output of 27 Wh/h at a frequency of 23.85 Hz.
CORE arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.03.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.03.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Funded by:UKRI | Development of fast pyrol..., EC | ICOMFLUIDUKRI| Development of fast pyrolysis based advanced biofuel technologies for biofuels ,EC| ICOMFLUIDAuthors: Gadkari, S; Fidalgo, B; Gu, S;AbstractA comprehensive three-dimensional mathematical model is developed for studying the microwave-assisted pyrolysis of biomass. Kraft Lignin is considered as biomass feedstock in the model, and a mixture of lignin and char, is used as the sample for pyrolysis. A lumped kinetic model which considers three lumped pyrolysis products (gas, liquid and remaining solid fractions) is coupled with the governing equations for the microwave field, heat transfer, mass transfer, Darcy fluid flow and a transient numerical analysis is performed. The distribution of electric field in the microwave cavity, and the distribution of electric field, temperature, and pyrolysis products within the lignin sample are presented. The lignin sample is predicted to undergo volumetric heating when subjected to microwave heating. Accordingly the reaction zone extends from the center of the biomass sample bed towards the outer surface. Preliminary evaluation of the applicability of the model for assessing the effect of different parameters on the microwave pyrolysis of lignin is also carried out.
Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Surrey Open Research repositoryArticle . 2016License: CC BYFull-Text: http://epubs.surrey.ac.uk/812610/Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2016.10.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 42 citations 42 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Surrey Open Research repositoryArticle . 2016License: CC BYFull-Text: http://epubs.surrey.ac.uk/812610/Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2016.10.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 United KingdomPublisher:Elsevier BV Funded by:EC | ICOMFLUID, UKRI | Development of fast pyrol...EC| ICOMFLUID ,UKRI| Development of fast pyrolysis based advanced biofuel technologies for biofuelsAuthors: Shemfe, Mobolaji B.; Whittaker, Carly; Gu, Sai; Fidalgo, Beatriz;AbstractThis study examines the GHG emissions associated with producing bio-hydrocarbons via fast pyrolysis of Miscanthus. The feedstock is then upgraded to bio-oil products via hydroprocessing and zeolite cracking. Inventory data for this study were obtained from current commercial cultivation practices of Miscanthus in the UK and state-of-the-art process models developed in Aspen Plus®. The system boundary considered spans from the cultivation of Miscanthus to conversion of the pyrolysis-derived bio-oil into bio-hydrocarbons up to the refinery gate. The Miscanthus cultivation subsystem considers three scenarios for soil organic carbon (SOC) sequestration rates. These were assumed as follows: (i) excluding (SOC), (ii) low SOC and (iii) high (SOC) for best and worst cases. Overall, Miscanthus cultivation contributed moderate to negative values to GHG emissions, from analysis of excluding SOC to high SOC scenarios. Furthermore, the rate of SOC in the Miscanthus cultivation subsystem has significant effects on total GHG emissions. Where SOC is excluded, the fast pyrolysis subsystem shows the highest positive contribution to GHG emissions, while the credit for exported electricity was the main ‘negative’ GHG emission contributor for both upgrading pathways. Comparison between the bio-hydrocarbons produced from the two upgrading routes and fossil fuels indicates GHG emission savings between 68% and 87%. Sensitivity analysis reveals that bio-hydrocarbon yield and nitrogen gas feed to the fast pyrolysis reactor are the main parameters that influence the total GHG emissions for both pathways.
Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/http://dx.do...Other literature typeData sources: European Union Open Data PortalUniversity of Surrey Open Research repositoryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.04.113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 26 citations 26 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/http://dx.do...Other literature typeData sources: European Union Open Data PortalUniversity of Surrey Open Research repositoryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.04.113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu