- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Springer Science and Business Media LLC Funded by:DFGDFGFelsmann, Katja; Baudis, Mathias; Kayler, Zachary E.; Puhlmann, Heike; Ulrich, Andreas; Gessler, Arthur;Abstract Key message Understory plant communities are essential for the recruitment of trees making up future forests. Independent of plant diversity, the understory across different forest ecosystems shows considerable physiological acclimation and structural stability towards drought events, which are expected to occur more frequently in future. Context Understory plant communities are essential for the recruitment of trees making up the future forest. It is so far poorly understood how climate change will affect understory in beech and conifer forests managed at different intensity levels. Aims We hypothesized that drought would affect transpiration and carbon isotope discrimination but not species richness and diversity. Moreover, we assumed that forest management intensity will modify the responses to drought of the understory community. Methods We set up roofs in forests with a gradient of management intensities (unmanaged beech—managed beech—intensively managed conifer forests) in three regions across Germany. A drought event close to the 2003 drought was imposed in two consecutive years. Results After 2 years, the realized precipitation reduction was between 27% and 34%. The averaged water content in the top 20 cm of the soil under the roof was reduced by 2% to 8% compared with the control. In the 1st year, leaf level transpiration was reduced for different functional groups, which scaled to community transpiration modified by additional effects of drought on functional group leaf area. Acclimation effects in most functional groups were observed in the 2nd year. Conclusion Forest understory shows high plasticity at the leaf and community level, and high structural stability to changing climate conditions with drought events.
Hyper Article en Lig... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13595-017-0681-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13595-017-0681-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018Embargo end date: 22 Mar 2018 Switzerland, SwedenPublisher:Springer Science and Business Media LLC Thomas Wieloch; Ina Ehlers; Jun Yu; David Frank; Michael Grabner; Arthur Gessler; Jürgen Schleucher;AbstractMeasurements of carbon isotope contents of plant organic matter provide important information in diverse fields such as plant breeding, ecophysiology, biogeochemistry and paleoclimatology. They are currently based on13C/12C ratios of specific, whole metabolites, but we show here that intramolecular ratios provide higher resolution information. In the glucose units of tree-ring cellulose of 12 tree species, we detected large differences in13C/12C ratios (>10‰) among carbon atoms, which provide isotopically distinct inputs to major global C pools, including wood and soil organic matter. Thus, considering position-specific differences can improve characterisation of soil-to-atmosphere carbon fluxes and soil metabolism. In aPinus nigratree-ring archive formed from 1961 to 1995, we found novel13C signals, and show that intramolecular analysis enables more comprehensive and precise signal extraction from tree rings, and thus higher resolution reconstruction of plants’ responses to climate change. Moreover, we propose an ecophysiological mechanism for the introduction of a13C signal, which links an environmental shift to the triggered metabolic shift and its intramolecular13C signature. In conclusion, intramolecular13C analyses can provide valuable new information about long-term metabolic dynamics for numerous applications.
Scientific Reports arrow_drop_down Publikationer från Umeå universitetArticle . 2018 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2018 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-018-23422-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Scientific Reports arrow_drop_down Publikationer från Umeå universitetArticle . 2018 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2018 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-018-23422-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Embargo end date: 01 Jan 2020 France, SwitzerlandPublisher:Wiley Funded by:EC | REFORESTEC| REFORESTMartina Peter; Andreas Rigling; Andreas Rigling; Christian Rellstab; Barbara Moser; Thomas Wohlgemuth; Marco M. Lehmann; Arthur Gessler; Arthur Gessler; Arun K. Bose; Arun K. Bose; Alexandru Milcu;AbstractLong generation times have been suggested to hamper rapid genetic adaptation of organisms to changing environmental conditions. We examined if environmental memory of the parental Scots pines (Pinus sylvestris L.) drive offspring survival and growth. We used seeds from trees growing under naturally dry conditions (control), irrigated trees (irrigated from 2003 to 2016), and formerly irrigated trees (“irrigation stop”; irrigated from 2003–2013; control condition since 2014). We performed two experiments, one under controlled greenhouse conditions and one at the experimental field site. In the greenhouse, the offspring from control trees exposed regularly to drought were more tolerant to hot–drought conditions than the offspring from irrigated trees and showed lower mortality even though there was no genetic difference. However, under optimal conditions (high water supply and full sunlight), these offspring showed lower growth and were outperformed by the offspring of the irrigated trees. This different offspring growth, with the offspring of the “irrigation‐stop” trees showing intermediate responses, points to the important role of transgenerational memory for the long‐term acclimation of trees. Such memory effects, however, may be overridden by climatic extremes during germination and early growth stages such as the European 2018 mega‐drought that impacted our field experiment.
Plant Cell & Environ... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Plant Cell & EnvironmentArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/pce.13729&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 35 citations 35 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Plant Cell & Environ... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Plant Cell & EnvironmentArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/pce.13729&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Italy, France, AustraliaPublisher:Wiley Funded by:SNSF | The effects of drought on..., DFG, EC | FUNDIVEUROPESNSF| The effects of drought on the interaction between carbon and nitrogen relations in trees ,DFG ,EC| FUNDIVEUROPEForrester, David I.; Bonal, Damien; Dawud, Seid; Gessler, Arthur; Granier, André; Pollastrini, Martina; Grossiord, Charlotte;handle: 2158/1113477 , 11343/291547
Summary Drought frequency and intensity are predicted to increase in many parts of the Northern Hemisphere and the effects of such changes on forest growth and tree mortality are already evident in many regions around the world. Mixed‐species forests and increasing tree species diversity have been put forward as important risk reduction and adaptation strategies in the face of climate change. However, little is known about whether the species interactions that occur in diverse forests will reduce drought susceptibility or water stress. In this study, we focused on the effect of drought on individual tree species (n = 16) within six regions of Europe and assessed whether this response was related to tree species diversity and stand density, and whether community‐level responses resulted from many similar or contrasting species‐level responses. For each species in each plot, we calculated the increase in carbon isotope composition of latewood from a wet to a dry year (Δδ13C) as an estimate of its drought stress level. When significant community‐level relationships occurred (three of six regions), there was only one species within the given community that showed a significant relationship (three of 25 species–region combinations), showing that information about a single species can be a poor indicator of the response of other species or the whole community. There were many two‐species mixtures in which both species were less water‐stressed compared with their monocultures, but also many mixtures where both species were more stressed compared with their monocultures. Furthermore, a given species combination responded differently in different regions. Synthesis and applications. Our study shows that drought stress may sometimes be reduced in mixed‐species forests, but this is not a general pattern, and even varies between sites for a given combination. The management or prediction of drought stress requires consideration of the physiological characteristics of the mixed species, and how this complements the water‐related climatic and edaphic features of the site, rather than species richness.
Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2016Data sources: Flore (Florence Research Repository)INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverJournal of Applied EcologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2664.12745&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 79 citations 79 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2016Data sources: Flore (Florence Research Repository)INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverJournal of Applied EcologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2664.12745&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Report 2020Embargo end date: 01 Jan 2022 Germany, SwitzerlandPublisher:Wiley Funded by:DFGDFGMatthias Saurer; Tobias Gebauer; Charles A. Nock; Charles A. Nock; Peter Hajek; Christian Messier; Christian Messier; Alain Paquette; Bernhard Schuldt; Arthur Gessler; Arthur Gessler; Michael Scherer-Lorenzen; Roman M. Link; Laura Rose; Jürgen Bauhus; Kyle R. Kovach;AbstractUnprecedented tree dieback across Central Europe caused by recent global change‐type drought events highlights the need for a better mechanistic understanding of drought‐induced tree mortality. Although numerous physiological risk factors have been identified, the importance of two principal mechanisms, hydraulic failure and carbon starvation, is still debated. It further remains largely unresolved how the local neighborhood composition affects individual mortality risk. We studied 9435 young trees of 12 temperate species planted in a diversity experiment in 2013 to assess how hydraulic traits, carbon dynamics, pest infestation, tree height and neighborhood competition influence individual mortality risk. Following the most extreme global change‐type drought since record in 2018, one third of these trees died. Across species, hydraulic safety margins (HSMs) were negatively and a shift towards a higher sugar fraction in the non‐structural carbohydrate (NSC) pool positively associated with mortality risk. Moreover, trees infested by bark beetles had a higher mortality risk, and taller trees a lower mortality risk. Most neighborhood interactions were beneficial, although neighborhood effects were highly species‐specific. Species that suffered more from drought, especially Larix spp. and Betula spp., tended to increase the survival probability of their neighbors and vice versa. While severe tissue dehydration marks the final stage of drought‐induced tree mortality, we show that hydraulic failure is interrelated with a series of other, mutually inclusive processes. These include shifts in NSC pools driven by osmotic adjustment and/or starch depletion as well as pest infestation and are modulated by the size and species identity of a tree and its neighbors. A more holistic view that accounts for multiple causes of drought‐induced tree mortality is required to improve predictions of trends in global forest dynamics and to identify mutually beneficial species combinations.
University of Freibu... arrow_drop_down University of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/226269Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16146&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu70 citations 70 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Freibu... arrow_drop_down University of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/226269Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16146&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Germany, Germany, Finland, SwitzerlandPublisher:Proceedings of the National Academy of Sciences Funded by:SNSF | The effects of drought on..., SNSF | Acclimation and environme...SNSF| The effects of drought on the interaction between carbon and nitrogen relations in trees ,SNSF| Acclimation and environmental memory - how do trees adjust to warmer droughts on different time scales and where are the limits?Jobin Joseph; Matthias Saurer; Nadine K. Ruehr; Mai-He Li; Mai-He Li; Matthias Haeni; Andreas Rigling; Andreas Rigling; Roland A. Werner; Marco M. Lehmann; Arthur Gessler; Arthur Gessler; Marcus Schaub; Ivano Brunner; Frank M. Thomas; Jörg Luster; Gerd Gleixner; Leonie Schönbeck; Frank Hagedorn; Willy Werner; Henrik Hartmann; Martina Peter; Günter Hoch; Benjamin Stern; Christian Hug; Christian Poll; Bernhard Backes; Ansgar Kahmen; Kaisa Rissanen; Corinne Bloch; Decai Gao; Decai Gao; Thomas Wohlgemuth;pmid: 32958662
pmc: PMC7547207
Significance Climate change increases the frequency of drought events and leads to higher variability in precipitation. Drought impairs rhizosphere (root and the root-associated microbiome) functioning in trees and leads to a reduced assimilate supply belowground. It remains unclear if rhizosphere and thus whole-tree functioning can quickly recover after drought release. We show that rhizosphere metabolic activity in previously drought-exposed 100-y-old Scots pine increased in response to subtle soil moisture increases (induced by light rainfall). As a consequence of this activity change, the belowground allocation of new assimilates was immediately stimulated. Even light rainfall events can lead to a fast recovery of rhizosphere functioning and the increased C and energy demand is instantly met by altered whole-tree assimilate allocation.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiPublikationenserver der Georg-August-Universität GöttingenArticle . 2023Proceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2014084117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 61 citations 61 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiPublikationenserver der Georg-August-Universität GöttingenArticle . 2023Proceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2014084117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 Italy, Netherlands, Belgium, Italy, Finland, DenmarkPublisher:Elsevier BV Publicly fundedSophia Etzold; Päivi Merilä; Anne Thimonier; Sue Benham; Marco Ferretti; Marcus Schaub; Tanja G. M. Sanders; Miklos Manninger; Morten Ingerslev; Aldo Marchetto; Arthur Gessler; Mathieu Jonard; Monika Vejpustkova; Peter Waldner; Walter Seidling; Antti Jussi Lindroos; David Simpson; David Simpson; Svein Solberg; Mitja Skudnik; Pekka Nöjd; Per Erik Karlsson; Pasi Rautio; Wim de Vries; Lars Vesterdal; Arne Verstraeten; G.J. Reinds; Karin Hansen; Henning Meesenburg;handle: 20.500.14243/424116 , 2078.1/224384
Changing environmental conditions may substantially interact with site quality and forest stand characteristics, and impact forest growth and carbon sequestration. Understanding the impact of the various drivers of forest growth is therefore critical to predict how forest ecosystems can respond to climate change. We conducted a continental-scale analysis of recent (1995–2010) forest volume increment data (ΔVol, m3 ha−1 yr−1), obtained from ca. 100,000 coniferous and broadleaved trees in 442 even-aged, single-species stands across 23 European countries. We used multivariate statistical approaches, such as mixed effects models and structural equation modelling to investigate how European forest growth respond to changes in 11 predictors, including stand characteristics, climate conditions, air and site quality, as well as their interactions. We found that, despite the large environmental gradients encompassed by the forests examined, stand density and age were key drivers of forest growth. We further detected a positive, in some cases non-linear effect of N deposition, most pronounced for beech forests, with a tipping point at ca. 30 kg N ha−1 yr−1. With the exception of a consistent temperature signal on Norway spruce, climate-related predictors and ground-level ozone showed much less generalized relationships with ΔVol. Our results show that, together with the driving forces exerted by stand density and age, N deposition is at least as important as climate to modulate forest growth at continental scale in Europe, with a potential negative effect at sites with high N deposition.
Dépôt Institutionel ... arrow_drop_down Forest Ecology and ManagementArticle . 2020Data sources: DANS (Data Archiving and Networked Services)Forest Ecology and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.foreco.2019.117762&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 128 citations 128 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Dépôt Institutionel ... arrow_drop_down Forest Ecology and ManagementArticle . 2020Data sources: DANS (Data Archiving and Networked Services)Forest Ecology and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.foreco.2019.117762&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Embargo end date: 01 Jan 2024 SwitzerlandPublisher:Wiley Funded by:SNSF | Development of a diagnost..., SNSF | Acclimation and environme...SNSF| Development of a diagnostic stable isotope tool to elucidate the drought response of trees ,SNSF| Acclimation and environmental memory - how do trees adjust to warmer droughts on different time scales and where are the limits?Valentina Vitali; Philipp Schuler; Meisha Holloway‐Phillips; Petra D'Odorico; Claudia Guidi; Stefan Klesse; Marco M. Lehmann; Katrin Meusburger; Marcus Schaub; Roman Zweifel; Arthur Gessler; Matthias Saurer;pmid: 38488024
AbstractScots pine (Pinus sylvestris L.) is a common European tree species, and understanding its acclimation to the rapidly changing climate through physiological, biochemical or structural adjustments is vital for predicting future growth. We investigated a long‐term irrigation experiment at a naturally dry forest in Switzerland, comparing Scots pine trees that have been continuously irrigated for 17 years (irrigated) with those for which irrigation was interrupted after 10 years (stop) and non‐irrigated trees (control), using tree growth, xylogenesis, wood anatomy, and carbon, oxygen and hydrogen stable isotope measurements in the water, sugars and cellulose of plant tissues. The dendrochronological analyses highlighted three distinct acclimation phases to the treatments: irrigated trees experienced (i) a significant growth increase in the first 4 years of treatment, (ii) high growth rates but with a declining trend in the following 8 years and finally (iii) a regression to pre‐irrigation growth rates, suggesting the development of a new growth limitation (i.e. acclimation). The introduction of the stop treatment resulted in further growth reductions to below‐control levels during the third phase. Irrigated trees showed longer growth periods and lower tree‐ring δ13C values, reflecting lower stomatal restrictions than control trees. Their strong tree‐ring δ18O and δ2H (O–H) relationship reflected the hydrological signature similarly to the control. On the contrary, the stop trees had lower growth rates, conservative wood anatomical traits, and a weak O–H relationship, indicating a physiological imbalance. Tree vitality (identified by crown transparency) significantly modulated growth, wood anatomical traits and tree‐ring δ13C, with low‐vitality trees of all treatments performing similarly regardless of water availability. We thus provide quantitative indicators for assessing physiological imbalance and tree acclimation after environmental stresses. We also show that tree vitality is crucial in shaping such responses. These findings are fundamental for the early assessment of ecosystem imbalances and decline under climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17237&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17237&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:PANGAEA Zweifel, Roman; Sterck, Frank J; Braun, Sabine; Buchmann, Nina; Eugster, Werner; Gessler, Arthur; Haeni, Matthias; Peters, Richard L; Walthert, Lorenz; Wilhelm, Micah; Ziemínska, Kasia; Etzold, Sophia;The timing of diel stem growth of mature forest trees is still largely unknown, as empirical data with high temporal resolution have not been available so far. Consequently, the effects of day-night conditions on tree growth remained uncertain. Here we present the first comprehensive field study of hourly-resolved radial stem growth of seven temperate tree species, based on 57 million underlying data points over a period of up to 8 years. We show that trees grow mainly at night, with a peak after midnight, when the vapour pressure deficit (VPD) is among the lowest. A high VPD strictly limits radial stem growth and allows little growth during daylight hours, except in the early morning. Surprisingly, trees also grow in moderately dry soil when the VPD is low. Species-specific differences in diel growth dynamics show that species able to grow earlier during the night are associated with the highest number of hours with growth per year and the largest annual growth increment. We conclude that species with the ability to overcome daily water deficits faster have greater growth potential. Furthermore, we conclude that growth is more sensitive than carbon uptake to dry air, as growth stops before stomata are known to close.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.935525&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.935525&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:PANGAEA Zweifel, Roman; Sterck, Frank J; Braun, Sabine; Buchmann, Nina; Eugster, Werner; Gessler, Arthur; Haeni, Matthias; Peters, Richard L; Walthert, Lorenz; Wilhelm, Micah; Ziemínska, Kasia; Etzold, Sophia;The timing of diel stem growth of mature forest trees is still largely unknown, as empirical data with high temporal resolution have not been available so far. Consequently, the effects of day-night conditions on tree growth remained uncertain. Here we present the first comprehensive field study of hourly-resolved radial stem growth of seven temperate tree species, based on 57 million underlying data points over a period of up to 8 years. We show that trees grow mainly at night, with a peak after midnight, when the vapour pressure deficit (VPD) is among the lowest. A high VPD strictly limits radial stem growth and allows little growth during daylight hours, except in the early morning. Surprisingly, trees also grow in moderately dry soil when the VPD is low. Species-specific differences in diel growth dynamics show that species able to grow earlier during the night are associated with the highest number of hours with growth per year and the largest annual growth increment. We conclude that species with the ability to overcome daily water deficits faster have greater growth potential. Furthermore, we conclude that growth is more sensitive than carbon uptake to dry air, as growth stops before stomata are known to close.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.935386&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.935386&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Springer Science and Business Media LLC Funded by:DFGDFGFelsmann, Katja; Baudis, Mathias; Kayler, Zachary E.; Puhlmann, Heike; Ulrich, Andreas; Gessler, Arthur;Abstract Key message Understory plant communities are essential for the recruitment of trees making up future forests. Independent of plant diversity, the understory across different forest ecosystems shows considerable physiological acclimation and structural stability towards drought events, which are expected to occur more frequently in future. Context Understory plant communities are essential for the recruitment of trees making up the future forest. It is so far poorly understood how climate change will affect understory in beech and conifer forests managed at different intensity levels. Aims We hypothesized that drought would affect transpiration and carbon isotope discrimination but not species richness and diversity. Moreover, we assumed that forest management intensity will modify the responses to drought of the understory community. Methods We set up roofs in forests with a gradient of management intensities (unmanaged beech—managed beech—intensively managed conifer forests) in three regions across Germany. A drought event close to the 2003 drought was imposed in two consecutive years. Results After 2 years, the realized precipitation reduction was between 27% and 34%. The averaged water content in the top 20 cm of the soil under the roof was reduced by 2% to 8% compared with the control. In the 1st year, leaf level transpiration was reduced for different functional groups, which scaled to community transpiration modified by additional effects of drought on functional group leaf area. Acclimation effects in most functional groups were observed in the 2nd year. Conclusion Forest understory shows high plasticity at the leaf and community level, and high structural stability to changing climate conditions with drought events.
Hyper Article en Lig... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13595-017-0681-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13595-017-0681-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018Embargo end date: 22 Mar 2018 Switzerland, SwedenPublisher:Springer Science and Business Media LLC Thomas Wieloch; Ina Ehlers; Jun Yu; David Frank; Michael Grabner; Arthur Gessler; Jürgen Schleucher;AbstractMeasurements of carbon isotope contents of plant organic matter provide important information in diverse fields such as plant breeding, ecophysiology, biogeochemistry and paleoclimatology. They are currently based on13C/12C ratios of specific, whole metabolites, but we show here that intramolecular ratios provide higher resolution information. In the glucose units of tree-ring cellulose of 12 tree species, we detected large differences in13C/12C ratios (>10‰) among carbon atoms, which provide isotopically distinct inputs to major global C pools, including wood and soil organic matter. Thus, considering position-specific differences can improve characterisation of soil-to-atmosphere carbon fluxes and soil metabolism. In aPinus nigratree-ring archive formed from 1961 to 1995, we found novel13C signals, and show that intramolecular analysis enables more comprehensive and precise signal extraction from tree rings, and thus higher resolution reconstruction of plants’ responses to climate change. Moreover, we propose an ecophysiological mechanism for the introduction of a13C signal, which links an environmental shift to the triggered metabolic shift and its intramolecular13C signature. In conclusion, intramolecular13C analyses can provide valuable new information about long-term metabolic dynamics for numerous applications.
Scientific Reports arrow_drop_down Publikationer från Umeå universitetArticle . 2018 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2018 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-018-23422-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Scientific Reports arrow_drop_down Publikationer från Umeå universitetArticle . 2018 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2018 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-018-23422-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Embargo end date: 01 Jan 2020 France, SwitzerlandPublisher:Wiley Funded by:EC | REFORESTEC| REFORESTMartina Peter; Andreas Rigling; Andreas Rigling; Christian Rellstab; Barbara Moser; Thomas Wohlgemuth; Marco M. Lehmann; Arthur Gessler; Arthur Gessler; Arun K. Bose; Arun K. Bose; Alexandru Milcu;AbstractLong generation times have been suggested to hamper rapid genetic adaptation of organisms to changing environmental conditions. We examined if environmental memory of the parental Scots pines (Pinus sylvestris L.) drive offspring survival and growth. We used seeds from trees growing under naturally dry conditions (control), irrigated trees (irrigated from 2003 to 2016), and formerly irrigated trees (“irrigation stop”; irrigated from 2003–2013; control condition since 2014). We performed two experiments, one under controlled greenhouse conditions and one at the experimental field site. In the greenhouse, the offspring from control trees exposed regularly to drought were more tolerant to hot–drought conditions than the offspring from irrigated trees and showed lower mortality even though there was no genetic difference. However, under optimal conditions (high water supply and full sunlight), these offspring showed lower growth and were outperformed by the offspring of the irrigated trees. This different offspring growth, with the offspring of the “irrigation‐stop” trees showing intermediate responses, points to the important role of transgenerational memory for the long‐term acclimation of trees. Such memory effects, however, may be overridden by climatic extremes during germination and early growth stages such as the European 2018 mega‐drought that impacted our field experiment.
Plant Cell & Environ... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Plant Cell & EnvironmentArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/pce.13729&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 35 citations 35 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Plant Cell & Environ... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Plant Cell & EnvironmentArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/pce.13729&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Italy, France, AustraliaPublisher:Wiley Funded by:SNSF | The effects of drought on..., DFG, EC | FUNDIVEUROPESNSF| The effects of drought on the interaction between carbon and nitrogen relations in trees ,DFG ,EC| FUNDIVEUROPEForrester, David I.; Bonal, Damien; Dawud, Seid; Gessler, Arthur; Granier, André; Pollastrini, Martina; Grossiord, Charlotte;handle: 2158/1113477 , 11343/291547
Summary Drought frequency and intensity are predicted to increase in many parts of the Northern Hemisphere and the effects of such changes on forest growth and tree mortality are already evident in many regions around the world. Mixed‐species forests and increasing tree species diversity have been put forward as important risk reduction and adaptation strategies in the face of climate change. However, little is known about whether the species interactions that occur in diverse forests will reduce drought susceptibility or water stress. In this study, we focused on the effect of drought on individual tree species (n = 16) within six regions of Europe and assessed whether this response was related to tree species diversity and stand density, and whether community‐level responses resulted from many similar or contrasting species‐level responses. For each species in each plot, we calculated the increase in carbon isotope composition of latewood from a wet to a dry year (Δδ13C) as an estimate of its drought stress level. When significant community‐level relationships occurred (three of six regions), there was only one species within the given community that showed a significant relationship (three of 25 species–region combinations), showing that information about a single species can be a poor indicator of the response of other species or the whole community. There were many two‐species mixtures in which both species were less water‐stressed compared with their monocultures, but also many mixtures where both species were more stressed compared with their monocultures. Furthermore, a given species combination responded differently in different regions. Synthesis and applications. Our study shows that drought stress may sometimes be reduced in mixed‐species forests, but this is not a general pattern, and even varies between sites for a given combination. The management or prediction of drought stress requires consideration of the physiological characteristics of the mixed species, and how this complements the water‐related climatic and edaphic features of the site, rather than species richness.
Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2016Data sources: Flore (Florence Research Repository)INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverJournal of Applied EcologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2664.12745&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 79 citations 79 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2016Data sources: Flore (Florence Research Repository)INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverJournal of Applied EcologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2664.12745&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Report 2020Embargo end date: 01 Jan 2022 Germany, SwitzerlandPublisher:Wiley Funded by:DFGDFGMatthias Saurer; Tobias Gebauer; Charles A. Nock; Charles A. Nock; Peter Hajek; Christian Messier; Christian Messier; Alain Paquette; Bernhard Schuldt; Arthur Gessler; Arthur Gessler; Michael Scherer-Lorenzen; Roman M. Link; Laura Rose; Jürgen Bauhus; Kyle R. Kovach;AbstractUnprecedented tree dieback across Central Europe caused by recent global change‐type drought events highlights the need for a better mechanistic understanding of drought‐induced tree mortality. Although numerous physiological risk factors have been identified, the importance of two principal mechanisms, hydraulic failure and carbon starvation, is still debated. It further remains largely unresolved how the local neighborhood composition affects individual mortality risk. We studied 9435 young trees of 12 temperate species planted in a diversity experiment in 2013 to assess how hydraulic traits, carbon dynamics, pest infestation, tree height and neighborhood competition influence individual mortality risk. Following the most extreme global change‐type drought since record in 2018, one third of these trees died. Across species, hydraulic safety margins (HSMs) were negatively and a shift towards a higher sugar fraction in the non‐structural carbohydrate (NSC) pool positively associated with mortality risk. Moreover, trees infested by bark beetles had a higher mortality risk, and taller trees a lower mortality risk. Most neighborhood interactions were beneficial, although neighborhood effects were highly species‐specific. Species that suffered more from drought, especially Larix spp. and Betula spp., tended to increase the survival probability of their neighbors and vice versa. While severe tissue dehydration marks the final stage of drought‐induced tree mortality, we show that hydraulic failure is interrelated with a series of other, mutually inclusive processes. These include shifts in NSC pools driven by osmotic adjustment and/or starch depletion as well as pest infestation and are modulated by the size and species identity of a tree and its neighbors. A more holistic view that accounts for multiple causes of drought‐induced tree mortality is required to improve predictions of trends in global forest dynamics and to identify mutually beneficial species combinations.
University of Freibu... arrow_drop_down University of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/226269Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16146&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu70 citations 70 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Freibu... arrow_drop_down University of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/226269Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16146&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Germany, Germany, Finland, SwitzerlandPublisher:Proceedings of the National Academy of Sciences Funded by:SNSF | The effects of drought on..., SNSF | Acclimation and environme...SNSF| The effects of drought on the interaction between carbon and nitrogen relations in trees ,SNSF| Acclimation and environmental memory - how do trees adjust to warmer droughts on different time scales and where are the limits?Jobin Joseph; Matthias Saurer; Nadine K. Ruehr; Mai-He Li; Mai-He Li; Matthias Haeni; Andreas Rigling; Andreas Rigling; Roland A. Werner; Marco M. Lehmann; Arthur Gessler; Arthur Gessler; Marcus Schaub; Ivano Brunner; Frank M. Thomas; Jörg Luster; Gerd Gleixner; Leonie Schönbeck; Frank Hagedorn; Willy Werner; Henrik Hartmann; Martina Peter; Günter Hoch; Benjamin Stern; Christian Hug; Christian Poll; Bernhard Backes; Ansgar Kahmen; Kaisa Rissanen; Corinne Bloch; Decai Gao; Decai Gao; Thomas Wohlgemuth;pmid: 32958662
pmc: PMC7547207
Significance Climate change increases the frequency of drought events and leads to higher variability in precipitation. Drought impairs rhizosphere (root and the root-associated microbiome) functioning in trees and leads to a reduced assimilate supply belowground. It remains unclear if rhizosphere and thus whole-tree functioning can quickly recover after drought release. We show that rhizosphere metabolic activity in previously drought-exposed 100-y-old Scots pine increased in response to subtle soil moisture increases (induced by light rainfall). As a consequence of this activity change, the belowground allocation of new assimilates was immediately stimulated. Even light rainfall events can lead to a fast recovery of rhizosphere functioning and the increased C and energy demand is instantly met by altered whole-tree assimilate allocation.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiPublikationenserver der Georg-August-Universität GöttingenArticle . 2023Proceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2014084117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 61 citations 61 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiPublikationenserver der Georg-August-Universität GöttingenArticle . 2023Proceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2014084117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 Italy, Netherlands, Belgium, Italy, Finland, DenmarkPublisher:Elsevier BV Publicly fundedSophia Etzold; Päivi Merilä; Anne Thimonier; Sue Benham; Marco Ferretti; Marcus Schaub; Tanja G. M. Sanders; Miklos Manninger; Morten Ingerslev; Aldo Marchetto; Arthur Gessler; Mathieu Jonard; Monika Vejpustkova; Peter Waldner; Walter Seidling; Antti Jussi Lindroos; David Simpson; David Simpson; Svein Solberg; Mitja Skudnik; Pekka Nöjd; Per Erik Karlsson; Pasi Rautio; Wim de Vries; Lars Vesterdal; Arne Verstraeten; G.J. Reinds; Karin Hansen; Henning Meesenburg;handle: 20.500.14243/424116 , 2078.1/224384
Changing environmental conditions may substantially interact with site quality and forest stand characteristics, and impact forest growth and carbon sequestration. Understanding the impact of the various drivers of forest growth is therefore critical to predict how forest ecosystems can respond to climate change. We conducted a continental-scale analysis of recent (1995–2010) forest volume increment data (ΔVol, m3 ha−1 yr−1), obtained from ca. 100,000 coniferous and broadleaved trees in 442 even-aged, single-species stands across 23 European countries. We used multivariate statistical approaches, such as mixed effects models and structural equation modelling to investigate how European forest growth respond to changes in 11 predictors, including stand characteristics, climate conditions, air and site quality, as well as their interactions. We found that, despite the large environmental gradients encompassed by the forests examined, stand density and age were key drivers of forest growth. We further detected a positive, in some cases non-linear effect of N deposition, most pronounced for beech forests, with a tipping point at ca. 30 kg N ha−1 yr−1. With the exception of a consistent temperature signal on Norway spruce, climate-related predictors and ground-level ozone showed much less generalized relationships with ΔVol. Our results show that, together with the driving forces exerted by stand density and age, N deposition is at least as important as climate to modulate forest growth at continental scale in Europe, with a potential negative effect at sites with high N deposition.
Dépôt Institutionel ... arrow_drop_down Forest Ecology and ManagementArticle . 2020Data sources: DANS (Data Archiving and Networked Services)Forest Ecology and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.foreco.2019.117762&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 128 citations 128 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Dépôt Institutionel ... arrow_drop_down Forest Ecology and ManagementArticle . 2020Data sources: DANS (Data Archiving and Networked Services)Forest Ecology and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.foreco.2019.117762&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Embargo end date: 01 Jan 2024 SwitzerlandPublisher:Wiley Funded by:SNSF | Development of a diagnost..., SNSF | Acclimation and environme...SNSF| Development of a diagnostic stable isotope tool to elucidate the drought response of trees ,SNSF| Acclimation and environmental memory - how do trees adjust to warmer droughts on different time scales and where are the limits?Valentina Vitali; Philipp Schuler; Meisha Holloway‐Phillips; Petra D'Odorico; Claudia Guidi; Stefan Klesse; Marco M. Lehmann; Katrin Meusburger; Marcus Schaub; Roman Zweifel; Arthur Gessler; Matthias Saurer;pmid: 38488024
AbstractScots pine (Pinus sylvestris L.) is a common European tree species, and understanding its acclimation to the rapidly changing climate through physiological, biochemical or structural adjustments is vital for predicting future growth. We investigated a long‐term irrigation experiment at a naturally dry forest in Switzerland, comparing Scots pine trees that have been continuously irrigated for 17 years (irrigated) with those for which irrigation was interrupted after 10 years (stop) and non‐irrigated trees (control), using tree growth, xylogenesis, wood anatomy, and carbon, oxygen and hydrogen stable isotope measurements in the water, sugars and cellulose of plant tissues. The dendrochronological analyses highlighted three distinct acclimation phases to the treatments: irrigated trees experienced (i) a significant growth increase in the first 4 years of treatment, (ii) high growth rates but with a declining trend in the following 8 years and finally (iii) a regression to pre‐irrigation growth rates, suggesting the development of a new growth limitation (i.e. acclimation). The introduction of the stop treatment resulted in further growth reductions to below‐control levels during the third phase. Irrigated trees showed longer growth periods and lower tree‐ring δ13C values, reflecting lower stomatal restrictions than control trees. Their strong tree‐ring δ18O and δ2H (O–H) relationship reflected the hydrological signature similarly to the control. On the contrary, the stop trees had lower growth rates, conservative wood anatomical traits, and a weak O–H relationship, indicating a physiological imbalance. Tree vitality (identified by crown transparency) significantly modulated growth, wood anatomical traits and tree‐ring δ13C, with low‐vitality trees of all treatments performing similarly regardless of water availability. We thus provide quantitative indicators for assessing physiological imbalance and tree acclimation after environmental stresses. We also show that tree vitality is crucial in shaping such responses. These findings are fundamental for the early assessment of ecosystem imbalances and decline under climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17237&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17237&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:PANGAEA Zweifel, Roman; Sterck, Frank J; Braun, Sabine; Buchmann, Nina; Eugster, Werner; Gessler, Arthur; Haeni, Matthias; Peters, Richard L; Walthert, Lorenz; Wilhelm, Micah; Ziemínska, Kasia; Etzold, Sophia;The timing of diel stem growth of mature forest trees is still largely unknown, as empirical data with high temporal resolution have not been available so far. Consequently, the effects of day-night conditions on tree growth remained uncertain. Here we present the first comprehensive field study of hourly-resolved radial stem growth of seven temperate tree species, based on 57 million underlying data points over a period of up to 8 years. We show that trees grow mainly at night, with a peak after midnight, when the vapour pressure deficit (VPD) is among the lowest. A high VPD strictly limits radial stem growth and allows little growth during daylight hours, except in the early morning. Surprisingly, trees also grow in moderately dry soil when the VPD is low. Species-specific differences in diel growth dynamics show that species able to grow earlier during the night are associated with the highest number of hours with growth per year and the largest annual growth increment. We conclude that species with the ability to overcome daily water deficits faster have greater growth potential. Furthermore, we conclude that growth is more sensitive than carbon uptake to dry air, as growth stops before stomata are known to close.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.935525&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.935525&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:PANGAEA Zweifel, Roman; Sterck, Frank J; Braun, Sabine; Buchmann, Nina; Eugster, Werner; Gessler, Arthur; Haeni, Matthias; Peters, Richard L; Walthert, Lorenz; Wilhelm, Micah; Ziemínska, Kasia; Etzold, Sophia;The timing of diel stem growth of mature forest trees is still largely unknown, as empirical data with high temporal resolution have not been available so far. Consequently, the effects of day-night conditions on tree growth remained uncertain. Here we present the first comprehensive field study of hourly-resolved radial stem growth of seven temperate tree species, based on 57 million underlying data points over a period of up to 8 years. We show that trees grow mainly at night, with a peak after midnight, when the vapour pressure deficit (VPD) is among the lowest. A high VPD strictly limits radial stem growth and allows little growth during daylight hours, except in the early morning. Surprisingly, trees also grow in moderately dry soil when the VPD is low. Species-specific differences in diel growth dynamics show that species able to grow earlier during the night are associated with the highest number of hours with growth per year and the largest annual growth increment. We conclude that species with the ability to overcome daily water deficits faster have greater growth potential. Furthermore, we conclude that growth is more sensitive than carbon uptake to dry air, as growth stops before stomata are known to close.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.935386&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.935386&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu