- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 12 May 2022 United Kingdom, Portugal, PortugalPublisher:Springer Science and Business Media LLC Funded by:UKRI | Behaviourally-mediated sh..., ARC | Discovery Projects - Gran..., FCT | LA 1UKRI| Behaviourally-mediated shifts in reef fish communities following severe disturbance ,ARC| Discovery Projects - Grant ID: DP200100575 ,FCT| LA 1Herbert-Read, James E; Thornton, Ann; Amon, Diva J; Birchenough, Silvana NR; Côté, Isabelle M; Dias, Maria P; Godley, Brendan J; Keith, Sally A; McKinley, Emma; Peck, Lloyd S; Calado, Ricardo; Defeo, Omar; Degraer, Steven; Johnston, Emma L; Kaartokallio, Hermanni; Macreadie, Peter I; Metaxas, Anna; Muthumbi, Agnes WN; Obura, David O; Paterson, David M; Piola, Alberto R; Richardson, Anthony J; Schloss, Irene R; Snelgrove, Paul VR; Stewart, Bryce D; Thompson, Paul M; Watson, Gordon J; Worthington, Thomas A; Yasuhara, Moriaki; Sutherland, William J;pmid: 35798839
handle: 10023/26547 , 2164/19808
The biodiversity of marine and coastal habitats is experiencing unprecedented change. While there are well-known drivers of these changes, such as overexploitation, climate change and pollution, there are also relatively unknown emerging issues that are poorly understood or recognized that have potentially positive or negative impacts on marine and coastal ecosystems. In this inaugural Marine and Coastal Horizon Scan, we brought together 30 scientists, policymakers and practitioners with transdisciplinary expertise in marine and coastal systems to identify new issues that are likely to have a significant impact on the functioning and conservation of marine and coastal biodiversity over the next 5-10 years. Based on a modified Delphi voting process, the final 15 issues presented were distilled from a list of 75 submitted by participants at the start of the process. These issues are grouped into three categories: ecosystem impacts, for example the impact of wildfires and the effect of poleward migration on equatorial biodiversity; resource exploitation, including an increase in the trade of fish swim bladders and increased exploitation of marine collagens; and new technologies, such as soft robotics and new biodegradable products. Our early identification of these issues and their potential impacts on marine and coastal biodiversity will support scientists, conservationists, resource managers and policymakers to address the challenges facing marine ecosystems.
Lancaster EPrints arrow_drop_down Lancaster EPrintsArticle . 2022 . Peer-reviewedFull-Text: https://eprints.lancs.ac.uk/id/eprint/175747/1/AUTHOR_APPROVED_Herbert_Read_Thornton_et_al.pdfData sources: Lancaster EPrintsLancaster University: Lancaster EprintsArticle . 2022License: CC BYFull-Text: https://eprints.lancs.ac.uk/id/eprint/175747/1/AUTHOR_APPROVED_Herbert_Read_Thornton_et_al.pdfData sources: Bielefeld Academic Search Engine (BASE)Universidade de Lisboa: Repositório.ULArticle . 2022License: CC BYData sources: Universidade de Lisboa: Repositório.ULSt Andrews Research RepositoryArticle . 2022 . Peer-reviewedData sources: St Andrews Research RepositoryNature Ecology & EvolutionArticle . 2022 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of St Andrews: Digital Research RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-022-01812-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 73 citations 73 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down Lancaster EPrintsArticle . 2022 . Peer-reviewedFull-Text: https://eprints.lancs.ac.uk/id/eprint/175747/1/AUTHOR_APPROVED_Herbert_Read_Thornton_et_al.pdfData sources: Lancaster EPrintsLancaster University: Lancaster EprintsArticle . 2022License: CC BYFull-Text: https://eprints.lancs.ac.uk/id/eprint/175747/1/AUTHOR_APPROVED_Herbert_Read_Thornton_et_al.pdfData sources: Bielefeld Academic Search Engine (BASE)Universidade de Lisboa: Repositório.ULArticle . 2022License: CC BYData sources: Universidade de Lisboa: Repositório.ULSt Andrews Research RepositoryArticle . 2022 . Peer-reviewedData sources: St Andrews Research RepositoryNature Ecology & EvolutionArticle . 2022 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of St Andrews: Digital Research RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-022-01812-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Germany, PortugalPublisher:Wiley A. Metaxas; C. D. Anglin; A. Cross; J. Drazen; M. Haeckel; G. Mudd; C. R. Smith; S. Smith; P. P. E. Weaver; L. Sonter; D. J. Amon; P. D. Erskine; L. A. Levin; H. Lily; A. S. Maest; N. C. Mestre; E. Ramirez‐Llodra; L. E. Sánchez; R. Sharma; A. Vanreusel; S. Wheston; V. Tunnicliffe;AbstractThe crises of climate change and biodiversity loss are interlinked and must be addressed jointly. A proposed solution for reducing reliance on fossil fuels, and thus mitigating climate change, is the transition from conventional combustion‐engine to electric vehicles. This transition currently requires additional mineral resources, such as nickel and cobalt used in car batteries, presently obtained from land‐based mines. Most options to meet this demand are associated with some biodiversity loss. One proposal is to mine the deep seabed, a vast, relatively pristine and mostly unexplored region of our planet. Few comparisons of environmental impacts of solely expanding land‐based mining versus extending mining to the deep seabed for the additional resources exist and for biodiversity only qualitative. Here, we present a framework that facilitates a holistic comparison of relative ecosystem impacts by mining, using empirical data from relevant environmental metrics. This framework (Environmental Impact Wheel) includes a suite of physicochemical and biological components, rather than a few selected metrics, surrogates, or proxies. It is modified from the “recovery wheel” presented in the International Standards for the Practice of Ecological Restoration to address impacts rather than recovery. The wheel includes six attributes (physical condition, community composition, structural diversity, ecosystem function, external exchanges and absence of threats). Each has 3–5 sub attributes, in turn measured with several indicators. The framework includes five steps: (1) identifying geographic scope; (2) identifying relevant spatiotemporal scales; (3) selecting relevant indicators for each sub‐attribute; (4) aggregating changes in indicators to scores; and (5) generating Environmental Impact Wheels for targeted comparisons. To move forward comparisons of land‐based with deep seabed mining, thresholds of the indicators that reflect the range in severity of environmental impacts are needed. Indicators should be based on clearly articulated environmental goals, with objectives and targets that are specific, measurable, achievable, relevant, and time bound.
Sapientia Repositóri... arrow_drop_down Sapientia Repositório da Universidade do AlgarveArticle . 2024License: CC BYData sources: Sapientia Repositório da Universidade do AlgarveGlobal Change BiologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17334&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sapientia Repositóri... arrow_drop_down Sapientia Repositório da Universidade do AlgarveArticle . 2024License: CC BYData sources: Sapientia Repositório da Universidade do AlgarveGlobal Change BiologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17334&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Publisher:Public Library of Science (PLoS) Funded by:NSERCNSERCAuthors: Danielle Denley; Anna Metaxas; Robert Scheibling;Coral reefs are critically important marine ecosystems that are threatened worldwide by cumulative impacts of global climate change and local stressors. The Solomon Islands comprise the southwestern boundary of the Coral Triangle, the global center of coral diversity located in the Indo-Pacific, and represent a bright spot of comparatively healthy coral reef ecosystems. However, reports on the status of coral reefs in the Solomon Islands are based on monitoring conducted at 5 stations in 2003–2004 and 2006–2007, with no information on how corals in this region have responded to more recent global bleaching events and other local stressors. In this study, we compare reef condition (substrate composition) and function (taxonomic and morphological diversity of hard corals) among 15 reefs surveyed in the Western Province, Solomon Islands that span a range of local disturbance and conservation histories. Overall, we found high cover of live hard coral (15–64%) and diverse coral assemblages despite an unprecedented 36-month global bleaching event in the three years leading up to our surveys in 2018. However, there was significant variation in coral cover and diversity across the 15 reefs surveyed, suggesting that impacts of global disturbance events are moderated at smaller scales by local anthropogenic factors (fisheries extraction, land-use impacts, marine management) and environmental (hydrodynamics) conditions. Our study provides evidence that relatively healthy reefs persist at some locations in the Solomon Islands and that local stewardship practices have the potential to impact reef condition at subregional scales. As coral reef conservation becomes increasingly urgent in the face of escalating cumulative threats, prioritising sites for management efforts is critical. Based on our findings and the high dependency of Solomon Islanders on coral reef ecosystem services, we advocate that the Western Province, Solomon Islands be considered of high conservation priority.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0242153&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0242153&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 12 May 2022 United Kingdom, Portugal, PortugalPublisher:Springer Science and Business Media LLC Funded by:UKRI | Behaviourally-mediated sh..., ARC | Discovery Projects - Gran..., FCT | LA 1UKRI| Behaviourally-mediated shifts in reef fish communities following severe disturbance ,ARC| Discovery Projects - Grant ID: DP200100575 ,FCT| LA 1Herbert-Read, James E; Thornton, Ann; Amon, Diva J; Birchenough, Silvana NR; Côté, Isabelle M; Dias, Maria P; Godley, Brendan J; Keith, Sally A; McKinley, Emma; Peck, Lloyd S; Calado, Ricardo; Defeo, Omar; Degraer, Steven; Johnston, Emma L; Kaartokallio, Hermanni; Macreadie, Peter I; Metaxas, Anna; Muthumbi, Agnes WN; Obura, David O; Paterson, David M; Piola, Alberto R; Richardson, Anthony J; Schloss, Irene R; Snelgrove, Paul VR; Stewart, Bryce D; Thompson, Paul M; Watson, Gordon J; Worthington, Thomas A; Yasuhara, Moriaki; Sutherland, William J;pmid: 35798839
handle: 10023/26547 , 2164/19808
The biodiversity of marine and coastal habitats is experiencing unprecedented change. While there are well-known drivers of these changes, such as overexploitation, climate change and pollution, there are also relatively unknown emerging issues that are poorly understood or recognized that have potentially positive or negative impacts on marine and coastal ecosystems. In this inaugural Marine and Coastal Horizon Scan, we brought together 30 scientists, policymakers and practitioners with transdisciplinary expertise in marine and coastal systems to identify new issues that are likely to have a significant impact on the functioning and conservation of marine and coastal biodiversity over the next 5-10 years. Based on a modified Delphi voting process, the final 15 issues presented were distilled from a list of 75 submitted by participants at the start of the process. These issues are grouped into three categories: ecosystem impacts, for example the impact of wildfires and the effect of poleward migration on equatorial biodiversity; resource exploitation, including an increase in the trade of fish swim bladders and increased exploitation of marine collagens; and new technologies, such as soft robotics and new biodegradable products. Our early identification of these issues and their potential impacts on marine and coastal biodiversity will support scientists, conservationists, resource managers and policymakers to address the challenges facing marine ecosystems.
Lancaster EPrints arrow_drop_down Lancaster EPrintsArticle . 2022 . Peer-reviewedFull-Text: https://eprints.lancs.ac.uk/id/eprint/175747/1/AUTHOR_APPROVED_Herbert_Read_Thornton_et_al.pdfData sources: Lancaster EPrintsLancaster University: Lancaster EprintsArticle . 2022License: CC BYFull-Text: https://eprints.lancs.ac.uk/id/eprint/175747/1/AUTHOR_APPROVED_Herbert_Read_Thornton_et_al.pdfData sources: Bielefeld Academic Search Engine (BASE)Universidade de Lisboa: Repositório.ULArticle . 2022License: CC BYData sources: Universidade de Lisboa: Repositório.ULSt Andrews Research RepositoryArticle . 2022 . Peer-reviewedData sources: St Andrews Research RepositoryNature Ecology & EvolutionArticle . 2022 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of St Andrews: Digital Research RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-022-01812-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 73 citations 73 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down Lancaster EPrintsArticle . 2022 . Peer-reviewedFull-Text: https://eprints.lancs.ac.uk/id/eprint/175747/1/AUTHOR_APPROVED_Herbert_Read_Thornton_et_al.pdfData sources: Lancaster EPrintsLancaster University: Lancaster EprintsArticle . 2022License: CC BYFull-Text: https://eprints.lancs.ac.uk/id/eprint/175747/1/AUTHOR_APPROVED_Herbert_Read_Thornton_et_al.pdfData sources: Bielefeld Academic Search Engine (BASE)Universidade de Lisboa: Repositório.ULArticle . 2022License: CC BYData sources: Universidade de Lisboa: Repositório.ULSt Andrews Research RepositoryArticle . 2022 . Peer-reviewedData sources: St Andrews Research RepositoryNature Ecology & EvolutionArticle . 2022 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of St Andrews: Digital Research RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-022-01812-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Germany, PortugalPublisher:Wiley A. Metaxas; C. D. Anglin; A. Cross; J. Drazen; M. Haeckel; G. Mudd; C. R. Smith; S. Smith; P. P. E. Weaver; L. Sonter; D. J. Amon; P. D. Erskine; L. A. Levin; H. Lily; A. S. Maest; N. C. Mestre; E. Ramirez‐Llodra; L. E. Sánchez; R. Sharma; A. Vanreusel; S. Wheston; V. Tunnicliffe;AbstractThe crises of climate change and biodiversity loss are interlinked and must be addressed jointly. A proposed solution for reducing reliance on fossil fuels, and thus mitigating climate change, is the transition from conventional combustion‐engine to electric vehicles. This transition currently requires additional mineral resources, such as nickel and cobalt used in car batteries, presently obtained from land‐based mines. Most options to meet this demand are associated with some biodiversity loss. One proposal is to mine the deep seabed, a vast, relatively pristine and mostly unexplored region of our planet. Few comparisons of environmental impacts of solely expanding land‐based mining versus extending mining to the deep seabed for the additional resources exist and for biodiversity only qualitative. Here, we present a framework that facilitates a holistic comparison of relative ecosystem impacts by mining, using empirical data from relevant environmental metrics. This framework (Environmental Impact Wheel) includes a suite of physicochemical and biological components, rather than a few selected metrics, surrogates, or proxies. It is modified from the “recovery wheel” presented in the International Standards for the Practice of Ecological Restoration to address impacts rather than recovery. The wheel includes six attributes (physical condition, community composition, structural diversity, ecosystem function, external exchanges and absence of threats). Each has 3–5 sub attributes, in turn measured with several indicators. The framework includes five steps: (1) identifying geographic scope; (2) identifying relevant spatiotemporal scales; (3) selecting relevant indicators for each sub‐attribute; (4) aggregating changes in indicators to scores; and (5) generating Environmental Impact Wheels for targeted comparisons. To move forward comparisons of land‐based with deep seabed mining, thresholds of the indicators that reflect the range in severity of environmental impacts are needed. Indicators should be based on clearly articulated environmental goals, with objectives and targets that are specific, measurable, achievable, relevant, and time bound.
Sapientia Repositóri... arrow_drop_down Sapientia Repositório da Universidade do AlgarveArticle . 2024License: CC BYData sources: Sapientia Repositório da Universidade do AlgarveGlobal Change BiologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17334&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sapientia Repositóri... arrow_drop_down Sapientia Repositório da Universidade do AlgarveArticle . 2024License: CC BYData sources: Sapientia Repositório da Universidade do AlgarveGlobal Change BiologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17334&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Publisher:Public Library of Science (PLoS) Funded by:NSERCNSERCAuthors: Danielle Denley; Anna Metaxas; Robert Scheibling;Coral reefs are critically important marine ecosystems that are threatened worldwide by cumulative impacts of global climate change and local stressors. The Solomon Islands comprise the southwestern boundary of the Coral Triangle, the global center of coral diversity located in the Indo-Pacific, and represent a bright spot of comparatively healthy coral reef ecosystems. However, reports on the status of coral reefs in the Solomon Islands are based on monitoring conducted at 5 stations in 2003–2004 and 2006–2007, with no information on how corals in this region have responded to more recent global bleaching events and other local stressors. In this study, we compare reef condition (substrate composition) and function (taxonomic and morphological diversity of hard corals) among 15 reefs surveyed in the Western Province, Solomon Islands that span a range of local disturbance and conservation histories. Overall, we found high cover of live hard coral (15–64%) and diverse coral assemblages despite an unprecedented 36-month global bleaching event in the three years leading up to our surveys in 2018. However, there was significant variation in coral cover and diversity across the 15 reefs surveyed, suggesting that impacts of global disturbance events are moderated at smaller scales by local anthropogenic factors (fisheries extraction, land-use impacts, marine management) and environmental (hydrodynamics) conditions. Our study provides evidence that relatively healthy reefs persist at some locations in the Solomon Islands and that local stewardship practices have the potential to impact reef condition at subregional scales. As coral reef conservation becomes increasingly urgent in the face of escalating cumulative threats, prioritising sites for management efforts is critical. Based on our findings and the high dependency of Solomon Islanders on coral reef ecosystem services, we advocate that the Western Province, Solomon Islands be considered of high conservation priority.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0242153&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0242153&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu